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Abstract

The compound extended geometric distribution (CEG distribution) is introduced. Probabilities of the distribution are
evaluated . Certain statistical, distributional and reliability properties are discussed. The distribution is characterized using
S- function. An AR(1) process corresponding to CEG distribution is derived. Simulation and estimation of parameters
are done using the method of moments and BHHJ estimation.
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1. Introduction

From the last few decades, researchers are busy to obtain new probability distributions by using different techniques.
Compounding of probability distributions has received attention since it is an innovative and sound technique to obtain
new probability distributions. In several research papers, it has been found that compound distributions are very flexible
and can be used efficiently to model different types of data sets. As a result, many compound distribution has been
constructed. Compound distributions arise when either

(1) all or some parameters of a distribution vary according to some probability distribution (mixture) or

(2) the number of random variables N in a sum of independent and identically distributed (i.i.d.) random variables
∑N

i=1 Xi

, is again a random variable. The distribution of N is referred to as primary distribution and that of Xi is referred to as
secondary distribution ( Willmot et al.(2012)). In this paper , by compounding we mean the second one.

The compounding of probability distributions enables us to obtain both discrete as well as continuous distributions. Here
we consider the compounding with discrete primary and secondary distributions. The compound Poisson distribution
is often a popular choice for modeling aggregate claims in insurance. The compound negative binomial model arises
naturally in several fields such as insurance mathematics and actuarial science and has been studied by several authors.
Furthermore, compound geometric distribution as a special case of compound negative binomial distribution plays a vital
role in analysis of ruin probabilities and related problems in risk theory. It has many reliability, queueing and insurance
applications also. Some of these applications are discussed by Schafer (1996), Willmot et al.(1997), Tang (2005) and
others. Even though compound Poisson distribution has many attractive properties, it is not a good model when the
variance of N is greater than the mean of N. In such cases, compound negative binomial distribution is a better fit. The
CEG distribution that we introduce here may also be a better fit in such cases.

Pekoz and Ross (2004) derived an identity concerning the expectation of an arbitrary function of a compound random
variable and use this identity to obtain recursive formulae for the probability mass function (pmf) of compound random
variable when the compounding distribution is Poisson, binomial, negative binomial etc. Numerical evaluation proce-
dures are often necessary for most compound distributions. Recursive evaluation procedures may be used if the primary
distribution belongs to the Sundt-Jewell class (Willmot et al.(1988)). Such a recursive procedure was introduced by Pan-
jer (1981). The use of this algorithm has become a widespread standard technique for the life and general insurance
problem.Another approach is to use FFT to evaluate the probabilities by inverting the characteristic function.

Infinitely divisible distributions form an important class of distribution on R that include the compound Poisson distribu-
tion, as well as several of the most important special parametric families of distribution. The concept of infinite divisibility
is useful in characterizing compound distributions. Feller’s (1968) characterization of compound Poisson distribution s-
tates that a non-negative integer valued random variable is infinitely divisible if and only if its distribution is discrete
compound. More probabilistic properties of compound distributions are discussed by many authors. Reliability classi-
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fications are useful tools in analysis of compound distributions and they are considered in a number of papers. Brown
(1990) proved that compound geometric distribution is new worse than used (NWU). This result was generalized by Cai et
al.(2000). Distributional and ageing properties of compound geometric distribution have been discussed also by Willmot
et al.(2001).

Maximum likelihood is often used to estimate the unknown parameters in models because it provides asymptotically
unbiased estimators which have the lowest possible asymptotic variance. For distributions having no closed form for
the pmf, estimating unknown parameters using this method is not practical. Minimum distance estimators are of interest
because they have the the desirable properties of being both robust and efficient. Basu et al.(1998) proposed a generalized
Hellinger divergence involving densities, for count data. Along similar lines but employing pgf, a pgf-based Minimum
Hellinger Divergence (MHD) type estimation is proposed by Sim et al.(2010). Ying et al.(2016) proposed a pgf -based
minimum power divergence for parameter estimation and they called this method as BHHJ-pgf divergence method.

This work is on compound extended geometric distribution with discrete secondary (severity) distribution. In section 2,
we introduce compound extended geometric (CEG) distribution and evaluate probabilities using FFT. Statistical, distri-
butional and reliability properties are discussed in sections 3, 4, 5 and 6 respectively. Section 7 discusses simulation and
estimation of parameters using moment method and BHHJ-pgf divergence method. Fitting of the distribution using a real
life data is done in section 8.

2. Compound Extended Geometric Distribution and Numerical Evaluation of Its Probabilities

Definition 2.1

A discrete random variable N is said to have extended geometric (EG) distribution if its pmf is given by

Pr[N = x] = pqx, x = 0, k, 2k, ...

where k is a positive integer. Sandhya et al.(2006) has established the connection between a negative binomial random
variable and geometric random variable by considering the concept of fractional successes. There are situations where a
success can occur only when k (> 1 , an integer) fractional successes happen. For example, suppose a sales representative
receives an incentive only when he sells k identical items. Here selling of each item is a fractional success and obtaining
an incentive is a success and success occurs only when the k fractional successes happen i.e. when k items are sold. In
similar cases extended geometric distribution may be used to model the number of successes.

A random variable Y has a compound distribution if Y =
∑N

i=1 Xi where the number of terms N is a discrete random
variable whose support is the set of all non negative integers. It is assumed that Xi are i.i.d. random variables and each Xi

is independent of N. When N has EG distribution, Y is said to have CEG distribution.

Definition 2.2

A counting random variable Y is said to have CEG distribution if its probability generating function (pgf) admits the
presentation

QY (t) =
p

1 − q[Q(t)]k , 0 < p < 1, p + q = 1, k, positive integer (2.1)

where Q(t) =
∑∞

i=0 qiti is a pgf. Here Y has support {0,1,2,...} and Y =
∑N

i=1 Xi is a random sum, Q(t) is the pgf of Xi ,
N is EG random variable and each Xi is independent of N. Thus we write Y∼ CEG (k, p, p′) where p′ is the parameter
corresponding to Xi .

Remark 2.1 When Q(t) corresponds to a distribution which is having additive property (eg. Binomial), (2.1) becomes
nothing but compound geometric. When Xi does not have the additive property (eg. Geometric) and [Q(t)]k conforms
to the pgf of a standard distribution, then also (2.1) can be interpreted as compound geometric. But when Xi does not
have additive property (eg. Uniform) and [Q(t)]k does not conform to a standard distribution, the compound extended
geometric distribution becomes more relevant.
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Obviously, the CEG probabilities are the coefficients of t0, t1, t2... in the expansion of QY (t). They are given by

g0 = Pr [Y = 0] = p(1 − qqk
0)−1

gy = Pr
[
Y = y

]
, y ≥ 1 is the sum o f y terms.

= p
∞∑

i=1

(qqk
0)i[

(
ik
1

)
qy

q0

+

y∑
j=2

(
ik
j

) y−( j−1)∑
a1=1

y−( j−2)−a1∑
a2=1

...

y−1−(a1+...a j−2)∑
a j−1=1

qa1 qa2 ...qa j−1 qy−∑ j−1
i=1 ai

q j
0

] , y ≥ 1 (2.2)

Thus

g0 = p(1 − qqk
0)−1

g1 = pqq1qk−1
0 k(1 − qqk

0)−2

g2 = p q q2 qk−1
0 k (1 − qqk

0)−2 + p q q2
1 qk−2

0

k2(1 − qqk
0)−3(1 + qqk

0) − k(1 − qqk
0)−2

2


and so on.

Note: The compound geometric probabilities are obtained by putting k=1 in (2.2).

3. Evaluation of Probabilities

Numerical evaluation is often necessary for most compound distributions, since the pmf has no closed form especially
for discrete cases. Even in the case of compound geometric distribution, the derivation of general form of pmf is not
seen in any literature,to the best of our knowledge. Since the original 1981 paper of Panjer, considerable attention has
been paid to Panjer’s recursive formula. The Panjer’s recursive formula can be successfully used to evaluate compound
geometric probabilities. In practice, both recursive methods as well as transform based techniques are widely used.
Willmot et al.(1988), Sundt (1992) gave modifications to this formula. The Fast Fourier Transform (FFT) technique is
a viable alternative. Here we evaluate the CEG probabilities using FFT , from the pgf of Y using the discrete Fourier
Transform, following Embrechts et al.(2009). For example, assume that Q(t) is the pgf of a binomial distribution with
success probability p′ = 0.5.

The following R commands are used to evaluate the corresponding CEG probabilities. CEG (k, p, 0.5)

1. M = 26

2. k = 2

3. f ← dbinomial (0 : (M − 1), size = 10, prob = 0.5)

4. f hat ← f f t( f , inverse = FALS E)

5. f khat ← f hat ∗ f hat

6. u ← p
1−(q∗ f khat)

7. g ← (1/M) ∗ f f t(u, inverse = TRUE)

The vector g contains the probability masses on 0, 1, 2, ...(M − 1) where M is a truncation point. The probabilities are not
displayed here as it takes much space. The probabilities in the case of any discrete secondary distribution can be evaluated
in similar way. In this work we concentrate on geometric secondary distribution on {0, 1, 2, ..}.
The graphs of CEG probabilities with(1) Binomial, (2) Geometric and (3) Uniform secondary distributions are plotted
here.
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′

Figure 3.1. CEG with the secondary distribution geometric (k=2, p′=0.5)

l

Figure 3.2. CEG with the secondary distribution Binomial (k=2, p′=0.5, size=10 )
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Figure 3.3. CEG with the secondary distribution Uniform (k=2, p′=0.2, N=5)

Remark 2.2 Irrespective of any secondary distribution, CEG distribution has mode at Y = 0.

Remark 2.3 Probabilities are spread out more to the right tail of the distribution in the case of binomial secondary distri-
bution than geometric and uniform secondary distributions.

Remark 2.4 Even though extended geometric distribution has its probabilities at 0, k, 2k ... , CEG distribution has
probabilities at all points 0, 1, 2 ...

4. Statistical Properties

Quantiles

Quantiles are useful measures because they are less susceptible than means to long-tailed distributions. The quantile func-
tion is one way of prescribing a probability distribution and it is an alternative to the pmf and the cumulative distribution
function (cdf). The discrete cdf is a step function, so it does not have an inverse function. Given a probability p0, the
quantile for p0 is defined as the smallest value of the random variable Y for which F(y) ≥ p0 .

Closed form expression for quantiles are not easy to derive as the distribution function is not in a compact form. We
have simulated 50 samples each of size 70 from CEG distribution (p = 0.9, 0.6, 0.3, 0.1) with geometric distribution
(probability = 0.5) as secondary distribution and the quantile values at different probabilities are tabulated below.

Table 4.1. Quantiles for k=2

p0
probabilities 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

p=0.9 0 0 0 0 0 0 0 0 5
p=0.6 0 0 0 0 0 1 2 5 12
p=0.3 0 0 1 2 4 6 8 13 28
p=0.1 2 5 8 12 16 22 30 44 87

Table 4.2. Quantiles for k=4

p0
probabilities 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

p=0.9 0 0 0 0 0 0 0 0 9
p=0.6 0 0 0 0 0 3 5 9 21
p=0.3 0 0 3 5 8 12 16 25 53
p=0.1 5 10 16 23 31 41 55 76 118

Remark 3.1 It is evident from the tables that skewness of CEG distribution becomes higher as the parameter p increases.
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For p=0.9 the quantile values up to 0.9 are zero whereas for p=0.1 the quantile value corresponding to 0.2 itself is not
zero irrespective of the value of k.

Cumulants

Cumulant generating function of CEG distribution is given by

ΦY (t) = ln (p) − ln (1 − q[MX(t)]k) where MX(t) is the moment generating function of secondary distribution.

Cumulants are derived using the general expression for deriving cumulants of random sum, proposed by Naoto Niki et
al.(1990).

Let kr, αr, νr denote the rth cumulants of Y, X and N respectively then,

k1 = ν1 α1

k2 = ν2 α
2
1 + ν1 α2

k3 = ν3α
3
1 + 3ν2α1α2 + ν1α3

Considering geometric distribution as secondary distribution,

α1 =
q′

p′
, α2 =

q′

(p′)2 , α3 =
q′(1 + q′)

(p′)3

ν1 =
kq
p

ν2 =
k2q
p2

ν3 =
k3q(1+q)

p3

As mean = k1, variance = k2 and µ3 = k3 we have:

EG distribution
mean kq

p

variance k2q
p2

CEG distribution
mean kqq′

pp′

variance k2q(q′)2+kpqq′

(pp′)2

k3 =
k3q(1 + q)(q′)3 + 3k2 pq(q′)2 + kp2qq′(1 + q′)

(pp′)3 (3.1)

Putting k=1, we get the moments of compound geometric distribution.

Also coefficient of variation is given by

(CVY )2 =
p

kqq′

[
1 +

kq′

p

]
4. A Characterization of CEG Distribution

From (2.1), it follows that if QY (t) is a pgf of CEG (k, p, p′), then there exists another pgf Q(t) such that

Q(t) = q
−1
k

[
1 − p

QY (t)

] 1
k for given values of the parameters.
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Now, let us check whether a geometric distribution on {0, 1, 2, ...} is CEG. Then

Q(t) = q
−1
k

[
1 − p(1 − q′ t)

p′

] 1
k

should be a pg f .

= a[1 + bt]
1
k should be a pg f , where a =

p′ − p
p′ q

, b =
p q′

p′ − p

That is, Q(t) = a

1 + 1
k

b t +
( 1

k )( 1
k + 1)
2!

b2t2 + ...

 (4.1)

should be a pgf. For Q(t) to be a pgf, all the terms in (4.1) should be positive. But a and b need not be greater than zero
always. Hence geometric distribution on{0,1,2,...} is not CEG.

Also we know that a compound Poisson is not compound geometric and it can not be CEG. Now consider Q(t) =
(

p′ t
1−q′ t

) 1
k ,

which is the pgf of negative binomial distribution with index parameter 1
k . Let us find the pgf of CEG corresponding to

this Q(t).

Then QY (t) =

 p
1 − qp′ t

1−q′ t


= p(1 − q′ t)[1 − at]−1 where a = q′ + qp′

= p + q
(

pp′ t
1 − (1 − pp′)t

)
= p + q

(
p∗ t

1 − q∗ t

)
,where p∗ = p p′ and q∗ = 1 − p p′

which is a mixture of two generating functions.

R and S Functions of CEG Distribution

R and S functions are generating functions which enable us to analyze properties like infinite divisibility of a probability
distribution.

R function

RY (t) =
Q
′

Y (t)
QY (t)

= k
q
p

QY (t) [Q(t)]k−1 Q
′
(t) (4.2)

where QY (t) and Q(t) are pgfs’ of Y and Xi respectively. All terms in the RHS of (4.2) are absolutely monotone from
which it follows that RY (t) is absolutely monotone. As the absolute monotonicity of R function is a necessary and sufficient
condition (Steutel et al.(2004)) for the infinite divisibility of a pgf, we have:

Proposition 4.1 CEG distribution is infinitely divisible.

Remark 4.1 QY (t) can be expressed in terms of the R function RY (t) as QY (t) = g0 exp(
∫ t

0 RY (x)dx) where g0 = Pr[Y = 0].

S function

Steutel et al.(2004) defined S function of compound geometric distributon on {0, 1, 2, ...} as
S Y (t) = 1

t

(
1 − QY (0)

QY (t)

)
0 ≤ t < 1. Let us consider the S function of the CEG distribution S Y (t) as the generating function

of the sequence {s j} where s j = q
1
k q j+1, j = 0, 1, 2, ....Here we assume that Q(t) has support {1, 2, ...}.

Then S Y (t) =
∞∑
j=0

s jt j

=
q

1
k

t
Q(t) (4.3)

Now QY (t) =
QY (0)

1 − q[Q(t)]k
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Substituting for q[Q(t)]k from (4.3) we get

S Y (t) =
1
t

[
1 − QY (0)

QY (t)

] 1
k

(4.4)

and in turn QY (t) = QY (0)
1 − (t S Y (t))k .

The following theorem characterizes CEG distribution based on its S function.

Theorem 4.1 A distribution is CEG (k, p, p′) if and only if its S function given by (4.4) is absolutely monotone.

Proof : Suppose that Y is CEG. Then QY (t) = QY (0)
1 − q[ Q(t)]k and we have S Y (t) given by (4.4) is absolutely monotone by its

construction. Now assume that S Y (t) given by (4.4) is absolutely monotone. We have

QY (t) =
QY (0)

1 − tk[S Y (t)]k

=
p

1 − q [Q(t)]k

⇒ Y is CEG.

Remark 4.2 If Q(t) takes values on {0, 1, 2, ...}, we can define s j = q
1
k q j, j = 0, 1, 2, ...

Then S Y (t) = [1 − QY (0)
QY (t) ]

1
k

Illustration 4.1 Let Q(t) = p′ t
1−q′ t , the pgf of geometric distribution on {1, 2, 3, ...}.Taking s j = q

1
k q j+1,

j = 0, 1, 2, ... . we have

S Y (t) =
q

1
k

t
p′ t

1 − q′ t

= q
1
k

p′
1 − q′ t

.

and S Y (t) is absolutely monotone.

5. An AR(1) Process Corresponding to CEG Distribution

Consider AR(1) process {Yn,i} with innovation sequence εn,i given by

Yn,i = 0 with the probability p

= Yn−1,i +

k∑
i=1

εn,i with probability (1 − p) (5.1)

Then QY (t) = p + QY (t) [Qε(t)]k (1 − p)
⇒ QY (t) = p

1 − q [Qε(t)]k , assuming that Yn,i
d
= Yn−1,i ∀i.

To cite an example for such AR(1) process, consider a collection centre which renders service to farmers in storing their
products which are perishable. Let {Yn,i} denote the inventory on the nth day if a power failure occurs on a day , the centre
deny to store products and then Yn,i = 0 otherwise Yn,i = Yn−1,i +

∑k
i=1 εn,i where

∑k
i=1 εn,i denote the total quantity of

products that are received from k outlets on the day.

Theorem 5.1 A sequence {Yn,i} given by (5.1) defines a stationary AR(1) process for some p iff it is extended geometric
sum of innovations {εn,i}.
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6. Reliability Properties

The well-known NWU property of geometric sums is extended to the class of random sums by Cai et al. (2000). Willmot
et al. (2001) have discussed aging and other distributional properties of compound geometric distribution. Higher order
reliability property of a distribution are discussed by Willmot (2002). Cai et al. (2005) showed that the aging properties
of many compound distributions can be characterized uniquely by the aging properties of the the primary distribution
whatever the secondary distribution is. Here we discuss some of these properties in the case of CEG distribution.

Hazard Rates

Knowledge of the functional form of hazard rate function is equivalent to that of the distribution itself. If the function has
a closed form it will help to determine the distribution of the random variable uniquely. As there is no closed form here,
we evaluate the hazard rate values for given values of p, k, and p′ and are tabulated below. Graphs are also plotted.

Table 6.1. Hazard function

Hazard rate values at p=0.9 p=0.6 p=0.3 p=0.1
0 12.0000000 2.0000000 0.5714428 0.1505453
1 0.4444444 0.2857143 0.1379426 0.04721529
2 0.5260870 0.3263158 0.1530256 0.05145147
3 0.5764499 0.3464567 0.1591356 0.05304683
4 0.6092096 0.3566766 0.1616304 0.05370729
5 0.6312597 0.3619219 0.1626533 0.05403935
6 0.6464447 0.3646298 0.1630748 0.05425961
7 0.6570675 0.3660320 0.1632502 0.05444578
8 0.6645806 0.3667592 0.1633253 0.05462599
9 0.6699356 0.3671366 0.1633597 0.05481069
10 0.6737735 0.3673326 0.1633780 0.05500406
11 0.6765349 0.3674344 0.1633904 0.05520806
12 0.6785275 0.3674873 0.1634012 0.05542388
13 0.6799682 0.3675148 0.1634122 0.05565251
14 0.6810114 0.3675290 0.1634245 0.05589488
15 0.6817677 0.3675365 0.1634384 0.05615196
16 0.6823163 0.3675403 0.1634546 0.05642480
17 0.6827145 0.3675423 0.1634734 0.05671450
18 0.6830037 0.3675433 0.1634952 0.05702229
19 0.6832137 0.3675439 0.1635206 0.05734951
20 0.6833663 0.3675442 0.1635501 0.05769759
21 0.6834772 0.3675443 0.1635845 0.05806811
22 0.6835578 0.3675444 0.1636245 0.05846282
23 0.6836164 0.3675444 0.1636711 0.05888361
24 0.6836589 0.3675444 0.1637253 0.05933257
25 0.6836899 0.3675445 0.1637884 0.05981202
26 0.6837124 0.3675445 0.1638619 0.06032449
27 0.6837287 0.3675445 0.1639475 0.06087282
28 0.6837406 0.3675445 0.1640472 0.06146014
29 0.6837493 0.3675445 0.1641632 0.06208995
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Figure 6.1. Hazard function graph

DFR/IFR property

Willmot et al.(2001) has established a remarkable theorem on the DFR property of compound geometric distribution
which is stated below:

Theorem 6.1 Compound geometric distribution with DFR secondary distribution is DFR.

Using this theorem, the following result may be stated in the case of CEG distribution.

Result 6.1 CEG distribution with DFR secondary distribution is DFR.

Proof : QY (t) = p
1−q[Q(t)]k , where k is a positive integer, is the pgf of a CEG random variable Y. Here Q1(t) = [Q(t)]k is the

pgf of the sum
∑k

i=1 Xi of i.i.d variables, each having DFR property. As sum of DFR random variables is again DFR, Q1
is DFR. Thus QY (t) = p

1−q Q1(t) which is the pgf of compound geometric distribution and by theorem 6.1, Y is DFR.
The following example illustrates result 6.1

Consider the negative binomial pgf

Q(t) =
(p∗)m

(1 − q∗t)m , 0 < m < 1 (6.1)

The probabilities are given by

qr =
m (m + 1)...(m + r − 1)

r!
(p∗)m (q∗)r, r = 0, 1, 2, ...

Then q0 = (p∗)m

q1 = m (p∗)m q∗

q2 =
m(m + 1)

2
(p∗)m (q∗)2 and so on.

These probabilities are monotonically non increasing and the distribution is log convex and DFR. Then the CEG variable
with this secondary distribution has pgf QY (t) = p

1−q[Q(t)]k where Q(t) is given by (6.1).
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And the CEG probabilities are

g0 = p[1 − q(p∗)mk]−1

g1 = k p q m q∗ (p∗)mk [1 − q(p∗)mk]−2

g2 = k p q
m(m + 1)

2
(q∗)2 (p∗)mk (1 − q(p∗)mk)−2

+
k2 p q m2 (q∗)2(p∗)mk

2
(1 − q (p∗)mk)−3 (1 + q(p∗)mk)2

− k p q m2 (q∗)2(p∗)mk

2
(1 − q(p∗)mk)−2

g2g0 − g2
1 =

k p2 q (q∗)2(p∗)mk

2
(1 + m2) (1 − q(p∗)mk)−3

≥ 0

i.e., g2g0 ≥ g2
1 or g2

g1
≥ g1

g0

Thus Y is log convex. Also log convexity is a sufficient condition for a random variable to be DFR. Hence Y is DFR.

Kemp (2004) established various relationships between classes of life time distributions given by

DFR/IFR ⇒ DFRA/IFRA⇒ NWU/NBU ⇒ NWUE/NBUE ⇒ IMRL/DMRL.

Using this, we state the following result.

Result 6.2 CEG distribution with DFR secondary distribution is DFRA, NWU, NWUE and IMRL. Also it will have
monotonically non increasing probabilities.

Result 6.3 CEG class is not a subclass of DFR class in general.

The following example illustrates this result.

Let Q(t) = t2 be the pgf of secondary distribution.

Then the CEG probabilities are

g4i = pqi, i = 0, 1, 2, ...
= 0, elsewhere

Denoting the tail probabilities of Y by an, n = 0, 1, 2, ...

an = Pr[Y > n]
=

∑∞
j=n+1 g j.

Then

a0 = a1 = a2 = a3 = q

a4 = a5 = a6 = a7 = q2

and so on

Thus we have
an+1
an
< 1 for n = 3 + 4 j, j = 0, 1, 2, ...
= 1 for all other values of n.

This implies that an+1
an

is not non decreasing in n for n = 0, 1, 2, ... which again imply that Y is not DFR.

Result 6.4 CEG distribution with IFR secondary distribution need not be IFR.

The following example illustrates this result.

Let the Poisson distribution with parameter λ be the secondary distribution. Then

QY (t) =
p

1 − q[Q(t)]k where Q(t) = eλ(t−1), λ > 0.
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Gupta et al.(1997) showed that Poisson distribution is IFR for any λ > 0.

g0 = p (1 − q e−kλ)−1

g1 = k p q λ e−λ e−(k−1)λ(1 − q e−kλ)−2

g2 = k p q
λ2e−λ

2
e−(k−1)λ (1 − q e−kλ)−2

+ p q λ2 e−2λ e−(k−2)λ

2
[k2(1 − q e−kλ)−3 (1 + q e−kλ) − k (1 − q e−kλ)−2]

g2g0 − g2
1 =

k2 p2 λ2 e−kλ

2
q (1 − q e−kλ)−4

≥ 0

i.e. g2g0 ≥ g2
1 or g2

g1
≥ g1

g0

But for IFR distribution gn+2
gn+1
< gn+1

gn
for all n.

⇒ Y is not IFR.

7. Simulation and Estimation

Estimation of parameters of CEG distribution is discussed in this section. Its clear from (2.2) that the expression for gy is
much complicated and so the MLE method is impractical. We use other two methods namely moment estimation method
and a pgf based method. The performance of these estimators are compared using simulation.

Moment estimation

Moment estimation of the parameters is done using simulated data in two cases.

Case 1: When p is unknown.

Moment estimator of p for known values of p′ and k are obtained by solving the non linear equation given by

m1 p p′ − k (1 − p) (1 − p′) = 0

where m1 denote the sample mean. Solution is done using root-finding function in R, namely, uniroot, in the R-package,
rootSolve.

Table 7.1. Moment estimates using simulated sample of size 70 , no. of replications 50

p′ = 0.5

p k=2 k=3 k=4
Estimate 0.880503 0.857142 0.894568

0.9 Mean bias -0.000389 -0.000857 -0.000108
MSE 0.000007 0.000036 0.0000005

Estimate 0.593220 0.711864 0.533333
0.6 Mean bias -0.000135 0.002237 -0.001333

MSE 0.0000009 0.000250 0.000088
Estimate 0.3063457 0.254545 0.318543

0.3 Mean bias 0.000126 -0.000909 0.000370
MSE 0.0000008 0.000041 0.000006

Estimate 0.138067 0.092429 0.097323
0.1 Mean bias 0.000761 -0.000151 -0.000053

MSE 0.000028 0.000001 0.0000001
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Table 7.2. Moment estimates using simulated sample of size 100 , no. of replications 100

p′ = 0.5

p k=2 k=3 k=4
Estimate 0.895761 0.902605 0.901646

0.9 Mean bias -0.004238 0.002605 0.001646
MSE 0.001429 0.001336 0.001003

Estimate 0.607815 0.604842 0.600160
0.6 Mean bias 0.007814 0.004841 0.000160

MSE 0.002361 0.002463 0.001545
Estimate 0.304055 0.297088 0.307787

0.3 Mean bias 0.004055 -0.002911 0.007787
MSE 0.001100 0.000692 0.000772

Estimate 0.100574 0.101289 0.101031
0.1 Mean bias 0.000574 0.001289 0.001031

MSE 0.000095 0.000116 0.000113

Case 2: When the parameters p and k are unknown.

Table 7.3. Moment estimates using simulated sample of size 100

p′ = 0.5
k=2 k=3

p p∧ k∧ p∧ k∧

Estimate 0.897189 1.483529 0.914690 2.787692
0.9 Bias 0.002810 0.516471 -0.014690 0.212308

Estimate 0.550560 1.543492 0.547488 2.310890
0.6 Bias 0.049439 0.456508 0.0525112 0.68911

Estimate 0.235045 1.385765 0.256971 2.327518
0.3 Bias 0.064955 0.614235 0.043029 0.672482

Table 7.4. Moment estimates using simulated sample of size 200

p′ = 0.5
k=2 k=3

p p∧ k∧ p∧ k∧

Estimate 0.851696 1.062432 0.879149 2.109655
0.9 Bias 0.048304 0.937568 0.020850 0.890345

Estimate 0.580577 1.702601 0.578516 2.580425
0.6 Bias 0.049422 0.297399 0.021484 0.419575

Estimate 0.230081 1.346270 0.245584 2.190817
0.3 Bias 0.069918 0.653730 0.054415 0.809183
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Table 7.5. Moment estimates using simulated sample of size 200 and no. of replications 10

p′ = 0.5
k=2 k=3

p p∧ k∧ p∧ k∧

Mean estimate 0.621392 2.198139 0.615971 3.217357
0.6 Mean bias -0.021392 -0.19814 -0.015971 -0.217357

MSE 0.005840 0.499688 0.004465 0.878118
Mean estimate 0.308553 1.851169 0.293683 3.019106

0.3 Mean bias -0.008553 0.148830 0.006316 -0.019106
MSE 0.008773 1.011429 0.006264 1.308463

Remark 7.1

Moment estimates of p show more efficiency but that of k show less efficiency for simulated data.

BHHJ estimation

The use of pgf in statistical inference has been proposed as a tool in estimation due to its simplicity compared to probability
mass function in many instances. Application of pgf in parameter estimation through Hellinger distance is investigated in
the context of discrete distributions by Sim et al.(2010). Basu et al. (1998) proposed a density power divergence method
for parameter estimation, abbreviated as BHHJ estimation method. Here we use BHHJ-pgf divergence method, proposed
by Ying et al. (2016). This method relies on a tuning parameter say, α. Although α may take any value greater than or
equal to zero, it is preferable to have 0 ≤ α ≤ 1. A divergence is a measure between two probability functions which is
equal to zero if and only if both the functions are exactly identical.

BHHJ divergence based on pgf is defined as

dα(gn, g) =
∫ 1

0
[g1+α(t; θ) − (1 +

1
α

)gn(t)gα(t; θ) +
1
α

g1+α
n (t)]dt, a > 0 (7.1)

where g(t, θ) = Eθ(tx), θϵΘ , the parameter space, is the pgf and
gn(t) = 1

n
∑n

i=1 txi , 0 < t < 1 is the empirical probability generating function (epgf). BHHJ estimates are obtained by
minimizing equation (7.1) using numerical integration and optimization techniques in R.

Case 1 : When p is unknown

Table 7.6. BHHJ estimates using simulated sample of size 70 , no. of replications 50

p′ = 0.5

p k=2 k=3 k=4
Estimate 0.9108968 0.9053703 0.9041653

0.9 Mean bias 0.01089678 0.005370265 0.004165289
MSE 0.001490264 0.00129572 0.00123835

Estimate 0.6526661 0.640099 0.6330657
0.6 Mean bias 0.05266611 0.04009899 0.03306566

MSE 0.005718887 0.00432516 0.003916185

Estimate 0.3479656 0.3380421 0.3337955
0.3 Mean bias 0.04796564 0.03804213 0.03379551

MSE 0.004348459 0.00370362 0.003410143

Estimate 0.1232959 0.1209915 0.1195978
0.1 Mean bias 0.02329586 0.02099153 0.01959776

MSE 0.00110247 0.001059967 0.001036039
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Table 7.7. BHHJ estimates using simulated sample of size 100 , no. of replications 50

p′ = 0.5

p k=2 k=3 k=4
Estimate 0.8772054 0.880645 0.8815072

0.9 Mean bias -0.02279409 -0.01953547 -0.01849279
MSE 0.001717514 0.001380089 0.001267511

Estimate 0.5951251 0.5953881 0.5957902
0.6 Mean bias -0.004874921 -0.004611889 -0.00420979

MSE 0.001979797 0.002025841 0.002080004

Estimate 0.2944718 0.2954374 0.296052
0.3 Mean bias -0.005528216 -0.004562633 -0.003948003

MSE 0.001578441 0.001710894 0.00177828

Estimate 0.09929298 0.1005937 0.1034169
0.1 Mean bias -0.0007070249 0.0005937333 0.003416925

MSE 0.000301405 0.0003323098 0.003795251

Case 2 : When two parameters p and p′ are unknown

Table 7.8. BHHJ estimates using simulated sample of size 100 and no. of replications 20

p k = 2 k = 3
p∧ (p′)∧ p∧ (p′)∧

Estimate 0.8931849 0.4328041 0.91177768 0.4866129
0.9 Meanbias −0.00681504 −0.4671958 0.01177768 −0.41338708

MS E 0.00162173 0.2270093 0.00115606 0.17728369

Estimate 0.63138006 0.50130096 0.59195481 0.5172811
0.6 Meanbias 0.03138006 −0.13421505 −0.00804518 −0.0827189

MS E 0.00368531 0.0368625 0.003772016 0.00873732

Estimate 0.29306584 0.5212073 0.27628933 0.51374002
0.3 Meanbias −0.00693415 0.2212073 −0.02371066 0.213740025

MS E 0.00485659 0.05474073 0.006566003 0.0492060

Estimate 0.0904562 0.64514572 0.10105595 0.51724618
0.1 Meanbias 0.0054562 0.5451457 0.001055958 0.41724618

MS E 0.00262791 0.30885135 0.00116145 0.18415606

8. Real Life Data Set

The number of depression symptoms can be considered as count data in order to get complete and accurate analysis
findings in studies of depression. Tao et al. (2017), in his study, aims to compare the goodness of fit of four count
outcomes models by a large survey sample to identify the optimum model for a risk factor study of the number of
depression symptoms.
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Table 8.1. Proportions and predictive probabilities of each counts (in percentage)

Count Observed Poisson NB ZIP ZINB
0 39.28 28.10 36.89 39.22 39.04
1 23.74 33.19 28.02 20.63 22.67
2 15.23 21.61 16.40 18.67 17.64
3 10.38 10.42 8.83 11.75 10.58
4 6.33 4.24 4.62 5.84 5.46
5 3.21 1.58 2.41 2.47 2.58
6 1.40 0.56 1.27 0.94 1.15
7 0.43 0.20 0.68 0.33 0.50

Total 100 100 100 100 100
Chi square value 12.3153467 1.3954038 1.5389177 0.5528416

d. f 3 2 3 2
p value 0.0063774 0.497727 0.6733177 0.7584937

NB, negative binomial; ZINB, zero-inflated negaitve binomial; ZIP,zero-inflated poisson.

The second column of above table presents the observed distribution of the number of depression symptoms. Among
the total of 15462 respondents, 39.28 percentage reported no depression symptoms and so on. The Akaike information
criterion (AIC) and Bayesian information criterion (BIC) are not used here to measure goodness of fit as the the likelihood
function cannot be put in a closed form. Hence fitting of CEG distribution is done using Chi square test. Parameter p is
estimated using BHHJ method.

Table 8.2. Fitting of CEG distribution

Expected (k = 2, p′ = 0.98)
Count Observed unpooled pooled

0 39.28 39.6659 39.6659
1 23.74 23.2165 23.2165
2 15.23 14.2852 14.2852
3 10.38 8.7874 8.7874
4 6.33 5.4054 14.045
5 3.21 3.3251
6 1.4 2.0454 ( f or counts ≥ 4)
7 0.43 3.2691

Total 100 100 100
Chi square value 0.876162

d. f 3
p value 0.831176
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Figure 8.1. Depression count graph

9. Conclusion

This paper offers CEG distribution, which is obtained by compounding EG distribution with discrete distribution. We
have derived some properties of the distribution, including reliability properties. Apart from standard distributions, pmf
of many discrete compound distributions have no closed form. Hence even evaluation of probabilities is a difficult task.
We have given R commands to evaluate CEG probabilities in the case of binomial secondary distribution.This can be
used for any secondary distribution. Characterization of the distribution is done using S function. An AR(1) process
corresponding to CEG distribution is obtained. We have tried to explore the role of CEG distribution as a reliability
class of distributions and demonstrated how the distribution falls into place within the hierarchy of various reliability
classes. The parameter estimation via the maximum likelihood method is not practical due to the complexity in the form
of pmf. Hence it is done using method of moments and pgf based BHHJ estimation method. We conducted simulation
study to compare the methods.Based on our simulations, we conclude that BHHJ method performs better than method of
moments. Finally, we have fitted CEG distribution to a real data and compared it with fitting Poisson, negative binomial,
zero-inflated Poisson and zero-inflated negative binomial distributions. The p values show that CEG distribution provides
a better fit compared to others.
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