
http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 8, No. 3; 2019

Polynomial Interpolation of Normal Conditional Expectation
Anis Rezgui

Correspondence: Anis Rezgui, Carthage University - INSAT - Mathematics Department - Centre Urbain Nord - BP676 -
1080, Tunis, Tunisia

Received: April 1, 2019 Accepted: April 18, 2019 Online Published: April 24, 2019

doi:10.5539/ijsp.v8n3p75 URL: https://doi.org/10.5539/ijsp.v8n3p75

Abstract

In this paper we are interested in approximating the conditional expectation of a given random variable X with respect
to the standard normal distribution N(0, 1). Actually we have shown that the conditional expectation E(X|Z) could be
interpolated by an N degree polynomial function of Z, φN(Z) where N is the number of observations recorded for the
conditional expectation E(X|Z = z). A pointwise error estimation has been proved under reasonable condition on the
random variable X.
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1. Introduction

Since the outstanding Stone-Weierstrass result about the approximation of continuous functions by polynomials on com-
pact sets, (Rudin, 1976) and (Prolla, 1993), polynomial interpolation has become the corner stone of numerical analysis
and approximation theory. Although the importance of polynomial interpolation it has not been used to interpolate s-
tochastic processes or random variables. This can be understood for the case of one random variable because it sounds
very strange to interpolate one value with a polynomial function! Actually this could be done if we consider the condi-
tional expectation of a given random variable X with respect to another known one Z. In fact this is because this latter
can be expressed as E(X|Z) = φ(Z) where φ is L2 with respect to the probability distribution dµZ of Z when X is of finite
variance, the function φ is called regression function.

This starts to make sense for many reasons, the first one, is due to the fact that we often, especially in practical situations,
cannot observe the random variable X unless we fix a value for another known variable, in our case, Z. The second reason
is because that the conditional expectation E(X|Z) is the best approximation of X as a function of Z. I even can add a
third reason, that is due to the result in (Krzysztof K., 2005), where it has been proved, that any random variable X can be
approximated by the conditional expectation of another random variable E(Y |U) whereU is a fixed sub-σ-algebra.

In the present paper our main interest is to interpolate the conditional expectation random variable E(X|Z) with a polyno-
mial function of Z, where X is supposed to have finite variance and Z is a random variable that follows the standard normal
distribution N(0, 1). The Central Limit Theorem (CLT) which tells us that every ” thing ” is approximately normal in ”
average ”, see (Billingseley, 1995), justifies our particular choice of the normal distribution for the variable Z. Note here
that both variables X and Z are considered on the same probability space (Ω,F ,P). In (Lando T. & Ortobelli S., 2015)
a similar interest has been noted where authors have given an approximation of the density function of the conditional
expectation E(X|Z) has been studied in more general context where Z is not necessary normally distributed. While in our
current work we are giving an approximation to the regression function itself φ(Z) = E(X|Z).

It is known that the conditional expectation E(X|Z) of X given Z is expressed as a function of Z, φ(Z), for some φ ∈
L2 (R, µ), where µ is the standard Gaussian probability measure

dµ
dz

(z) =
1
√

2π
e−

z2
2 . (1)

For more details about conditional expectation properties we can consult the following references (Billengsley, 1995) and
(Sheldon M. R., 2007) for instance.

Recall that the family of Hermite polynomials {hn(z) : n ≥ 0} is defined by its generating function:

eλz−
1
2 λ

2
=

+∞∑
n=0

λn

n!
hn(z), ∀ λ, z ∈ R, (2)
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and that these polynomials satisfy the following orthogonality relation∫ +∞

−∞
hn(z)hm(z)dµ(z) = n!δnm, ∀ n, m ∈ N (3)

where δnm = 1 if n = m and 0 if n , m. So the polynomials {hn : n ∈ N} form an orthogonal basis of the space L2(R, µ).
It follows that every function φ ∈ L2(R, µ) can be expressed, in L2(R, µ), as

φ(z) =
+∞∑
n=0

φ(n)hn(z) with ∥φ∥20 =
+∞∑
n=0

n!|φ(n)|2. (4)

This latter relation implies in particular that

E(X|Z) = φ(Z) =
+∞∑
n=0

φ(n)hn(Z) (5)

where the convergence holds in L2(Ω,P). Let N ∈ N and denote by φN the truncated sum

φN(z) =
N∑

n=0

φ(n)hn(z). (6)

It is clear that the sequence φN - of polynomials of degree N - approximates φ in L2(R, µ) and so φN(Z) approximates
E(X|Z) in L2(Ω,P).

This leads to the following questions:

1. Under which conditions on X does the function φ admit a continuous version?

2. Does φN converge pointwisely and uniformly to φ?

3. How can one use this latter convergence result to interpolate polynomially φ and so E(X|Z)?

4. Could the latter approximation be considered to simulate the variable E(X|Z)?

Actually the main purpose of this paper is to answer the previous questions. The remaining parts of the paper are organized
as follows:

In the next section we have stated and proved the main result of this paper, see Theorem 2.4. We have shown the
convergence of the polynomial sequence φN pointwisely and uniformly to the function E(X|Z = ·) = φ(·), which leads to
the existence of a continuous version for the function φ, and so we have answered to questions 1-3 at the same time. The
last section is devoted to the numerical illustration of our result where we have tested the interpolation algorithm and used
it to simulate the conditional expectation E(X|Z).

2. Existence of a Continuous Version

In this section we are going to give answer to the first question asked in our introduction, that is ” Under which conditions
on X the function φ admits a continuous version as a function of L2(R, µ)? ”. For this we shall construct a sequence of
decreasing Hilbert subspaces of H0 = L2(R, µ). Let q be a non-negative integer. Define the Hilbert subspace of H0, Hq by
the completion of the subspace:

Hq = {φ ∈ H0 : ∥φ∥2q =
+∞∑
n=0

2nqn!|φ(n)|2 < ∞}. (7)

More details about the latter sequence of subspaces (7) can be found in (Rezgui, 2017).

Remarks 2.1.

i. Actually, the choice of the weight 2q in the definition of the sequence of subspaces in (7) could be replaced by any
positive sequence αq that increases to infinity with q, this is to make the sequence of Hilbert subspaces decreasing.

ii. The sequence of subspaces in (7) is strictly decreasing in the sense that:

· · ·  Hq+1  Hq  · · ·  H0.
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Before going to the main point of this section we prove a lemma, which gives a control of the L2 approximation of the
function φ by the polynomial sequence {φN}N≥0 given by the truncated sum in (6):

Lemma 2.2. Let φ ∈ H0 = L2(R, µ) and p ≥ 1 be such that φ ∈ Hp  H0. Then for any 0 ≤ q < p and for all N ∈ N the
truncated sum φN in (6) satisfies:

∥φ − φN∥q ≤ 2
(q−p)(N+1)

2 ∥φ∥p (8)

Before proving this lemma, we would like to state the following:

Remarks 2.3.

i. Actually it is known that φN converges to φ in H0 but we couldn’t derive any general result about the convergence
speed unless using a similar construction of sequence of subspaces of H0. For instance if p = 1 so q = 0 and we get
in particular

∥φ − φN∥0 ≤ 2−
N+1

2 ∥φ∥1. (9)

ii. If we consider φ such that φ(·) = E(X|Z = ·) we get, instead of (9)

V
[
E(X|Z) − φN(Z)

]
≤ 2−q(N+1)∥E(X|Z = ·)∥21. (10)

Proof of Lemma 2.2: If φ ∈ Hp for some p ≥ 1 then for 0 ≤ q < p

∥φ − φN∥2q =

+∞∑
n=N+1

2nqn!|φ(n)|2

=

+∞∑
n=N+1

2(q−p)n2pnn!|φ(n)|2

≤ 2(q−p)(N+1)∥φ∥2p.

Now we are ready to announce the main result of this work. In fact we shall show that the conditional function E(X|Z =
z) = φ(z) can be approximated pointwisely on R and uniformly on each compact subset of R by a polynomial function,
and thus admits a continuous version. Actually by answering to question 1. of the last section Theorem 2.4 answers also
to questions 2. and 3..

Theorem 2.4. Let X be a given random variable with a finite variance and Z be a random variable that follows the
standard normal distribution N(0, 1). Suppose that the conditional expectation function φ(·) = E(X|Z = ·) belongs to
the Hilbert subspace H2. Then the sequence of polynomial random variables

{
φN(Z)

}
N≥1 converges absolutely almost

everywhere to the conditional expectation random variable E(X|Z). Moreover for any compact subset K ⊂ R there exists
a positive constant C > 0 such that

|E(X|ZK) − φN(ZK)| ≤ C∥E(X|Z = ·)∥22−N/2 (11)

where ZK = Z1{Z∈K} and 1{Z∈K} is the indicator function of the subset of Ω, {Z ∈ K}.

Proof of Theorem 2.4:

It is known that Hermite polynomials satisfy the following integral representation, see (Szegö, 1939):

hn(z) =


(−1)[n/2]ez2/2 2

n
2+1

√
π

∫ +∞

0
tne−t2

cos(
√

2zt)dt, n even

(−1)[(n+1)/2]ez2/2 2
n
2+1

√
π

∫ +∞

0
tne−t2

sin(
√

2zt)dt, n odd

(12)

This implies in particular that for any n ∈ N and z ∈ R∣∣∣∣∣∣hn(z)
√

n!

∣∣∣∣∣∣ ≤ ez2/2 2
n
2

√
π

Γ( n+1
2 )
√

n!
. (13)
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Now let φ ∈ H0, q ≥ 1 and z ∈ R

|φ(z)| ≤
+∞∑
n=0

|φ(n)||hn(z)|

=

+∞∑
n=0

[
2nq/2

√
n!|φ(n)| |hn(z)|

√
n!

2−nq/2
]
.

Using inequality (13) and the Stirling formula

Γ( n+1
2 )
√

n!
≈+∞ 2−n/2(2π)1/4 1

n1/4 ,

we get
|hn(z)|
√

n!
≤ Cez2/2

(
2
π

)1/4 1
n1/4

for some constant C > 1 and then

|φ(z)| ≤ Cez2/2
(

2
π

)1/4 +∞∑
n=0

[
2nq/2

√
n!|φ(n)|2

−nq/2

n1/4

]

≤ Cez2/2
(

2
π

)1/4

∥φq∥
 +∞∑

n=0

2−nq

n1/2

1/2

≤ ez2/2Cq∥φ∥q,

where Cq > 0 is a constant that depends on q ≥ 1.

The latter implies that if φ is chosen to belong to Hq then it can be approximated pointwisely and uniformly on each
compact subset of R by the polynomial sequence {φN}N≥0. In fact

|φ(z) − φN(z)| ≤
+∞∑

n=N+1

|φ(n)||hn(z)|

≤ ez2/2Cq∥φ − φN∥q,

which by using inequality (8) of Lemma 2.2 for p = q + 1 gives

|φ(z) − φN(z)| ≤ ez2/2Cq2−
N+1

2 ∥φ∥q+1. (14)

Since the latter inequality is true for every q ≥ 1 if we choose q = 1 we get the pointwise convergence of (φN)N to φ
unless φ ∈ H2. We complete the proof by replacing φ by E(X|Z = ·). 2

3. Numerical Illustration

In this section we shall use the approximation result of Theorem 2.4 to set up an algorithm of recovering the conditional
expectation E(X|Z) = φ(Z) from the knowledge of a finite number of sample conditional values.

Suppose that for each observation of Z, Z = zi, i = 0, · · · ,N, we could observe X and obtain the design {(z0, x0), · · · , (zN , xN)},
where for each i = 0, · · · ,N, we have E(X|Z = zi) = φ(zi) = xi. To recover the conditional expectation E(X|Z) know-
ing this finite number of conditional observations {x0, · · · , xN} we shall interpolate the function φ knowing the design
{(z0, x0), · · · , (zN , xN)}. By Theorem 2.4, the function φ can be pointwisely approximated by the sequence of polynomial
functions {φN}, this allows us to consider that the polynomial φN =

∑N
n=0 φ

(n)hn worths {x0, · · · , xN} at {z0, · · · , zN , } i.e
φN(z0)
...
φN(zN)

≃


x0
...
xN .

This leads to the following linear system
h0(z0) · · · hN(z0)
...

...
h0(zN) · · · hN(zN)



φ(0)

...
φ(N)

 =


x0
...

xN

 . (15)
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By solving the linear system above one obtains the coefficients of the interpolation polynomial:

φN(z) =
N∑

n=0

φ(n)hn(z).

The weakness of the current algorithm is the absence of guarantee that the latter system is solvable since we just know
that Hermite polynomials are linearly independent as functions in L2(R, µ) but not as vectors in RN+1, despite of this, the
following remark saves the situation:

Remark 3.1. Consider the polynomial function of several variables:

(z0, · · · , zN) 7−→ ∆(z0, · · · , zN) = det


h0(z0) · · · hN(z0)
...

...
h0(zN) · · · hN(zN)



we see that the subset of RN+1

{(z0, · · · , zN) ∈ RN+1 : ∆(z0, · · · , zN) , 0}

is everywhere dense, which means that the matrix in (15) is invertible most of times.

We would like to note here some differences between our algorithm and standard polynomial interpolation ones:

i. Accuracy, in our case, doesn’t depend on the distances between the nodes of the initial design:

|φ(z) − φN(z)| ≤ C∥φ∥22−N/2

however in most standard polynomial interpolation algorithms, it does, see for instance (Phillips, 2003):

|φ(z) − pN(z)| ≤

(
max1≤k≤N |rk − rk−1|

)N+1

(N + 1)!
sup

r0≤u≤r1

∣∣∣∣∣∣dN+1φ

duN+1 (u)

∣∣∣∣∣∣ , (16)

where pN denotes the interpolation polynomials in the standard cases. ii.In most standard polynomial interpolation al-
gorithms accuracy depends strongly on interpolated function’s regularity, while, in our case it doesn’t. Actually, we just
need to suppose that φ belongs to H2.

3.1 Interpolation Test

Let us consider the function f (x) = sin x on [−π, π], for each N = 5, 10 and 15 we shall consider N equidistant points and
form three designs for the function f . Then we interpolate using our algorithm and the predefined one in Matlab ”spline”
-it is the most accurate- below are plots where we can see the nodes N = 5, the sine function in discontinuous line and the
two polynomial interpolations in continuous line:
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Figure 1. Hermite vs Spline, f (x) = sin x

In the next table we have recorded errors of the two algorithms for different values of N = 5, 10 and 15:

N Hermite Interp. Error Spline Interp. Error
5 2.2832 2.2832
10 0.0017 0.1177
15 1.8981e-006 32.3902e-003

3.1.1 Observations

i.It is clear that our algorithm is more accurate than the spline one for the case where f (x) = sin x.

ii. Actually we have tested the difference between our algorithm and the spline one for different kinds of functions and we
have noted that our algorithm gives better approximation’s error for polynomial functions, trigonometric and exponential
functions and also for fractional functions such as, f (x) =

x
1 + x

.

iii. However, if we consider fractional functions that decrease to zero when x goes to infinity, for instance, f (x) =
1

1 + x4

the spline algorithm gives clearly better approximation’s error.

iv. We would like to note that although we have tried our algorithm several times, we haven’t had ever a singularity for
the matrix in (15), this makes us in doubt about its singularity in general!

3.2 Simulation Test

To test the simulation aspect of our algorithm we shall test whether we could simulate E(X|Z) by using φN(Z) knowing X
for only a few numbers N ∈ N of values of Z. For this we have considered the correlated normal couple (X,Z) with zero
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mean and covariance matrix

Σ =

 1 1
2

1
2 1


It is easy to check that the conditional expectation worths

E(X|Z) =
Z
2
,

and so the function φ(z) =
z
2

.

Our test consists first of generating n > N values of the normal couple (X,Z) and then select N = 5, 10 values among
them. Then we interpolate the function φ based on those selected N values, which forms our design, and we calculate the
interpolation function on the all n initially generated values of Z. Below we display two graphical tests of normality for
the obtained polynomials φN(Z):
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Although the previous graphical tests seems to be pretty good I have to say that I didn’t get the same satisfaction with
standard numerical normality tests, such as, the Kolmogorov-Smirnov test.

All functions’ codes have been written in Matlab version (7.9.0.529 R2009b) and Licence number 161051.
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Szegö, G. (1939). Orthogonal Polynomials. American Mathematical Society Providence, Rhode Island.
https://doi.org/10.1090/coll/023

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

82


