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Abstract 

Based on progressive type-II censored sample with random removals, point and interval estimations for the shape 

parameters of the exponentiated Weibull distribution are discussed. Computational formula for the expected total test 

time are derived for different situations of sampling plans. This is useful in planning a life test experiment. The 

efficiency of the estimators are compared in terms of the root mean square error, the variance and the coverage 

probability of the corresponding confidence intervals. A simulation study is presented for several values of removal 

probability and different values of failure percentage. Also, numerical applications are conducted to illustrate and 

compare the usefulness of the different sampling plans in terms of expected test times for different patterns of failure 

rates. 

Keywords: progressive type-II censoring, random removals, maximum likelihood estimation, confidence interval, 

coverage probability, expected test time, exponentiated Weibull model 

1. Introduction 

In reliability tests involving massive numbers of items and in situations where exceptionally large times to failure are 

expected, the use of censored data is economically more realistic. The procedure of removing good items from the test 

before the termination of experiment is known as progressive censoring. In a progressive type-II censoring scheme n 

identical units are placed on a life-test experiment and removals of still operating units are carried out at observed 

failure times. That is, after the i-th failure some preassigned number 𝑅𝑖 ( i = 1, 2, . . ., m) of surviving units are 

randomly removed from the test. This process continues until the m-th failure, tm, is obtained and the remaining 

𝑅𝑚 = 𝑛 − (𝑚 + ∑ 𝑅𝑖
𝑚−1
𝑖=1 ) units are all removed at the end of the experiment. Therefore, the observed failure times; 

t1, t2, … , tm are called progressively type-II censored order statistics. We denote to the set of observed failure-times and 

survival withdrawn by {ti, Ri}, i = 1, 2, . . ., m ; t1 < t2 < … < tm. If Ri = 0 for i=1, 2, . . ., m-1 and Rm > 0, then 

the progressive type-II censored sample reduces to a conventional type-II censored of t1, t2, … , tm , m<n. The 

importance and usefulness of progressive censoring schemes and its applications in industrial life testing and medical 

survival analysis can be seen by referring to Balakrishnan and Aggarwalla (2000). 

In the last two decades, the statistical inferences for various distribution using progressive censored samples get special 

attention and are studied by several authors among of them, Viveros and Balakrishnan (1994), Balakrishnan and Sandhu 

(1995), Childs and Balakrishnan (2000), Mousa and Jaheen (2002), (Balakrishnan et al. (2003), Soliman (2005), Basak 

et al. (2009), Madi and Raqab (2009), Cheng et al. (2010) and Kim et al. (2011). In these studies the value of Ri at the 

time of the ith failure ti are fixed and preassigned. In practical situations, Ri may occur at random. As an example, in 

some reliability studies in industerial field, an experimenter may decide that it is inapproperiate or too dangerous to 

carry on the test on some of the tested units even though these units have not failed completely. The number of patients 

drop out from a clinical test at each stage is random and cannot be prefixed, as another example (See Tse et al. (2000)). 

In such cases, the experimenter may need to change the censoring numbers during the experiment and so adaptation 

process of progressive censoring scheme is needed. Ng et al. (2009) proposed an adaptive censoring scheme in which 

the censoring scheme (R1,R2,, … , Rm) may change during the experiment according to a prefixed threshold time T> 0 to 

keep the effective sample size m of failures. Before the time T the conventional progressive censoring scheme is applied. 
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After passing time T withdrawing surviving units is stopped at all until the time of mth failure where all remaining 

surviving units are removed. Yuen and Tse (1996) proposed progressive censoring scheme in which the number Rj of 

units removed at each failure is random and is chosen according to a probability distribution with support {0, . . ., n-m} 

and the prbability mass function of this distribution is independent of failure time. Recently, some authors have 

discussed inference problem for various distribution when the data are progressively censored with random removals, 

among of them: Tse et al. (2000), Wu and chang (2003), Wu et al. (2007), Sarhan et al. (2008) and Kumar et al. (2016).  

The purpose of this paper is concerned with inferences using progressively type-II censored data with random removals 

from exponentiated Weibull distribution.The probability density functon, cumulative distribution function, and 

reliability function of this distribution are, respectively, 

𝑓(𝑡) = 𝛼𝜃𝑡𝛼−1𝑒−𝑡
𝛼
(1 − 𝑒−𝑡

𝛼
)𝜃−1, t> 0; 𝛼, 𝜃> 0                      (1) 

and 

𝐹(𝑡) = (1 − 𝑒−𝑡
𝛼
)𝜃,                                    (2) 

where 𝛼 and 𝜃are the two shape parameters. 

This distribution is an extension of the well known Weibull distribution. It accommodates unimodal, bathub-shaped and 

broader classes of monotone failure rates. Mudholkar et al. (1995) showed that, for the exponentiated Weibull 

distribution, the failure rate is (a) unimodal for α < 1 and αθ > 1, (b) bathtub-shaped for α > 1 and αθ < 1, (c) 

decreasing for α ≤ 1 and αθ ≤ 1, and (d) increasing for α ≥ 1 and αθ ≥ 1. In practice, the exponentiated Weibull 

distribution as a failure model is more realistic than that of monotone failure rates and plays an important role to 

represent several lifetime data that are of bathtub-shaped or upside-down bathtub shape failure rates. The distribution 

includes exponential, generalized exponential, Burr type X and reyligh sub-models. See Mudholkar and Hutson (1996) 

and  Nassar and Eissa (2003). However, The exponentiated Weibull distribution as a failure model gives a good idea 

about using the progressive censoring schemes with random removals. 

The rest of this paper is organized as follows: Section 2 presents the model under consideration and the likelihood 

function of the model parameters.Section 3 derives the maximum likelihood equations and discusses the asymptotic 

properties of the maximum likelihood estimators (MLEs). Also, the confidence intervals of 𝛼 and 𝜃 are obtained. In 

Section 4, simulation results is made to assess the performance of the estimators. Analytical formulas for expected test 

time are derived in Section 5. Numerical analyses for the expected test time are presented in Section 6. 

2. Model 

Suppose a progressive type-II censored sample {ti, Ri}, i=1,2,. . ., m, is obtained when n units are put on a life test 

terminated at prespcified number m (≤n) of failures are observed. The number of surviving units that are removed from 

the test at the ith failure, Ri, is a random variable. The sample of failure times are considered to have an exponentiated 

Weibull distribution with density and distribution functions given, respectively, by  equations (1) and (2). Let R1=r1, 

R2=r2,. . ., Rm=rm and denote the set of lifetimes t = *t1, t2 , … , tm+ and r = *r1, r2 , … , rm+, say. The conditional 

likelihood function defined by Cohen (1963) is 

L(α, θ; t |R = r)= C ∏ f(ti),1 − F(ti)-
rim

i=1 .                               (3) 

For progressive type-II censoring with predetermined R’s and applying equations (1) and (2) the likelihood function can 

be obtained as 

 1(𝛼, 𝜃; 𝑡 |𝑅 =  )=   𝛼𝑚𝜃𝑚𝑒−  ,                               (4) 

where C=∏ (𝑛 −  + 1 − ∑   
𝑖−1
 = 

𝑚
𝑖=1 ),   = 0, 

T=∑ *𝑡𝑖
𝛼 − (𝛼 − 1) 𝑛𝑡𝑖 − (𝜃 − 1) 𝑛 𝑖 −  𝑖 𝑛(1 −  𝑖

𝜃)+𝑚
𝑖= ,                  (5) 

 𝑖 =  𝑖(𝛼) = 1 − 𝑒
−𝑡 
𝛼
 and 0 ≤  𝑖 ≤ 𝑛 −𝑚 − ( 1 +  2 + …+  𝑖−1). 

The form of equation (4) is conditional on  𝑖. We consider the case of progressive type-II censoring in which 𝑅𝑖 is 

independent of  𝑖 for all i and is assumed to follow a binomial distribution with parameters n-m-∑   
𝑖−1
 =1  and  . The 

parameter   is the probability of removal of each unit and is assumed to be the same for all removals. Therefore, we 

have 

P(𝑅1 =  1)=.
𝑛 −𝑚
 1

/    (1 −  ) −𝑚−  , 

P(𝑅2 =  2|𝑅1 =  1)=.
𝑛 −𝑚 −  1

 2
/    (1 −  ) −𝑚−   −  , . . ., 

P(𝑅𝑖 =  𝑖|𝑅𝑖−1 =  𝑖−1, … , 𝑅1 =  1)= 
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(
𝑛 −𝑚 − ∑   

𝑖−1
 = 

 𝑖
)    (1 −  ) −𝑚−∑   

   
   .                           (6) 

where 0 ≤ ri  ≤  − − ∑ rj
i−1
j=1 , i=1, 2, . . . , m-1. 

Since the random mechanism producing the removals is independent of the data, i.e. Ri is independent of lifetimes for 

all i, the likelihood function can be written as 

 2(α, θ,  ; t , r)=  1(α, θ; t |R = r) P(R,  )                       (7) 

where the second term in the right hand side of equation (7), is 

P(R,  )= P(R1 = r1) P(R2 = r2|R1 = r1) P(R3 = r3|R2 = r2, R1 = r1) 

                                    . . . P(Rm−1 = rm−1|Rm−2 = rm−2,  … , R1 = r1)                  (8) 

Substituting the forms of equation (6) in equation (8), we get 

P(R,  )=
( −m) 

. −m−∑ r 
i  
   /  ∏ (ri )

   
i  

  1(1 −  ) 2                      (9) 

where C1=∑  𝑖
𝑚−1
𝑖=1  and C2=(𝑚 − 1)(𝑛 − 𝑚) − ∑ (𝑚 −  )  𝑖

𝑚−1
𝑖=1  . 

3. Maximum Likelihood Estimation 

In this section, we will derive the MLEs of α and θ. It is clear that the joint probability distribution of R’s does not 

involve the parameters 𝛼  and 𝜃 . The MLEs 𝛼̂  and 𝜃̂  of 𝛼  and 𝜃 , respectively, can be obtained directly by 

maximizing the function  1(𝛼, 𝜃; 𝑡 |𝑅 =  ) given by equation (4). The log-likelihood function, ln 1(𝛼, 𝜃; 𝑡 |𝑅 =  ) = 

l(𝛼, 𝜃), is  

 (𝛼, 𝜃) =  +𝑚 l 𝛼 +𝑚 l 𝜃 −  . 

The maximum likelihood estimators α̂ and θ̂ are the values that solves the first order conditions  

  (𝛼,𝜃)

 𝜃
=
𝑚

𝜃
−  1  =0 

  (𝛼,𝜃)

 𝛼
=
𝑚

𝛼
−  2  − 𝜃  3 −  4  =0.                             (10) 

where   1  = ∑  𝑖  𝑛  𝑖
𝑚
𝑖=1  ,   2  = ∑ (𝑡𝑖

𝛼 − 1)  𝑛 𝑡𝑖   
𝑚
𝑖=1 , 

  3  = ∑  𝑖 𝑖  𝑛 𝑡𝑖
𝑚
𝑖=1  ,  4  = ∑  𝑖  𝑛 𝑡𝑖

𝑚
𝑖=1  

  𝑖 =  𝑖 𝑖 − 1,   𝑖 = ( 𝑖
−𝜃 − 1)−1,   𝑖 = 1 − 𝑒

−𝑡 
𝛼
                                

and  𝑖 =  𝑖
−1𝑡𝑖

𝛼𝑒−𝑡 
𝛼
.                                              

Equations (10) gives the necessary conditions for a maximum. In addition, the Hessian matrix, 𝐻(𝛾), of the 

exponentiated Weibull log-likelihood function is  

𝐻(𝛾) = ( 𝑖 ) = (
   (𝛼,𝜃)

      
) ,  ,  = 1, 2, 𝛾 = (𝛼, 𝜃).  

The elements  𝑖 ,  ,  = 1, 2 are given by  

 22 = −
𝑚

𝜃 
− ∑   𝑖   ( 𝑛  𝑖)

2𝑚
𝑖=1 , 

 11 = −
𝑚

𝛼2
−∑𝑡𝑖

𝛼

𝑚

𝑖=1

( 𝑛 𝑡𝑖)
2 − ∑(𝜃2  𝑖 − 𝜃  𝑖 − 1)

𝑚

𝑖=1

 𝑖
2 ( 𝑛 𝑡𝑖)

2 

− ∑ (𝜃  𝑖 + 1)
𝑚
𝑖=1 (1 − 𝑡𝑖

𝛼)  𝑖 ( 𝑛 𝑡𝑖)
2, 

 12 =  21 = −𝜃∑  𝑖
𝑚
𝑖=1  𝑖   𝑛  𝑖  𝑛 𝑡𝑖 −  3                         (11) 

where  𝑖 =  𝑖 𝑖 (1 +  𝑖). It easy to see that  11,  22 and  12 are all negative where the terms  𝑖 < 0,  𝑖 > 0, 

 𝑖 > 0 and  3  > 0 for 𝛼 > 0 and 𝜃 > 0 as well as  𝑛  𝑖 < 0 and  𝑛 𝑡𝑖 can be positive or negative according to 

𝑡𝑖 is greater or less than one. Fluctuating values of  𝑛 𝑡𝑖 between positive and negative does not affect on the ultimate 

value of the  11,  22 and  12 to be negative. Therefore, the Hessian matrix of the log-likelihood function l(𝛼, 𝜃) is 

negative definite at every value of 𝛼 > 0 and 𝜃 > 0. We can say that l(𝛼, 𝜃) is strictly concave and hence any local 
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maximizer that we find will be the unique global maximizer, i.e. the estimated parameters 𝛼̂ and 𝜃̂ solving the 

first-order conditions given by equations (10) are the unique maximum likelihood solution. At this point, we conclude 

that the system of likelihood equations (10) admits a unique solution in the region 𝑅+ × 𝑅+ and that the log-likelihood 

function l(𝛼, 𝜃) is strictly concave but we can not say that this system always has a unique solution. The conditions, by 

which the solutions are always exist, need further and deep discussion in other work. Now, searching about a solution 

( α̂, θ̂) of equations (10) at which the Hessian matrix is negative definite must be cosidered. It is difficult to obtain such 

solution (analytically) in closed form. Thus we resort to obtain the solution by using an iterative technique. For more 

details about the existence and uniqueness of maximum likelihood estimates, see Makelainen et al. (1981).  

To evaluate the performance of the estimators and studying the variation of the MLEs of the parameters of our lifetime 

distribution, the asymptotic variances and covariances of 𝛼̂ and 𝜃̂ are obtained. It is clear that   is only a parameter 

of binomial removal distribution and does not provide information about the lifetime distribution. On the basis of the 

asymptotic normality property of the tow-dimentional ML estimators, the asymptotic distribution of the vector 

√𝑛(𝛼̂ − 𝛼     𝜃̂ − 𝜃)
 
 approaches 𝑁(0, 𝐼−1) as n approaches infinity and for large value of effective sample size m, 

m<n (See Ng et. al. (2009), Rao (1973), and Mood et. al. (1974)). The Fisher information matrix 𝐼 = 𝐼(𝛼, 𝜃) is 

associated with the parameters α  and θ . Using the observed information, we evaluate the approximate 

variance-covariance matrix, (Cij), say, 

(Cij)=( ij)
−1, i, j= 1, 2. 

The elements  ij can be obtained as follows: 

 11  =
m

  
+ ∑ ti

 m
i=1 (l  ti)

2 +∑ ( i
m
i=1 θ2 −  iθ − 1) i

2 ( 𝑛 𝑡𝑖)
2 +∑ (m

i=1  iθ + 1)(1 − ti
 ) i ( 𝑛 𝑡𝑖)

2, 

 22  =
m

  
+ ∑  i

m
i=1 (l   i)

2,  and  12  =  21  = 𝜃∑  𝑖
𝑚
𝑖=1  𝑖 𝑛  𝑖 𝑛 𝑡𝑖 +  3             (12) 

where  𝑖 =  𝑖 𝑖 (1 +  𝑖);  𝑖 and  𝑖 are given in equation (10). 

Computing the values of the elements given by equations (12) at the estimated values 𝛼̂ and 𝜃̂ we get 

Var(𝛼̂)=
 ̂  

 
 , Var(𝜃̂ )=

 ̂  

 
 and Cov(𝛼̂, 𝜃̂)=

− ̂  

 
                      (13) 

where D= ̂11 ̂22 −  ̂12
2   . 

The approximate 100(1-τ)% confidence intervals (CIs) for the parametrs 𝛼 and 𝜃 from proressively type II censored 

data with binomial removals are respectively given by 

(𝛼̂    2  ⁄ √   (𝛼̂)) and   (𝜃̂    2  ⁄ √   (𝜃̂))                    (14) 

where   2  ⁄ is the (1 − 𝜏 2 ) ⁄  quantile of the standard normal distribution. 

4. Simulation Results 

We derive, in the above Section, the ML estimators and CIs for the two shape parameters  and  of the exponentiated 

Weibull distribution. The likelihood equations (10) are solved, numerically. In order to assess the statistical 

performances of these estimators under progressive type-II censored sample with random removals, a simulation study 

is conducted by using generated random samples of different sizes. Samples were generated from exponentiated 

Weibull distribution with α=0.8 (α < 1) and θ=1.7 (αθ > 1) (unimodal failure rate case). One thousand samples are 

generated by applying the algorithm of Balakrishnan and Sandhu (1995). Different values of removal probability   and 

failure percentage (denoted by) Fp, are considered where Fp=(𝑚 𝑛⁄ )% . We employ MATHEMATICA7 program to 

perform the computations. For different sample sizes, n=20 (small), 30 (moderate), 50 (large), different values of 

removal probability,  =0.01, 0.05, 0.10, 0.25 and 0.50 and different failure-percentages, Fp= 50%, 60%, 70% and 80%, 

the results are presented in Tables 1-3. The results based on 1000 replications include the root mean square error 

(RMSE), the mean width of confidence interval, and the average coverage probability (CAP) for each parameter at 

 𝜏=0.05.  

We discuss in light of the results presented in Tables 1-3 how the estimates affected by censoring schemes in our case of 

all surviving units are randomly removed from the experiment. The removals are binomially distributed with probability 

 .  

Our observations about the results are sumerized in the following points:  



 

 

http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                 Vol. 8, No. 2; 2019 

128 

1. The RMSEs of α̂ and θ̂ decrease as Fp increases for all sample sizes. This is due to large Fp would imply relatively 

more failure times being observed, more information about the life times distribution are available and so more efficient 

estimation of the parameters under consideration. The effect of the removal probability   is also important to decrease 

the RMSEs of α̂ and θ̂. For a fixed Fp, as the   increases, the RMSEs of these estimators reduce appreciably, 

specially for small and moderate sample sizes. This means that more withdrawals should be occurred during (not at the 

end of) the test experiment. The results also reveal that, even for small sample size, the perfomance of ML estimators α̂ 

and θ̂ improve in terms of their variances for increasing  . The RMSEs and variances are decreasing, as a rule, from 

table to table as the sample sizes increase.  

2- The mean width of the CIs for  and  decrease when Fp increases. For a fixed Fp, the mean-width of CIs for  are 

typically decreasing when   increases for all sample sizes; whilst θ̂ is relatively severe in decreasing of reduction of 

its mean-width of CIs. The effect of   on the coverage probability, CAP, of the CIs is evident. For small sample size, 

increasing of   improves the coverage probability to be satiafactory at Fp=50% and 60% and at Fp=50% for moderate 

sample size. The coverage probabilities are much upper than the nominal level at Fp>60% and/or  increasing    for 

all sample sizes. We considered other values of failure percentages and the results are not reported since they have a 

similar pattern to the cases listed in Tables 1-3. Other values of the distribution parameters: α=0.8 (α < 1) and θ=0.75 

(αθ < 1) (decreasing failure rate case), were also considered and the results are not reported since they have a similar 

pattern to the cases listed in Tables 1-3. 

Table 1. RMSEs, variances and average width of CIs and their coverage probabilities (CAP) for MLEs 𝛼̂ and 𝜃̂ for 

different values of Fp and   at n=20 

 n=20 

  𝛼̂  𝜃̂ 

Fp   RMSE Var. Width CAP  RMSE Var. Width CAP 

50% 

0.01 1.652 0.485 1.957 73.5  0.611 0.563 2.190 86.0 

0.05 1.536 0.375 1.775 71.4  0.605 0.480 2.085 85.2 

0.10 1.336 0.276 1.548 76.8  0.605 0.512 2.174 86.5 

0.25 0.903 0.142 1.194 90.8  0.560 0.449 2.177 91.2 

0.50 0.794 0.109 1.034 91.7  0.561 0.423 2.128 91.4 

0.75 0.406 0.066 0.873 97.6  0.539 0.367 2.115 94.4 

0.90 0.388 0.055 0.831 97.9  0.563 0.354 2.150 95.3 

60% 

0.01 0.862 0.227 1.326 90.4  0.569 0.499 2.044 92.2 

0.05 0.742 0.153 1.194 91.4  0.543 0.409 2.024 92.7 

0.10 0.574 0.104 1.039 94.7  0.533 0.381 2.034 93.6 

0.25 0.552 0.083 0.950 95.0  0.518 0.324 1.942 93.8 

0.50 0.306 0.050 0.762 98.7  0.518 0.310 1.988 97.4 

70% 

0.01 0.441 0.078 0.914 97.0  0.516 0.317 1.877 96.6 

0.05 0.395 0.067 0.858 98.0  0.477 0.289 1.839 97.4 

0.10 0.329 0.059 0.855 98.0  0.471 0.265 1.861 97.5 

0.25 0.258 0.041 0.717 98.6  0.469 0.256 1.830 97.6 

0.50 0.234 0.035 0.678 99.4  0.480 0.248 1.846 98.6 

80% 

0.01 0.357 0.043 0.753 98.8  0.475 0.239 1.801 98.3 

0.05 0.236 0.036 0.678 99.1  0.466 0.226 1.737 98.3 

0.10 0.214 0.031 0.653 99.6  0.462 0.218 1.764 98.8 

0.25 0.208 0.027 0.618 99.9  0.473 0.213 1.768 99.8 

0.50 0.208 0.027 0.628 99.9  0.467 0.208 1.758 99.6 

 

 

 

 

 

 

 

 



 

 

http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                 Vol. 8, No. 2; 2019 

129 

Table 2. RMSEs, variances and average width of CIs and their coverage probabilities (CAP) for MLEs α̂ and θ̂ for 

different values of Fp and   at n=30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. RMSEs, variances and average width of CIs and their coverage probabilities (CAP) for MLEs 𝛼̂ and 𝜃̂ for 

different values of Fp and   at n=50 

 n=50 

 𝛼̂  𝜃̂ 

F

p 

  RMSE Var. Width CAP  RMSE Var. Width CAP 

50% 

0.01 0.282 0.064 0.876 97.2  0.344 0.165 1.409 98.0 

0.05 0.231 0.039 0.713 98.9  0.326 0.134 1.331 98.9 

0.10 0.179 0.026 0.573 99.6  0.325 0.127 1.284 99.4 

0.25 0.147 0.016 0.489 100  0.314 0.107 1.264 99.9 

0.50 0.137 0.015 0.470 100  0.305 0.106 1.267 100 

60% 

0.01 0.219 0.039 0.683 98.3  0.312 0.132 1.258 98.4 

0.05 0.175 0.023 0.560 99.7  0.305 0.098 1.175 99.7 

0.10 0.143 0.015 0.478 99.8  0.300 0.093 1.172 99.8 

0.25 0.125 0.013 0.436 100  0.291 0.093 1.187 100 

0.50 0.121 0.012 0.424 100  0.299 0.094 1.194 100 

70% 

0.01 0.153 0.017 0.503 99.7  0.284 0.082 1.097 99.7 

0.05 0.136 0.014 0.468 100  0.281 0.079 1.093 100 

0.10 0.118 0.011 0.404 100  0.278 0.080 1.101 100 

0.25 0.108 0.010 0.392 100  0.283 0.082 1.120 100 

0.50 0.104 0.010 0.386 100  0.285 0.083 1.127 100 

80% 

0.01 0.119 0.012 0.424 100  0.275 0.073 1.052 100 

0.05 0.104 0.009 0.378 100  0.273 0.074 1.061 100 

0.10 0.099 0.009 0.365 100  0.274 0.072 1.048 100 

0.25 0.098 0.008 0.358 100  0.279 0.076 1.077 100 

0.50 0.098 0.008 0.356 100  0.279 0.075 1.075 100 

5. Expicted Test Time 

The expected time of a life test is the expected time required to complete the test experiment. In practice, an 

experimenter may have aim to explore the time duration of his experiment to choose an approperiate sampling plan. The 

cost and the time duration to complete a test experiment are related. In the following we derived the expected test time 

when the data come from exponentiated Weibull distribution for some csaes of sampling schemes. 
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In case of complete sample test, the required time to complete the test is the time at the nth, T , failure in a sample of n 

test units. The expected value of T  to observe the nth failure in this sample is given by 

 (  ) = 𝑛 ∫ 𝑡 𝑓(𝑡)𝐹 −1
 

 
(𝑡)  𝑡. 

In our case,  (  ) is given by  

                        (  ) = 𝑛 𝛼 𝜃 ∫ 𝑡𝛼𝑒−𝑡
𝛼
(1 − 𝑒−𝑡

𝛼
) 𝜃−1

 

 
  𝑡.                       (15) 

Now, for any real number a, we have the expansion, (See J. Stewart; page 742), 

(1 −  ) = ∑ (−1)𝑖 
𝑖= .

 
 
/  𝑖                                (16) 

where .
 
 
/ =

 ( −1)( −2)…( −𝑖+1)

𝑖 
. 

This series always converges when |x|<1 as well as it converges at the end points  1 if  ≥ 0. If a is positive integer 

the series reduces to the Binomial Theorem and then the last term of the expansion is at i=a. Applying the form (16) to 

the term (1 − e−t
α
)  −1, E(T ) given by equation (15) can take the form 

E(  )= n 𝜃 Г(
1

𝛼
+ 1)∑ (−1)i 

i= .
𝑛𝜃 − 1
 

/ ( + 1)−(
 

α
+1)

.                    (17) 

In case of type-II censoring sampling test, The density function of the m-th oredr statistics is 

𝑓(𝑡𝑚) = 𝑚 .
𝑛
𝑚
/  𝑓(𝑡) 𝐹𝑚−1(𝑡),1 − 𝐹(𝑡)- −𝑚. 

The expected time, E( 𝑚
∗ ), of type II censoring test can be derived as 

E( 𝑚
∗ )= 𝑚 .

𝑛
𝑚
/  𝜃 Г(

1

𝛼
+ 1) × 

                      ∑ (−1)  −𝑚
 = .

𝑛 −𝑚
 /∑ (−1)𝑖 

𝑖= .
(𝑚 +  )𝜃 − 1

 
/ ( + 1)−(

 

𝛼
+1)

               (18) 

When m=n we get the expected time of test of complete sampling. 

Similarly, under the case of progressive type-II censoring with a fixed number of removals, the expected time required 

to completean experiment is dfined as the expected value of  𝑚 conditioning on R, and given as follows:  

E( 𝑚|𝑅)= C(r) ∑ ∑           
  
  = 

  
  = 

∑ (−1) .
 1
 1
/ .
 2
 2
/… .

 𝑚
 𝑚
/  ×

  
  = 

1

∏  (  )
   
   

∫ 𝑡 𝑓(𝑡)𝐹 (𝑡) 𝑡
 

 
. 

where C(r)=∏ (𝑛 −  + 1 − ∑   
 −1
 = )𝑚

 =1 , A=∑  𝑖
𝑚
𝑖=1 ,  ( 𝑖) = ∑  𝑖 +  

𝑚
𝑖=1   and B= ( 𝑚) − 1. 

In our case of exponentiated Weibull population, we get 

E( 𝑚|𝑅)=C(r) (
1

𝛼
+ 1)∑ ∑           

  
  = 

  
  = 

∑ (−1) .
 1
 1
/ .
 2
 2
/… .

 𝑚
 𝑚
/  ×

  
  = 

 

  
1

∏  (  )
   
   

∑ (−1)𝑖 .
 ( 𝑚)𝜃 − 1

 
/ ( + 1)−(

 

𝛼
+1) 

𝑖= .                    (19) 

When  𝑖 = 0 for all i we have the case of a type-II censoring sampling test, and then  ( 𝑖) =  ,  ( 𝑚) = 𝑚, 

 ( ) ∏  ( 𝑖
𝑚−1
𝑖=1⁄ ) = 𝑚 .

𝑛
𝑚
/ and so the equation (19) reduces to equation (18). 

For progressive type-II censoring with random removals, R terms are random. The expected test time,  ( 𝑚), to 

complete the experiment is given by taking the expectation of equation (19) with respect to R. That is, 

 ( 𝑚)=E ,E( 𝑚|R)-=∑ ∑ …
 −m−r 
r   

 −m
r   

∑ E, 𝑚|R-  (R,  )
 −m−r −r − −r   
r     

            (20) 

where P(R, p) is given by equation (9). 

As a comparison scale, the ratio of the expected test times (RETT) can be computed between any two of progressive 

type II censoring with binomial removals, type II censoring, and complete sample by using the following ratios: 

RETT1 =
 (  

∗ )

 (  )
,    RETT2 =

 (  )

 (  )
,   and   RETT3 =

 (  
∗ )

 (  )
 .                (21) 
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These ratios are useful to compare the performance of the three types of sampling schemes. Practitioner may be of 

interest to compare the three expected times,  (  ) ,  ( 𝑚
∗ )  and  ( 𝑚) , in order to determined whether the 

experiment time can be shortend significantly if a much lager sample of n test units is used. The test is stopped once m 

failures are occurred. To compare these three expected test times is analytically so difficult. A numerical study is 

conducted and the results are presented in the following section. 

6. Numerical Analysis 

Up to this point, we have derived the expected test time,  ( 𝑚), of progressively type II censored sample with 

binomial removals, ( 𝑚
∗ ) of type II censored sample, and  (  ), of complete sample. It will be of interest to compare 

these three expected test time,  in order to gain some idea about the roles of  𝑛,  𝑚,   ,  α, and θ on the duration 

of the lifetime test by numerically computing equations, (20), (18), (17) and the ratios in equation (21). As we discussed 

previously, different values of α  and θ  may result in different failure rates of the exponentiated Weibull 

distribution.Therefore, in this section, we choose (a) α = 0 6 and θ = 2, (b) α = 5 and θ = 0 1, (c) α = 0 5 and 

θ = 0 5, and (d) α = 4 and θ = 0 6 for numerical study. 

For 𝑛 = 8, 10, 12, and 15 and 𝑚 =  2⁄ ,  2⁄ + 1,… , 𝑛, Figure 1 shows the ratio, RETT1, of the expected test time 

under type II censoring to the expected test time under complete sample. For fixed values of  , the ratio decreases as 

  increases, but the size of decrement is influenced by the values of α and θ. We also can find that the expected test 

time for type II censoring is lower than the half of expected test time for complete sample when the failure rate is 

unimodal or decreasing. If the failure rate is bathtub-shaped, the ratio is between 0.2 and 0.8. For increasing failure rate, 

type II censoring scheme does not save too much experimental time comparing to complete sampling plan. 

Figure 2 shows the ratio, RETT2, of the expected test time for progressive type II censoring with binomial removals and 

complete sample versus 𝑛 for 𝑚 = 7 and different values of removal probability  . The value of   is an important 

factor on the expected test time. This is because small  , say 0.01, 0.05 or 0.10, results in the later removals. The 

observed failures in a progressive type II censoring with binomial removals are almost the same as those in a type-II 

censoring. When   is large, 𝑛 −𝑚 of the 𝑛 test units would be dropped out at the early stage of the life test such that 

the observed failure times are much closer to the tail of the lifetime distribution. Hence, the expected test time of 

progressive type-II censoring with binomial removals is close to that of complete sampling in which one observes m 

failures out of m test units. A larger value of    always results in a longer duration of experimental time. The ratios 

under increasing failure rate are larger than those under the other three kinds of failure rate. For bathtub-shaped failure 

rate, the progressive type II censoring with binomial removals can save reasonable test time compared to the complete 

sample. 

Tables 4 to 7 give the values of expected test time under progressive type II censoring with binomial removals for 

unimodal, bathtub-shaped, decreasing, and increasing failure rate, respectively. For 𝑛 = 8, 10, 12, and 15, the 

corresponding choices of   are listed in these tables. The case of 𝑚 = 𝑛 corresponds to the complete sampling plans. 

Various values of removal probability   are studied. In particular,  = 0 01, 0.05, 0.1, 0.25, and 0.5 are presented. 

Other values of 𝑛, 𝑚, and   were also considered and the results are not reported here since they have similar patterns 

to the cases listed in these tables. 

When   is large, 𝑛 −𝑚 of the 𝑛 test units would be dropped out at the early stage of the life test. This results in the 

observed failure times much closer to the tail of the lifetime distribution, and hence the expected test time of 

progressive type II censoring with binomial removals is close to that of complete sample. In addition, when the shape of 

failure rate is unimodal, it usually takes a longer time to complete a progressively type II censored life test. However, 

when the failure rate is bathtub-shaped, the duration of the life test is usually short. For all values of  ,the expected test 

time is decreasing when 
𝑚

 
 decreases. 

Tables 4 to 7 also give the ratio, RETT3, of the expected test time for type II censoring and progressive type II 

censoring with binomial removals. When   is large, the ratios show that type II censoring can save more experimental 

time than progressive type II censoring with binomial removals, especially for unimodal and decreasing failure rates. 

However, when   is small, the durations of type II censoring and progressive type II censoring with binomial removals 

are almost the same. Note that the progressive type II censoring is desirable when a compromise between reduced time 

of experimentation and the observation of at least some extreme failure times is sought. The removal probability   

cannot be chosen too large. In practice, since the failure rate is usually bathtub-shaped or increasing, one might choose 

 ≤ 0 25 based on Tables 5 and 7. Other values of α and θ were also considered and the results are not reported here 

since they have a similar pattern to the cases listed in Figures 1, 2 and Tables 4-7. 
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7. Conclusion 

In this study, we present some statistical inferences when the observed data are progressively type II censored with 

random removals. The results demonstrate that the classical point and interval estimations of shape parameters  and  

of the exponentiated Weibull model are most significant by the removal probability  . The significance is in terms of 

the reduction of RMSE, variance, the reduction of the width of CI and the satisfaction of coverage probability of the CIs. 

Although the CI based on the asymptotic distribution of the MLEs do not perform well for small sample size, the 

coverage probabilities improve to close the nominal level at suitable values of the removal probability  . However, 

increasing the removal probability   produces censoring scheme as 𝑅1 approaches n-m and 𝑅2, 𝑅3, … , 𝑅𝑚 approach 

zero. This choice of censoring scheme provides the smallest RMEs and variances for the estimates and improve the 

value of coverage probability of the CIs for all sample sizes. Balakrishnan et. al. (2003) reveals a similar result.  

On the other hand, under profressively type II censored data with random removals, the required time to complete the 

test experiment increases significantly for various shapes of failure rates. The bathtub-shaped failure rate is of a shortest 

time of the test compared to other types of failure rates. However, in case of bathtub-shaped or increasing failure rate 

and the removal probability not too large, the test time can be reduced to that of type II censoring and the reduction is 

significant compared to complete sampling. 

Table 4. Expected test time under progressive type II censoring with binomial removals and RETT3 when α = 0 6 and 

θ = 2 

  
  

  
0.01 

 
0.05 

 
0.1 

 
0.25 

 
0.5 

n m  ( 𝑚) RETT3 
 
 ( 𝑚) RETT3 

 
 ( 𝑚) RETT3 

 
 ( 𝑚) RETT3 

 
 ( 𝑚) RETT3 

8 4 1.3415 0.9820 
 

1.4482 0.9097 
 

1.6087 0.8189 
 

2.3001 0.5728 
 

3.8292 0.3440 

 
5 1.9794 0.9758 

 
2.1956 0.8797 

 
2.5203 0.7664 

 
3.7049 0.5213 

 
5.3594 0.3604 

 
6 2.9273 0.9694 

 
3.3223 0.8541 

 
3.8539 0.7363 

 
5.2911 0.5363 

 
6.5586 0.4327 

 
7 4.5490 0.9640 

 
5.1344 0.8541 

 
5.7280 0.7656 

 
6.8337 0.6417 

 
7.4715 0.5869 

 
8 8.1840 1.0000 

 
8.1840 1.0000 

 
8.1840 1.0000 

 
8.1840 1.0000 

 
8.1840 1.0000 

10 5 1.3668 0.9770 
 

1.5090 0.8849 
 

1.7304 0.7717 
 

2.7443 0.4866 
 

4.7837 0.2791 

 
6 1.8749 0.9710 

 
2.1246 0.8569 

 
2.5181 0.7230 

 
4.0668 0.4476 

 
6.0713 0.2999 

 
7 2.5664 0.9651 

 
2.9803 0.8311 

 
3.5991 0.6882 

 
5.4821 0.4518 

 
7.0715 0.3503 

 
8 3.5835 0.9593 

 
4.2240 0.8138 

 
5.0375 0.6824 

 
6.8315 0.5032 

 
7.8522 0.4378 

 
9 5.2995 0.9555 

 
6.1051 0.8294 

 
6.8547 0.7387 

 
8.0183 0.6315 

 
8.4818 0.5970 

 
10 9.0093 1.0000 

 
9.0093 1.0000 

 
9.0093 1.0000 

 
9.0093 1.0000 

 
9.0093 1.0000 

12 6 1.3863 0.9719 
 

1.5650 0.8609 
 

1.8528 0.7272 
 

3.2352 0.4165 
 

5.6668 0.2378 

 
7 1.8096 0.9661 

 
2.0954 0.8344 

 
2.5633 0.6821 

 
4.5015 0.3884 

 
6.7390 0.2594 

 
8 2.3546 0.9605 

 
2.7938 0.8095 

 
3.4950 0.6471 

 
5.7970 0.3902 

 
7.5790 0.2984 

 
9 3.0911 0.9551 

 
3.7426 0.7888 

 
4.6851 0.6301 

 
7.0079 0.4213 

 
8.2523 0.3578 

 
10 4.1660 0.9499 

 
5.0716 0.7803 

 
6.1431 0.6442 

 
8.0713 0.4903 

 
8.8110 0.4491 

 
11 5.9584 0.9477 

 
6.9741 0.8097 

 
7.8407 0.7202 

 
8.9695 0.6296 

 
9.2902 0.6078 

 
12 9.7125 1.0000 

 
9.7125 1.0000 

 
9.7125 1.0000 

 
9.7125 1.0000 

 
9.7125 1.0000 

15 8 1.5716 0.9616 
 

1.8576 0.8135 
 

2.3465 0.6440 
 

4.6460 0.3253 
 

7.2381 0.2088 

 
9 1.9460 0.9562 

 
2.3569 0.7895 

 
3.0649 0.6071 

 
5.8300 0.3192 

 
7.9693 0.2335 

 
10 2.4090 0.9509 

 
2.9861 0.7671 

 
3.9536 0.5794 

 
6.9390 0.3301 

 
8.5698 0.2673 

 
11 3.0006 0.9458 

 
3.7945 0.7480 

 
5.0223 0.5651 

 
7.9254 0.3581 

 
9.0788 0.3126 

 
12 3.7938 0.9410 

 
4.8528 0.7357 

 
6.2609 0.5702 

 
8.7746 0.4069 

 
9.5227 0.3749 

 
13 4.9412 0.9367 

 
6.2572 0.7397 

 
7.6384 0.6060 

 
9.4932 0.4876 

 
9.9186 0.4667 

 
14 6.8244 0.9372 

 
8.1291 0.7868 

 
9.1064 0.7024 

 
10.0976 0.6334 

 
10.2777 0.6223 

 
15 10.6077 1.0000 

 
10.6077 1.0000 

 
10.6077 1.0000 

 
10.6077 1.0000 

 
10.6077 1.0000 
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Table 5. Expected test time under progressive type II censoring with binomial removals and RETT3 when α = 5 and 

θ = 0 1 

  
  

  
0.01 

 
0.05 

 
0.1 

 
0.25 

 
0.5 

n m  ( 𝑚) RETT3 
 
 ( 𝑚) RETT3 

 
 ( 𝑚) RETT3 

 
 ( 𝑚) RETT3 

 
 ( 𝑚) RETT3 

8 4 0.2223 0.9802 
 

0.2413 0.9030 
 

0.2677 0.8140 
 

0.3620 0.6019 
 

0.5259 0.4143 

 
5 0.3392 0.9785 

 
0.3697 0.8978 

 
0.4099 0.8097 

 
0.5310 0.6250 

 
0.6723 0.4937 

 
6 0.4812 0.9798 

 
0.5197 0.9073 

 
0.5661 0.8329 

 
0.6776 0.6958 

 
0.7672 0.6146 

 
7 0.6520 0.9847 

 
0.6875 0.9338 

 
0.7236 0.8872 

 
0.7908 0.8118 

 
0.8296 0.7739 

 
8 0.8729 1.0000 

 
0.8729 1.0000 

 
0.8729 1.0000 

 
0.8729 1.0000 

 
0.8729 1.0000 

10 5 0.2278 0.9732 
 

0.2540 0.8728 
 

0.2911 0.7616 
 

0.4239 0.5230 
 

0.6220 0.3564 

 
6 0.3248 0.9720 

 
0.3632 0.8692 

 
0.4150 0.7607 

 
0.5717 0.5522 

 
0.7315 0.4316 

 
7 0.4387 0.9736 

 
0.4865 0.8779 

 
0.5469 0.7809 

 
0.6963 0.6134 

 
0.8040 0.5312 

 
8 0.5676 0.9764 

 
0.6199 0.8940 

 
0.6783 0.8170 

 
0.7934 0.6985 

 
0.8539 0.6490 

 
9 0.7215 0.9825 

 
0.7642 0.9276 

 
0.8039 0.8818 

 
0.8656 0.8190 

 
0.8902 0.7963 

 
10 0.9182 1.0000 

 
0.9182 1.0000 

 
0.9182 1.0000 

 
0.9182 1.0000 

 
0.9182 1.0000 

12 6 0.2077 0.9437 
 

0.2527 0.7756 
 

0.3085 0.6353 
 

0.4853 0.4039 
 

0.6999 0.2800 

 
7 0.3299 0.9739 

 
0.3699 0.8686 

 
0.4292 0.7486 

 
0.6159 0.5217 

 
0.7816 0.4111 

 
8 0.4070 0.9658 

 
0.4649 0.8456 

 
0.5394 0.7288 

 
0.7227 0.5439 

 
0.8374 0.4694 

 
9 0.5149 0.9691 

 
0.5790 0.8618 

 
0.6546 0.7623 

 
0.8066 0.6186 

 
0.8777 0.5685 

 
10 0.6346 0.9735 

 
0.6980 0.8851 

 
0.7636 0.8091 

 
0.8700 0.7101 

 
0.9082 0.6802 

 
11 0.7742 0.9809 

 
0.8224 0.9234 

 
0.8636 0.8793 

 
0.9172 0.8280 

 
0.9324 0.8145 

 
12 0.9525 1.0000 

 
0.9525 1.0000 

 
0.9525 1.0000 

 
0.9525 1.0000 

 
0.9525 1.0000 

15 8 0.2577 0.9480 
 

0.3147 0.7763 
 

0.3929 0.6218 
 

0.6305 0.3875 
 

0.8159 0.2994 

 
9 0.3393 0.9540 

 
0.4055 0.7983 

 
0.4946 0.6545 

 
0.7275 0.4449 

 
0.8616 0.3757 

 
10 0.4221 0.9576 

 
0.4972 0.8130 

 
0.5934 0.6812 

 
0.8041 0.5027 

 
0.8956 0.4513 

 
11 0.5092 0.9607 

 
0.5912 0.8275 

 
0.6880 0.7110 

 
0.8632 0.5667 

 
0.9222 0.5305 

 
12 0.6042 0.9643 

 
0.6879 0.8469 

 
0.7765 0.7503 

 
0.9085 0.6413 

 
0.9438 0.6173 

 
13 0.7103 0.9699 

 
0.7870 0.8753 

 
0.8572 0.8037 

 
0.9432 0.7304 

 
0.9620 0.7161 

 
14 0.8339 0.9787 

 
0.8882 0.9188 

 
0.9289 0.8786 

 
0.9702 0.8412 

 
0.9777 0.8347 

 
15 0.9914 1.0000 

 
0.9914 1.0000 

 
0.9914 1.0000 

 
0.9914 1.0000 

 
0.9914 1.0000 
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Table 6. Expected test time under progressive type II censoring with binomial removals and RETT3 when α = 0 5 and 

θ = 0 5 

  
  

  
0.01 

 
0.05 

 
0.1 

 
0.25 

 
0.5 

n m  ( 𝑚) RETT3 
 
 ( 𝑚) RETT3 

 
 ( 𝑚) RETT3 

 
 ( 𝑚) RETT3 

 
 ( 𝑚) RETT3 

8 4 0.1296 0.9452 
 

0.1644 0.7451 
 

0.2284 0.5363 
 

0.6161 0.1988 
 

1.7475 0.0701 

 
5 0.3201 0.9316 

 
0.4325 0.6895 

 
0.6346 0.4699 

 
1.5395 0.1937 

 
2.9926 0.0996 

 
6 0.7643 0.9185 

 
1.0694 0.6564 

 
1.5227 0.4610 

 
2.8556 0.2458 

 
4.0980 0.1713 

 
7 1.9196 0.9098 

 
2.5386 0.6879 

 
3.1664 0.5515 

 
4.3358 0.4028 

 
5.0103 0.3486 

 
8 5.7639 1.0000 

 
5.7639 1.0000 

 
5.7639 1.0000 

 
5.7639 1.0000 

 
5.7639 1.0000 

10 5 0.1243 0.9316 
 

0.1678 0.6901 
 

0.2544 0.4552 
 

0.8577 0.1350 
 

2.4936 0.0464 

 
6 0.2643 0.9190 

 
0.3782 0.6423 

 
0.6053 0.4013 

 
1.7952 0.1353 

 
3.6291 0.0669 

 
7 0.5433 0.9082 

 
0.8115 0.6080 

 
1.2911 0.3822 

 
3.0060 0.1641 

 
4.5974 0.1073 

 
8 1.1268 0.8981 

 
1.6885 0.5993 

 
2.4701 0.4097 

 
4.3126 0.2347 

 
5.4035 0.1873 

 
9 2.5127 0.8946 

 
3.4171 0.6578 

 
4.2585 0.5279 

 
5.5647 0.4040 

 
6.0850 0.3694 

 
10 6.6772 1.0000 

 
6.6772 1.0000 

 
6.6772 1.0000 

 
6.6772 1.0000 

 
6.6772 1.0000 

12 6 0.1208 0.9189 
 

0.1736 0.6394 
 

0.2864 0.3876 
 

1.1645 0.0953 
 

3.2541 0.0341 

 
7 0.2312 0.9066 

 
0.3505 0.5980 

 
0.6092 0.3441 

 
2.1310 0.0984 

 
4.2637 0.0492 

 
8 0.4291 0.8968 

 
0.6795 0.5663 

 
1.1879 0.3239 

 
3.2830 0.1172 

 
5.1134 0.0753 

 
9 0.7921 0.8879 

 
1.2827 0.5483 

 
2.1234 0.3312 

 
4.4788 0.1570 

 
5.8308 0.1206 

 
10 1.5019 0.8805 

 
2.3706 0.5578 

 
3.4882 0.3791 

 
5.6109 0.2357 

 
6.4500 0.2050 

 
11 3.0867 0.8815 

 
4.2791 0.6359 

 
5.2965 0.5137 

 
6.6216 0.4109 

 
6.9981 0.3888 

 
12 7.4939 1.0000 

 
7.4939 1.0000 

 
7.4939 1.0000 

 
7.4939 1.0000 

 
7.4939 1.0000 

15 8 0.1548 0.8928 
 

0.2499 0.5530 
 

0.4795 0.2882 
 

2.2352 0.0618 
 

4.7593 0.0290 

 
9 0.2612 0.8832 

 
0.4416 0.5224 

 
0.8743 0.2639 

 
3.2981 0.0699 

 
5.5228 0.0418 

 
10 0.4330 0.8746 

 
0.7596 0.4986 

 
1.4914 0.2539 

 
4.3936 0.0862 

 
6.1777 0.0613 

 
11 0.7145 0.8676 

 
1.2810 0.4839 

 
2.3806 0.2604 

 
5.4389 0.1140 

 
6.7524 0.0918 

 
12 1.1940 0.8616 

 
2.1244 0.4842 

 
3.5648 0.2886 

 
6.3880 0.1610 

 
7.2678 0.1415 

 
13 2.0731 0.8572 

 
3.4615 0.5134 

 
5.0304 0.3533 

 
7.2246 0.2460 

 
7.7384 0.2296 

 
14 3.9104 0.8647 

 
5.5212 0.6124 

 
6.7278 0.5026 

 
7.9517 0.4252 

 
8.1740 0.4137 

 
15 8.5814 1.0000 

 
8.5814 1.0000 

 
8.5814 1.0000 

 
8.5814 1.0000 

 
8.5814 1.0000 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                 Vol. 8, No. 2; 2019 

135 

Table 7. Expected test time under progressive type II censoringwith binomial removals and RETT3 when α = 4 and 

θ = 0 6 

  
  

  
0.01 

 
0.05 

 
0.1 

 
0.25 

 
0.5 

n m  ( 𝑚) RETT3 
 
 ( 𝑚) RETT3 

 
 ( 𝑚) RETT3 

 
 ( 𝑚) RETT3 

 
 ( 𝑚) RETT3 

8 4 0.7384 0.9950 
 

0.7538 0.9747 
 

0.7745 0.9486 
 

0.8441 0.8704 
 

0.9588 0.7663 

 
5 0.8350 0.9939 

 
0.8560 0.9695 

 
0.8834 0.9394 

 
0.9649 0.8601 

 
1.0592 0.7835 

 
6 0.9337 0.9934 

 
0.9589 0.9673 

 
0.9893 0.9375 

 
1.0629 0.8726 

 
1.1225 0.8263 

 
7 1.0448 0.9937 

 
1.0687 0.9715 

 
1.0929 0.9499 

 
1.1380 0.9123 

 
1.1640 0.8919 

 
8 1.1930 1.0000 

 
1.1930 1.0000 

 
1.1930 1.0000 

 
1.1930 1.0000 

 
1.1930 1.0000 

10 5 0.7492 0.9935 
 

0.7698 0.9669 
 

0.7978 0.9329 
 

0.8915 0.8349 
 

1.0255 0.7258 

 
6 0.8274 0.9924 

 
0.8538 0.9617 

 
0.8888 0.9238 

 
0.9929 0.8270 

 
1.0988 0.7473 

 
7 0.9064 0.9916 

 
0.9377 0.9585 

 
0.9771 0.9199 

 
1.0754 0.8358 

 
1.1469 0.7837 

 
8 0.9910 0.9913 

 
1.0248 0.9586 

 
1.0631 0.9241 

 
1.1396 0.8621 

 
1.1802 0.8324 

 
9 1.0895 0.9922 

 
1.1187 0.9663 

 
1.1458 0.9434 

 
1.1879 0.9100 

 
1.2047 0.8973 

 
10 1.2238 1.0000 

 
1.2238 1.0000 

 
1.2238 1.0000 

 
1.2238 1.0000 

 
1.2238 1.0000 

12 6 0.7569 0.9918 
 

0.7829 0.9589 
 

0.8182 0.9175 
 

0.9354 0.8025 
 

1.0778 0.6965 

 
7 0.8227 0.9908 

 
0.8545 0.9539 

 
0.8970 0.9087 

 
1.0223 0.7973 

 
1.1320 0.7201 

 
8 0.8888 0.9900 

 
0.9258 0.9504 

 
0.9734 0.9039 

 
1.0929 0.8051 

 
1.1692 0.7526 

 
9 0.9577 0.9896 

 
0.9986 0.9490 

 
1.0475 0.9047 

 
1.1482 0.8254 

 
1.1962 0.7923 

 
10 1.0334 0.9895 

 
1.0749 0.9513 

 
1.1186 0.9142 

 
1.1907 0.8588 

 
1.2169 0.8403 

 
11 1.1235 0.9908 

 
1.1570 0.9621 

 
1.1857 0.9389 

 
1.2230 0.9102 

 
1.2336 0.9024 

 
12 1.2476 1.0000 

 
1.2476 1.0000 

 
1.2476 1.0000 

 
1.2476 1.0000 

 
1.2476 1.0000 

15 8 0.7920 0.9889 
 

0.8290 0.9448 
 

0.8794 0.8906 
 

1.0327 0.7584 
 

1.1549 0.6782 

 
9 0.8451 0.9879 

 
0.8878 0.9404 

 
0.9448 0.8837 

 
1.0959 0.7618 

 
1.1853 0.7044 

 
10 0.8988 0.9872 

 
0.9466 0.9374 

 
1.0081 0.8802 

 
1.1464 0.7740 

 
1.2083 0.7343 

 
11 0.9545 0.9868 

 
1.0063 0.9360 

 
1.0689 0.8812 

 
1.1860 0.7942 

 
1.2265 0.7680 

 
12 1.0142 0.9866 

 
1.0680 0.9369 

 
1.1267 0.8881 

 
1.2169 0.8223 

 
1.2415 0.8060 

 
13 1.0812 0.9871 

 
1.1326 0.9423 

 
1.1808 0.9039 

 
1.2410 0.8600 

 
1.2542 0.8510 

 
14 1.1625 0.9890 

 
1.2013 0.9570 

 
1.2304 0.9344 

 
1.2600 0.9125 

 
1.2653 0.9086 

 
15 1.2751 1.0000 

 
1.2751 1.0000 

 
1.2751 1.0000 

 
1.2751 1.0000 

 
1.2751 1.0000 
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Figure 1. Ratio of expected test time under type II censoring to that under complete sample. 𝑛 = 8, △; 𝑛 = 10, ＋; 

𝑛 = 12, ×; 𝑛 = 15, ○ 
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Figure 2. Ratio of expected test time under progressive type II censoring with binomial removals to that under complete 

sample.  = 0 01, ◇;  = 0 05, △;  = 0 10, ＋;  = 0 25, ×;  = 0 50,. ○; m=7 
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