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Abstract

Based on progressive type-ll censored sample with random removals, point and interval estimations for the shape
parameters of the exponentiated Weibull distribution are discussed. Computational formula for the expected total test
time are derived for different situations of sampling plans. This is useful in planning a life test experiment. The
efficiency of the estimators are compared in terms of the root mean square error, the variance and the coverage
probability of the corresponding confidence intervals. A simulation study is presented for several values of removal
probability and different values of failure percentage. Also, numerical applications are conducted to illustrate and
compare the usefulness of the different sampling plans in terms of expected test times for different patterns of failure
rates.

Keywords: progressive type-1I censoring, random removals, maximum likelihood estimation, confidence interval,
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1. Introduction

In reliability tests involving massive numbers of items and in situations where exceptionally large times to failure are
expected, the use of censored data is economically more realistic. The procedure of removing good items from the test
before the termination of experiment is known as progressive censoring. In a progressive type-Il censoring scheme n
identical units are placed on a life-test experiment and removals of still operating units are carried out at observed
failure times. That is, after the i-th failure some preassigned number R; (i =1, 2, ..., m) of surviving units are
randomly removed from the test. This process continues until the m-th failure, t,,, is obtained and the remaining
R, =n— (m+ Y™ 'R, units are all removed at the end of the experiment. Therefore, the observed failure times;
ty,t,, ..., ty, are called progressively type-11 censored order statistics. We denote to the set of observed failure-times and
survival withdrawn by {t;,R;}, 1=1,2,...m; t; <t, < ..<ty, If Ry=0 fori=1,2,...,m-land R, > 0, then
the progressive type-11 censored sample reduces to a conventional type-11 censored of t,,t,,...,t,, m<n. The
importance and usefulness of progressive censoring schemes and its applications in industrial life testing and medical
survival analysis can be seen by referring to Balakrishnan and Aggarwalla (2000).

In the last two decades, the statistical inferences for various distribution using progressive censored samples get special
attention and are studied by several authors among of them, Viveros and Balakrishnan (1994), Balakrishnan and Sandhu
(1995), Childs and Balakrishnan (2000), Mousa and Jaheen (2002), (Balakrishnan et al. (2003), Soliman (2005), Basak
et al. (2009), Madi and Ragab (2009), Cheng et al. (2010) and Kim et al. (2011). In these studies the value of R; at the
time of the ith failure t; are fixed and preassigned. In practical situations, R; may occur at random. As an example, in
some reliability studies in industerial field, an experimenter may decide that it is inapproperiate or too dangerous to
carry on the test on some of the tested units even though these units have not failed completely. The number of patients
drop out from a clinical test at each stage is random and cannot be prefixed, as another example (See Tse et al. (2000)).
In such cases, the experimenter may need to change the censoring numbers during the experiment and so adaptation
process of progressive censoring scheme is needed. Ng et al. (2009) proposed an adaptive censoring scheme in which
the censoring scheme (R; R,, ..., Ry,) may change during the experiment according to a prefixed threshold time T> 0 to
keep the effective sample size m of failures. Before the time T the conventional progressive censoring scheme is applied.
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After passing time T withdrawing surviving units is stopped at all until the time of mth failure where all remaining
surviving units are removed. Yuen and Tse (1996) proposed progressive censoring scheme in which the number R; of
units removed at each failure is random and is chosen according to a probability distribution with support {0, . . ., n-m}
and the prbability mass function of this distribution is independent of failure time. Recently, some authors have
discussed inference problem for various distribution when the data are progressively censored with random removals,
among of them: Tse et al. (2000), Wu and chang (2003), Wu et al. (2007), Sarhan et al. (2008) and Kumar et al. (2016).

The purpose of this paper is concerned with inferences using progressively type-11 censored data with random removals
from exponentiated Weibull distribution.The probability density functon, cumulative distribution function, and
reliability function of this distribution are, respectively,

() = aft® e t“(1— e t%)01 t>0; a, 6>0 (1)
and

F(t) = (1—e), )
where a and fare the two shape parameters.
This distribution is an extension of the well known Weibull distribution. It accommodates unimodal, bathub-shaped and
broader classes of monotone failure rates. Mudholkar et al. (1995) showed that, for the exponentiated Weibull
distribution, the failure rate is (a) unimodal for a < 1 and a6 > 1, (b) bathtub-shaped for « > 1 and ab < 1, (c)
decreasing for a <1 and a < 1, and (d) increasing for a« > 1 and a® > 1. In practice, the exponentiated Weibull
distribution as a failure model is more realistic than that of monotone failure rates and plays an important role to
represent several lifetime data that are of bathtub-shaped or upside-down bathtub shape failure rates. The distribution
includes exponential, generalized exponential, Burr type X and reyligh sub-models. See Mudholkar and Hutson (1996)
and Nassar and Eissa (2003). However, The exponentiated Weibull distribution as a failure model gives a good idea
about using the progressive censoring schemes with random removals.

The rest of this paper is organized as follows: Section 2 presents the model under consideration and the likelihood
function of the model parameters.Section 3 derives the maximum likelihood equations and discusses the asymptotic
properties of the maximum likelihood estimators (MLEs). Also, the confidence intervals of « and 6 are obtained. In
Section 4, simulation results is made to assess the performance of the estimators. Analytical formulas for expected test
time are derived in Section 5. Numerical analyses for the expected test time are presented in Section 6.

2. Model

Suppose a progressive type-Il censored sample {t;,R;}, i=1,2,. . ., m, is obtained when n units are put on a life test
terminated at prespcified number m (<n) of failures are observed. The number of surviving units that are removed from
the test at the ith failure, R;, is a random variable. The sample of failure times are considered to have an exponentiated
Weibull distribution with density and distribution functions given, respectively, by equations (1) and (2). Let R;=r,,

R,=r,,. . ., R,=ry, and denote the set of lifetimes t = {t;,t;,...,tn} and r = {ry,r,, ..., ry}, say. The conditional
likelihood function defined by Cohen (1963) is
L(a, 6; t|IR =)= C 12, f(t)[1 — F(t)]™. @)

For progressive type-II censoring with predetermined R’s and applying equations (1) and (2) the likelihood function can
be obtained as

Li(a,0; t|R=1)= Ca™@™eT, 4)
where C=[[2,(n —i+1— Zj';%,rj), o =0,
T=Y™ {t* — (@ — DInt; — (6 — DInu; — rin(1 —ud)}, (5)

u; =ul-(a)=1—e_t51 and 0<rn<n—-m—-( +nrn+ ..+1_4).

The form of equation (4) is conditional on r;. We consider the case of progressive type-1l censoring in which R; is

independent of T; for all i and is assumed to follow a binomial distribution with parameters n-m-Z;'-;llrj and p. The

parameter p is the probability of removal of each unit and is assumed to be the same for all removals. Therefore, we
have

n—m
ok, = (" ™) o 1=y,

n—m-—r:
PR, =molRy =m)=(" . )pr—pnm L

P(R; =1i|Ri-1 = Ti—q, ., Ry =11)=
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(= =0 T)prict = pyr (6)
Ti

where 0 <1y <n-m-3XiZir,i=1,2,..., m-L

Since the random mechanism producing the removals is independent of the data, i.e. R; is independent of lifetimes for
all i, the likelihood function can be written as

Ly(a,8,p; t,1)= Lyi(,8; t|R =1) P(R, p) U]
where the second term in the right hand side of equation (7), is
P(R, p)=P(Ry; =1;) P(R; =12|R; =11) P(R3 = 1r3|R; =15, Ry =179)
... PRp—1 =Trm1|Rp—2 = Tm_z, -..,Ry =14) (8)
Substituting the forms of equation (6) in equation (8), we get

(n—m)!

P(R, p)= .
R P) (n-m-%j=i ) 27 (i)

where C1=Y™71r; and C2=(m — 1)(n—m) —= X' (m— ) n; .
3. Maximum Likelihood Estimation

Pt (1 —p) )

In this section, we will derive the MLEs of o and 6. It is clear that the joint probability distribution of R’s does not
involve the parameters a and . The MLEs @ and § of a and @, respectively, can be obtained directly by
maximizing the function L,(a, 8; t |R = r) given by equation (4). The log-likelihood function, InL,(«,0; t |[R =71) =

I(a, 8), is
l(,0)=C+mlna+mIn6 —T.
The maximum likelihood estimators @ and & are the values that solves the first order conditions

ol(af) _m _
a0 0 T =0

al(a,6
D =2_T, -6T, - T, =0. (10)

where T, =X2,¢Glny; , T, =X, (tFf-1)Int; ,
T3 =X%¢milnt, , T, =32 n;Int
G=nrUi—1, U=w?-1D"1 wu=1-—et

and 7; = u;ltfe

Equations (10) gives the necessary conditions for a maximum. In addition, the Hessian matrix, H(y), of the
exponentiated Weibull log-likelihood function is

@) . .
HO) = (ay) = (5%2),6,j = 1,2,y = (@6).

The elements a;;,i,j = 1,2 are given by

Qo2 = _;n_z_ iy & (Inw)?,
m m
m
@y === ) e = Y (076 -0 - (6
i=1 i=1

- X0 G+ DA -tM)n (nty)?,
Az = a1 = =0 X &y InugInt; — T; (11)
where & =nU; (1+ U;). It easy to see that a,,, a,, and a,, are all negative where the terms ; <0, & > 0,
n;>0and T; >0 for a >0 and 6 > 0 as well as Inu; < 0 and Int; can be positive or negative according to
t; is greater or less than one. Fluctuating values of Int; between positive and negative does not affect on the ultimate
value of the a,,, a,, and a,, to be negative. Therefore, the Hessian matrix of the log-likelihood function I(«, 8) is
negative definite at every value of @ > 0 and 6 > 0. We can say that I(«, 8) is strictly concave and hence any local
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~

maximizer that we find will be the unique global maximizer, i.e. the estimated parameters @ and & solving the
first-order conditions given by equations (10) are the unique maximum likelihood solution. At this point, we conclude
that the system of likelihood equations (10) admits a unique solution in the region R* x R* and that the log-likelihood
function I(a, 8) is strictly concave but we can not say that this system always has a unique solution. The conditions, by
which the solutions are always exist, need further and deep discussion in other work. Now, searching about a solution
( &, 8) of equations (10) at which the Hessian matrix is negative definite must be cosidered. It is difficult to obtain such
solution (analytically) in closed form. Thus we resort to obtain the solution by using an iterative technique. For more
details about the existence and uniqueness of maximum likelihood estimates, see Makelainen et al. (1981).

To evaluate the performance of the estimators and studying the variation of the MLEs of the parameters of our lifetime
distribution, the asymptotic variances and covariances of @ and @ are obtained. It is clear that p is only a parameter
of binomial removal distribution and does not provide information about the lifetime distribution. On the basis of the
asymptotic normali';y property of the tow-dimentional ML estimators, the asymptotic distribution of the vector
Vvn(@—a &-6) approaches N(0,/7") as n approaches infinity and for large value of effective sample size m,
m<n (See Ng et. al. (2009), Rao (1973), and Mood et. al. (1974)). The Fisher information matrix I = I(a,8) is
associated with the parameters a and ©. Using the observed information, we evaluate the approximate
variance-covariance matrix, (Cj), say,
(Cy)=(vi)~" i, j=1,2.
The elements vj; can be obtained as follows:

Vi1 = % + X2t (nt)? + X2, (5 0% — 46 — 1mf (Int)? + X2, (46 + DA — ;m; (Int)?,

Va2 = 922 +XR, & (nw)? and vy, =vy = 03L& mlnulnt; + T; (12)

where &, =nU; (14 U;); ¢; and n; are given in equation (10).
Computing the values of the elements given by equations (12) at the estimated values @ and § we get

Var(&):% , Var(d ):% and Cov(&, 9):% (13)

where D=9,,9,, — 9%,

The approximate 100(1-t)% confidence intervals (Cls) for the parametrs « and 6 from proressively type Il censored
data with binomial removals are respectively given by

(@+2z,, Var(@)and (0 +2z,, [Var(D)) (14)
where z,/, isthe (1 —t/2) quantile of the standard normal distribution.
4. Simulation Results

We derive, in the above Section, the ML estimators and Cls for the two shape parameters o and  of the exponentiated
Weibull distribution. The likelihood equations (10) are solved, numerically. In order to assess the statistical
performances of these estimators under progressive type-1l censored sample with random removals, a simulation study
is conducted by using generated random samples of different sizes. Samples were generated from exponentiated
Weibull distribution with a=0.8 (a < 1) and 6=1.7 (a6 > 1) (unimodal failure rate case). One thousand samples are
generated by applying the algorithm of Balakrishnan and Sandhu (1995). Different values of removal probability p and
failure percentage (denoted by) Fp, are considered where Fp=(m/n)% . We employ MATHEMATICA?7 program to
perform the computations. For different sample sizes, n=20 (small), 30 (moderate), 50 (large), different values of
removal probability, p=0.01, 0.05, 0.10, 0.25 and 0.50 and different failure-percentages, Fp= 50%, 60%, 70% and 80%,
the results are presented in Tables 1-3. The results based on 1000 replications include the root mean square error
(RMSE), the mean width of confidence interval, and the average coverage probability (CAP) for each parameter at
7=0.05.

We discuss in light of the results presented in Tables 1-3 how the estimates affected by censoring schemes in our case of
all surviving units are randomly removed from the experiment. The removals are binomially distributed with probability
D

Our observations about the results are sumerized in the following points:
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1. The RMSEs of @ and & decrease as Fp increases for all sample sizes. This is due to large Fp would imply relatively
more failure times being observed, more information about the life times distribution are available and so more efficient
estimation of the parameters under consideration. The effect of the removal probability p is also important to decrease
the RMSEs of @ and 8. For a fixed Fp, as the p increases, the RMSEs of these estimators reduce appreciably,
specially for small and moderate sample sizes. This means that more withdrawals should be occurred during (not at the
end of) the test experiment. The results also reveal that, even for small sample size, the perfomance of ML estimators &
and § improve in terms of their variances for increasing p. The RMSEs and variances are decreasing, as a rule, from
table to table as the sample sizes increase.

2- The mean width of the Cls for o and 0 decrease when Fp increases. For a fixed Fp, the mean-width of Cls for ¢ are
typically decreasing when p increases for all sample sizes; whilst § is relatively severe in decreasing of reduction of
its mean-width of Cls. The effect of p on the coverage probability, CAP, of the Cls is evident. For small sample size,
increasing of p improves the coverage probability to be satiafactory at Fp=50% and 60% and at Fp=50% for moderate
sample size. The coverage probabilities are much upper than the nominal level at Fp>60% and/or increasing p for
all sample sizes. We considered other values of failure percentages and the results are not reported since they have a
similar pattern to the cases listed in Tables 1-3. Other values of the distribution parameters: a=0.8 (a < 1) and 6=0.75
(xB < 1) (decreasing failure rate case), were also considered and the results are not reported since they have a similar
pattern to the cases listed in Tables 1-3.

Table 1. RMSEs, variances and average width of Cls and their coverage probabilities (CAP) for MLEs @ and § for
different values of Fp and p at n=20

n=20
@ 0

Fp p RMSE Var. Width CAP RMSE Var. Width CAP
0.01 1.652 0.485 1.957 735 0.611 0.563 2.190 86.0

0.05 1.536 0.375 1.775 71.4 0.605 0.480 2.085 85.2

0.10 1.336 0.276 1.548 76.8 0.605 0.512 2.174 86.5

50% 0.25 0.903 0.142 1.194 90.8 0.560 0.449 2.177 91.2
0.50 0.794 0.109 1.034 91.7 0.561 0.423 2.128 91.4

0.75 0.406 0.066 0.873 97.6 0.539 0.367 2.115 94.4

0.90 0.388 0.055 0.831 97.9 0.563 0.354 2.150 95.3

0.01 0.862 0.227 1.326 90.4 0.569 0.499 2.044 92.2

0.05 0.742 0.153 1.194 91.4 0.543 0.409 2.024 92.7

60% 0.10 0.574 0.104 1.039 94.7 0.533 0.381 2.034 93.6
0.25 0.552 0.083 0.950 95.0 0.518 0.324 1.942 93.8

0.50 0.306 0.050 0.762 98.7 0.518 0.310 1.988 97.4

0.01 0.441 0.078 0.914 97.0 0.516 0.317 1.877 96.6

0.05 0.395 0.067 0.858 98.0 0.477 0.289 1.839 97.4

70% 0.10 0.329 0.059 0.855 98.0 0.471 0.265 1.861 97.5
0.25 0.258 0.041 0.717 98.6 0.469 0.256 1.830 97.6

0.50 0.234 0.035 0.678 99.4 0.480 0.248 1.846 98.6

0.01 0.357 0.043 0.753 98.8 0.475 0.239 1.801 98.3

0.05 0.236 0.036 0.678 99.1 0.466 0.226 1.737 98.3

80% 0.10 0.214 0.031 0.653 99.6 0.462 0.218 1.764 98.8
0.25 0.208 0.027 0.618 99.9 0.473 0.213 1.768 99.8

0.50 0.208 0.027 0.628 99.9 0.467 0.208 1.758 99.6
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Table 2. RMSEs, variances and average width of Cls and their coverage probabilities (CAP) for MLEs @ and § for
different values of Fp and p at n=30

n=30
@ ]
Fp P RMSE Var. Width CAP EMSE Var. Width CAP
0.01 0.852 0278 1438 851 0481 0.468 1.901 903
0.05 0.646 0.159 1.193 13 0452 0.358 1.813 932
50% 0.10 0364 0.087 0967 5.6 0.434 0.283 1.765 959
025 0277 0056 0779 976 0421 0.259 1.713 96.5
0.50 0.190 0.034 0669 988 0.395 0.209 1.685 98.3
001 0612 0.094 1.005 950 0431 0.242 1.638 96.1
0.05 0.339 0.060 0869 969 0427 0.209 1.637 976
60% 0.10 0261 0046 0755 997 0.396 0.199 1.583 98.8
025 0.199 0,027 0611 996 0.397 0.174 1.578 98.8
0.50 0,172 0.024 0575 996 0.394 0.171 1.573 993
0.01 0.242 0.046 0.738 986 0.388 0.179 1.490 Q8.7
0.05 0214 0.036 0.687 g9 4 0.383 0.160 1468 993
70% 0.10 0.199 0027 0617 g9 8 0.380 0.151 1.480 998
0.25 0.175 0.020 0.542 899 0374 0.145 1.470 997
0.50 0.154 0018 0512 100 0378 0.147 1.492 100
001 0.184 0023 0576 998 0.368 0.132 1.397 998
0.05 0.160 0.019 0531 996 0.367 0.129 1.388 99.6
80% 0.10 0.149 0016 0484 100 0.362 0.128 1.394 999
0.25 0.145 0016 0487 100 0.363 0.129 1.397 999
0.50 0.139 0.015 0477 100 0.376 0.133 1.425 100

A~

Table 3. RMSEs, variances and average width of Cls and their coverage probabilities (CAP) for MLEs & and & for
different values of Fp and p at n=50

n=50
@ 0
D RMSE Var. Width CAP RMSE Var. Width CAP
p
0.01 0.282 0.064 0.876 97.2 0.344 0.165 1.409 98.0
0.05 0.231 0.039 0.713 98.9 0.326 0.134 1.331 98.9
50% 0.10 0.179 0.026 0.573 99.6 0.325 0.127 1.284 99.4
0.25 0.147 0.016 0.489 100 0.314 0.107 1.264 99.9
0.50 0.137 0.015 0.470 100 0.305 0.106 1.267 100
0.01 0.219 0.039 0.683 98.3 0.312 0.132 1.258 98.4
0.05 0.175 0.023 0.560 99.7 0.305 0.098 1.175 99.7
60% 0.10 0.143 0.015 0.478 99.8 0.300 0.093 1.172 99.8
0.25 0.125 0.013 0.436 100 0.291 0.093 1.187 100
0.50 0.121 0.012 0.424 100 0.299 0.094 1.194 100
0.01 0.153 0.017 0.503 99.7 0.284 0.082 1.097 99.7
0.05 0.136 0.014 0.468 100 0.281 0.079 1.093 100
70% 0.10 0.118 0.011 0.404 100 0.278 0.080 1.101 100
0.25 0.108 0.010 0.392 100 0.283 0.082 1.120 100
0.50 0.104 0.010 0.386 100 0.285 0.083 1.127 100
0.01 0.119 0.012 0.424 100 0.275 0.073 1.052 100
0.05 0.104 0.009 0.378 100 0.273 0.074 1.061 100
80% 0.10 0.099 0.009 0.365 100 0.274 0.072 1.048 100
0.25 0.098 0.008 0.358 100 0.279 0.076 1.077 100
0.50 0.098 0.008 0.356 100 0.279 0.075 1.075 100

5. Expicted Test Time

The expected time of a life test is the expected time required to complete the test experiment. In practice, an
experimenter may have aim to explore the time duration of his experiment to choose an approperiate sampling plan. The
cost and the time duration to complete a test experiment are related. In the following we derived the expected test time
when the data come from exponentiated Weibull distribution for some csaes of sampling schemes.
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In case of complete sample test, the required time to complete the test is the time at the nth, T, failure in a sample of n
test units. The expected value of T, to observe the nth failure in this sample is given by

E(T) =n [t fF()F"1 (L) dt.
In our case, E(T,) is given by

E(T,)=nab [t"e™t"(1—e )1 dt. (15)
Now, for any real number a, we have the expansion, (See J. Stewart; page 742),

(1 -0 = 22,1 ()« (16)

where ((ll) _ a(a—l)(a—'z)...(a—i+1).

i!

This series always converges when |x|<1 as well as it converges at the end points +1 if a > 0. If a is positive integer
the series reduces to the Binomial Theorem and then the last term of the expansion is at i=a. Applying the form (16) to
the term (1 — e~**)19-1, E(T,,) given by equation (15) can take the form

E()=n 0 TC+1E2,(-1 (" 7 ) i+ 7@, (17)

In case of type-Il censoring sampling test, The density function of the m-th oredr statistics is

ftw)=m () F&) FPA(O[1 = FOI"™

The expected time, E(T;;;), of type Il censoring test can be derived as

E(Ty)=m () 6 TG +1)x

n-me__ 1\j n—m © r_ q\i (m +])9 -1\ ,. _(%4.1)
S0 () 2R (YT v (18)
When m=n we get the expected time of test of complete sampling.

Similarly, under the case of progressive type-11 censoring with a fixed number of removals, the expected time required
to completean experiment is dfined as the expected value of T,, conditioning on R, and given as follows:

E(TnlR)= COO) S o302 o . S o(~ 1)A( )( 2) . (r’”) x h(s)f t F(O)FB(t)dt.

where C(N=[T",(n —j + 1 — T4_t 1), A=Ey s, h(s) =Xy s+ and B=A(s,,) — 1.
In our case of exponentiated Weibull population, we get

E(TnlRI=COPCG + D E0 52, - .. S0 (DA (] )(rz) () x

S2 Sm
1 oo i h, m 9 - 1 . &
T 20— (s )l )@+ 1)@, (19)
When r; =0 for all i we have the case of a type-1l censoring sampling test, and then h(s;) =i, h(s,) = m,
C/T P h(s) =m (m) and so the equation (19) reduces to equation (18).

For progressive type-Il censoring with random removals, R terms are random. The expected test time, E(T,,), to
complete the experiment is given by taking the expectation of equation (19) with respect to R. That is,

E(Tn)=Er [E(Tn [RI=EES 2,0 2 1) ™7 T 2 EI T IR] P(R p) (20)
where P(R, p) is given by equation (9).

As a comparison scale, the ratio of the expected test times (RETT) can be computed between any two of progressive
type Il censoring with binomial removals, type 1l censoring, and complete sample by using the following ratios:

RETT1 = Z0m)  pppr2 = E0m) a0 RETT3 = 20m) (21)
E(Ty)’ E(T)’ E(Tm) *
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These ratios are useful to compare the performance of the three types of sampling schemes. Practitioner may be of
interest to compare the three expected times, E(T,), E(T,,) and E(T,), in order to determined whether the
experiment time can be shortend significantly if a much lager sample of n test units is used. The test is stopped once m
failures are occurred. To compare these three expected test times is analytically so difficult. A numerical study is
conducted and the results are presented in the following section.

6. Numerical Analysis

Up to this point, we have derived the expected test time, E(T,,), of progressively type Il censored sample with
binomial removals,E (T,;,) of type Il censored sample, and E(T,), of complete sample. It will be of interest to compare
these three expected test time, in order to gain some idea about the rolesof n, m, p, « and 6 on the duration
of the lifetime test by numerically computing equations, (20), (18), (17) and the ratios in equation (21). As we discussed
previously, different values of o and © may result in different failure rates of the exponentiated Weibull
distribution.Therefore, in this section, we choose (a) a = 0.6 and 6 =2, (h) a =5 and 6 = 0.1, (¢) a = 0.5 and
6 =0.5,and (d) « =4 and 6 = 0.6 for numerical study.

For n =8, 10, 12, and 15 and m =n/2,n/2 + 1, ...,n, Figure 1 shows the ratio, RETT1, of the expected test time
under type |l censoring to the expected test time under complete sample. For fixed values of m, the ratio decreases as
n increases, but the size of decrement is influenced by the values of a and 6. We also can find that the expected test
time for type Il censoring is lower than the half of expected test time for complete sample when the failure rate is
unimodal or decreasing. If the failure rate is bathtub-shaped, the ratio is between 0.2 and 0.8. For increasing failure rate,
type 11 censoring scheme does not save too much experimental time comparing to complete sampling plan.

Figure 2 shows the ratio, RETT2, of the expected test time for progressive type Il censoring with binomial removals and
complete sample versus n for m = 7 and different values of removal probability p. The value of p is an important
factor on the expected test time. This is because small p, say 0.01, 0.05 or 0.10, results in the later removals. The
observed failures in a progressive type Il censoring with binomial removals are almost the same as those in a type-II
censoring. When p is large, n — m of the n test units would be dropped out at the early stage of the life test such that
the observed failure times are much closer to the tail of the lifetime distribution. Hence, the expected test time of
progressive type-1l censoring with binomial removals is close to that of complete sampling in which one observes m
failures out of m test units. A larger value of p always results in a longer duration of experimental time. The ratios
under increasing failure rate are larger than those under the other three kinds of failure rate. For bathtub-shaped failure
rate, the progressive type Il censoring with binomial removals can save reasonable test time compared to the complete
sample.

Tables 4 to 7 give the values of expected test time under progressive type Il censoring with binomial removals for
unimodal, bathtub-shaped, decreasing, and increasing failure rate, respectively. For n =8, 10, 12, and 15, the
corresponding choices of m are listed in these tables. The case of m = n corresponds to the complete sampling plans.
Various values of removal probability p are studied. In particular, p = 0.01, 0.05, 0.1, 0.25, and 0.5 are presented.
Other values of n, m, and p were also considered and the results are not reported here since they have similar patterns
to the cases listed in these tables.

When p is large, n —m of the n test units would be dropped out at the early stage of the life test. This results in the
observed failure times much closer to the tail of the lifetime distribution, and hence the expected test time of
progressive type 1l censoring with binomial removals is close to that of complete sample. In addition, when the shape of
failure rate is unimodal, it usually takes a longer time to complete a progressively type Il censored life test. However,
when the failure rate is bathtub-shaped, the duration of the life test is usually short. For all values of p,the expected test

time is decreasing when % decreases.

Tables 4 to 7 also give the ratio, RETT3, of the expected test time for type Il censoring and progressive type Il
censoring with binomial removals. When p is large, the ratios show that type Il censoring can save more experimental
time than progressive type Il censoring with binomial removals, especially for unimodal and decreasing failure rates.
However, when p is small, the durations of type Il censoring and progressive type Il censoring with binomial removals
are almost the same. Note that the progressive type Il censoring is desirable when a compromise between reduced time
of experimentation and the observation of at least some extreme failure times is sought. The removal probability p
cannot be chosen too large. In practice, since the failure rate is usually bathtub-shaped or increasing, one might choose
p < 0.25 based on Tables 5 and 7. Other values of a and 6 were also considered and the results are not reported here
since they have a similar pattern to the cases listed in Figures 1, 2 and Tables 4-7.
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7. Conclusion

In this study, we present some statistical inferences when the observed data are progressively type 1l censored with
random removals. The results demonstrate that the classical point and interval estimations of shape parameters o and 0
of the exponentiated Weibull model are most significant by the removal probability p. The significance is in terms of
the reduction of RMSE, variance, the reduction of the width of Cl and the satisfaction of coverage probability of the Cls.
Although the CI based on the asymptotic distribution of the MLEs do not perform well for small sample size, the
coverage probabilities improve to close the nominal level at suitable values of the removal probability p. However,
increasing the removal probability p produces censoring scheme as R; approaches n-m and R,, R, ..., R,, approach
zero. This choice of censoring scheme provides the smallest RMEs and variances for the estimates and improve the
value of coverage probability of the Cls for all sample sizes. Balakrishnan et. al. (2003) reveals a similar result.

On the other hand, under profressively type 1l censored data with random removals, the required time to complete the
test experiment increases significantly for various shapes of failure rates. The bathtub-shaped failure rate is of a shortest
time of the test compared to other types of failure rates. However, in case of bathtub-shaped or increasing failure rate
and the removal probability not too large, the test time can be reduced to that of type Il censoring and the reduction is
significant compared to complete sampling.

Table 4. Expected test time under progressive type Il censoring with binomial removals and RETT3 when a = 0.6 and
0=2

p
0.01 0.05 0.1 0.25 0.5

m E(T,) RETT3 E(T,) RETT3 E(T,) RETT3 E(T,) RETT3 E(T,) RETT3

8 4 13415 09820 14482 009097 16087 08189 23001 05728  3.8292  0.3440
5 19794 09758 21956 0.8797 25203 0.7664  3.7049 05213 53594  0.3604

6 29273 009694 33223 0.8541 3.8539 07363 52911 05363 65586  0.4327

7 45490 009640 51344 0.8541 57280 0.7656  6.8337 0.6417  7.4715  0.5869

8 81840 10000 81840 1.0000 8.1840 10000  8.1840 1.0000  8.1840  1.0000

10 5 1.3668 09770 15090 0.8849  1.7304 0.7717 2.7443 04866  4.7837 0.2791
6 18749 09710 21246 0.8569 25181 07230  4.0668 0.4476  6.0713  0.2999

7 25664 009651 29803 08311 35991 0.6882 54821 0.4518  7.0715  0.3503

8 35835 00593 4.2240 08138 50375 06824  6.8315 05032  7.8522 0.4378

9 52995 00555 61051 0.8294  6.8547 07387  8.0183 0.6315  8.4818 0.5970

10 9.0093 1.0000  9.0093 1.0000  9.0093 1.0000  9.0093 1.0000  9.0093  1.0000
12 6 13863 09719 15650 08609 18528 0.7272 32352 04165 5.6668 0.2378
7 18096 009661 20954 0.8344 25633 0.6821 45015 0.3884  6.7390  0.2594
2.3546 09605  2.7938 0.8095  3.4950 0.6471 57970 0.3902  7.5790 0.2984

3.0911 00551  3.7426 0.7888  4.6851 0.6301  7.0079 0.4213 82523 0.3578

10 41660 0.9499 50716 07803  6.1431 0.6442 8.0713 04903 88110 0.4491
11 509584 09477 69741 08097  7.8407 0.7202 89695 06296  9.2902  0.6078
12 97125 1.0000 97125 1.0000 9.7125 1.0000  9.7125 1.0000  9.7125  1.0000
15 8 15716 09616 1.8576 08135 23465 0.6440 46460 03253  7.2381  0.2088

9 19460 0.9562 2.3569  0.7895 3.0649 0.6071 5.8300 0.3192 7.9693  0.2335
10 2.4090 0.9509 29861 0.7671 3.9536  0.5794 6.9390 0.3301 8.5698  0.2673
11 3.0006  0.9458 3.7945  0.7480 5.0223  0.5651 7.9254 0.3581 9.0788  0.3126
12 3.7938  0.9410 4.8528  0.7357 6.2609  0.5702 8.7746  0.4069 9.5227  0.3749
13 49412  0.9367 6.2572  0.7397 7.6384  0.6060 9.4932  0.4876 0.9186  0.4667
14 6.8244 0.9372 8.1291  0.7868 9.1064 0.7024  10.0976 0.6334  10.2777 0.6223
15 10.6077 1.0000 10.6077 1.0000 10.6077 1.0000 10.6077 1.0000 10.6077 1.0000
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Table 5. Expected test time under progressive type Il censoring with binomial removals and RETT3 when a =5 and
0=0.1

p
0.01 0.05 0.1 0.25 05
m E(T,) RETT3 E(T,) RETT3 E(T,) RETT3 E(T,) RETT3 E(T,) RETT3
8 4 02223 09802 02413 009030 0.2677 08140 03620 0.6019 05259 0.4143
5 03392 09785 03697 0.8978 04099 0.8097 05310 06250 0.6723 0.4937
6 04812 09798 05197 09073 05661 08329 06776 0.6958  0.7672 0.6146
7 06520 09847 06875 09338 07236 0.8872 07908 08118  0.8296 0.7739
8 0.8729 1.0000 0.8729 1.0000 08729 1.0000 0.8729 1.0000  0.8729  1.0000
10 5 02278 09732 02540 08728 02911 07616 04239 05230 0.6220 0.3564
6 03248 09720 03632 0.8692 04150 07607 05717 05522 07315 0.4316
7 04387 09736 04865 0.8779 05469 07809  0.6963 0.6134  0.8040 0.5312
8 05676 09764 06199 0.8940 06783 0.8170 07934 0.6985  0.8539  0.6490
9 07215 09825 07642 09276 08039 0.8818 0.8656 0.8190  0.8902  0.7963
10 09182 1.0000 09182 1.0000 09182 10000 09182 1.0000  0.9182  1.0000
12 6 02077 009437 02527 07756 0.3085 0.6353 04853 0.4039  0.6999  0.2800
7 03299 09739 03699 0.8686 04292 07486  0.6159 05217 0.7816 0.4111

0.4070  0.9658 0.4649  0.8456 0.5394  0.7288 0.7227  0.5439 0.8374  0.4694
0.5149  0.9691 0.5790 0.8618 0.6546  0.7623 0.8066  0.6186 0.8777  0.5685
10 0.6346 0.9735 0.6980 0.8851 0.7636  0.8091 0.8700 0.7101 0.9082  0.6802
11 0.7742  0.9809 0.8224  0.9234 0.8636  0.8793 0.9172  0.8280 0.9324  0.8145
12 0.9525 1.0000 0.9525 1.0000 0.9525 1.0000 0.9525 1.0000 0.9525 1.0000

15 8 0.2577 0.9480 0.3147  0.7763 0.3929  0.6218 0.6305  0.3875 0.8159  0.2994
0.3393  0.9540 0.4055  0.7983 0.4946  0.6545 0.7275  0.4449 0.8616  0.3757

10 0.4221 0.9576 0.4972  0.8130 0.5934  0.6812 0.8041  0.5027 0.8956  0.4513

11 0.5092  0.9607 0.5912  0.8275 0.6880  0.7110 0.8632  0.5667 0.9222  0.5305

12 0.6042 0.9643 0.6879  0.8469 0.7765  0.7503 0.9085 0.6413 0.9438 0.6173

13 0.7103  0.9699 0.7870  0.8753 0.8572  0.8037 0.9432 0.7304 0.9620 0.7161

14 0.8339 0.9787 0.8882  0.9188 0.9289  0.8786 0.9702  0.8412 0.9777  0.8347

15 0.9914 1.0000 0.9914  1.0000 0.9914  1.0000 0.9914  1.0000 0.9914  1.0000
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Table 6. Expected test time under progressive type Il censoring with binomial removals and RETT3 when a = 0.5 and
8 =05

p
0.01 0.05 0.1 0.25 05

n m E(T, RETT3 E(T,) RETT3 E(T,) RETT3 E(T,) RETT3 E(T,) RETT3
8 4 01296 009452 01644 07451 02284 05363 06161 01988 17475 0.0701
5 03201 09316 04325 06895 06346 04699 15395 0.1937  2.9926  0.0996

6 07643 09185 1.0694 06564 15227 04610 2.8556 0.2458  4.0980 0.1713

7 19196 09098 25386 06879 31664 05515  4.3358 04028  5.0103  0.3486

8 57639 1.0000 57639 10000 57639 1.0000 57639 1.0000  5.7639  1.0000

10 5 01243 09316 01678 0.6901 02544 04552 0.8577 01350  2.4936 0.0464
6 02643 09190 03782 06423 06053 04013  1.7952 0.1353  3.6291  0.0669

7 05433 09082 08115 06080 12911 0.3822  3.0060 0.1641 45974  0.1073

8 11268 0.8981  1.6885 05993 24701 04097  4.3126 0.2347  5.4035 0.1873

9 25127 0.8946 34171 06578 42585 05279 55647 04040  6.0850 0.3694

10 66772 10000 66772 1.0000 6.6772 1.0000  6.6772 1.0000 6.6772  1.0000
12 6 01208 009189 0.1736 0.6394 02864 03876 11645 00953  3.2541 0.0341
7 02312 09066 03505 05980 06092 0.3441  2.1310 0.0984  4.2637  0.0492
04291 0.8968 06795 05663  1.1879 0.3239  3.2830 0.1172 51134 0.0753

07921 0.8879 12827 05483 21234 03312 44788 0.570 58308 0.1206

10 15019 0.8805 23706 05578  3.4882 0.3791 56109 02357  6.4500 0.2050
11 3.0867 08815 42791 0.6359 52965 05137 6.6216 04109  6.9981 0.3888
12 74939 10000 7.4939 1.0000  7.4939 1.0000  7.4939 1.0000  7.4939  1.0000
15 01548 0.8928 02499 05530 04795 02882 22352 00618 47593  0.0290

© o

0.2612  0.8832 0.4416  0.5224 0.8743  0.2639 3.2981  0.0699 5.5228 0.0418
10 0.4330 0.8746 0.7596  0.4986 14914  0.2539 43936  0.0862 6.1777  0.0613
11 0.7145 0.8676 1.2810 0.4839 2.3806  0.2604 5.4389  0.1140 6.7524  0.0918
12 11940 0.8616 2.1244  0.4842 3.5648 0.2886 6.3880 0.1610 7.2678  0.1415
13 2.0731 0.8572 3.4615 0.5134 5.0304 0.3533 7.2246  0.2460 7.7384  0.2296
14 39104 0.8647 55212  0.6124 6.7278  0.5026 7.9517  0.4252 8.1740  0.4137
15 8.5814  1.0000 8.5814  1.0000 8.5814  1.0000 8.5814  1.0000 8.5814  1.0000
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Table 7. Expected test time under progressive type Il censoringwith binomial removals and RETT3 when a = 4 and
0=0.6

P
0.01 0.05 0.1 0.25 05

n m EQT, RETT3 E(T,) RETT3 E(T,) RETT3 E(T,) RETT3 E(T,) RETT3
8 4 07384 009950 07538 09747  0.7745 09486  0.8441 08704  0.9588 0.7663
5 08350 09939 0.8560 009695 0.8834 09394 09649 0.8601  1.0592 0.7835

6 09337 09934 09589 009673 009893 09375 1.0629 0.8726  1.1225 0.8263

7 10448 09937 10687 09715  1.0929 09499  1.1380 0.9123  1.1640 0.8919

8 11930 1.0000 11930 1.0000 11930 1.0000  1.1930 1.0000  1.1930  1.0000

10 5 07492 09935 07698 0.9669 07978 009329 08915 0.8349  1.0255 0.7258
6 08274 09924 08538 009617 0.8888 09238 09929 0.8270  1.0988  0.7473

7 09064 09916 09377 009585 09771 09199  1.0754 0.8358  1.1469  0.7837

8 09910 09913 10248 009586  1.0631 09241  1.1396 0.8621  1.1802  0.8324

9 1.0895 09922 1.1187 009663 11458 09434  1.1879 0.9100  1.2047 0.8973

10 1.2238 1.0000 12238 1.0000 1.2238 1.0000  1.2238 1.0000  1.2238  1.0000
12 6 07569 09918 07829 09589 0.8182 009175 009354 0.8025 1.0778 0.6965
7 08227 09908 08545 009539 0.8970 09087  1.0223 07973  1.1320 0.7201
0.8888 0.9900 09258 09504  0.9734 09039  1.0929 0.8051  1.1692 0.7526

09577 09896 09986 09490  1.0475 09047  1.1482 0.8254  1.1962 0.7923

10 1.0334 09895 10749 009513 11186 09142  1.1907 0.8588  1.2169  0.8403
11 11235 009908 11570 09621  1.1857 0.9389  1.2230 009102 12336 0.9024
12 12476 10000 12476 10000 12476 1.0000 1.2476 1.0000  1.2476  1.0000
15 07920 09889  0.8290 09448  0.8794 0.8906  1.0327 0.7584  1.1549  0.6782

o o

0.8451  0.9879 0.8878  0.9404 0.9448  0.8837 1.0959 0.7618 1.1853  0.7044
10 0.8988 0.9872 0.9466  0.9374 1.0081  0.8802 1.1464 0.7740 1.2083  0.7343
11 0.9545 0.9868 1.0063  0.9360 1.0689 0.8812 1.1860 0.7942 1.2265 0.7680
12 1.0142 0.9866 1.0680  0.9369 1.1267 0.8881 1.2169 0.8223 1.2415 0.8060
13 1.0812 0.9871 11326  0.9423 1.1808 0.9039 1.2410 0.8600 1.2542  0.8510
14 11625 0.9890 1.2013  0.9570 1.2304 0.9344 1.2600 0.9125 1.2653  0.9086
15 12751 1.0000 1.2751  1.0000 1.2751  1.0000 1.2751  1.0000 1.2751  1.0000
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Figure 1. Ratio of expected test time under type Il censoring to that under complete sample. n = 8, A; n = 10, +;
n=12,xn=150

136




http://ijsp.ccsenet.org International Journal of Statistics and Probability \ol. 8, No. 2; 2019

(a) =0.6 =2 (b) =5 6=0.1

1.0
1.0

0.6

0/
/
Vi
-

0.2

o o
e T T T T e T T T T
8 10 12 14 16 8 10 12 14 16
n n
(c) a=0.5 6=0.5 (d) a=4 0=0.6
Q| Q ] 9
- - Qo\o
[e] g\x\ o
21O 31 Ny,
] \g\
© \ © 4 \é
E ° * 0\ E °©
¥ o a x\ o ¥
o 1=
o\ )
o | \+ — o |
s "
o _| \é§.¢ o |
i T T T T T e T T T T T
8 10 12 14 16 8 10 12 14 16
n n
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