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Abstract

In this review paper formulas for survival functions are derived that take into account risks of deaths in early life including
infancy, mid life, a random component of deaths due to accidents and deaths in older ages. The basic ideas used in the
derivation of survival function for each of the components just mentioned are risk functions. Given a formula for a risk
function, it is possible to derive a formula for the corresponding survival function. By using the theory of competing risks,
a formula for survival function that takes into account the risks of deaths in various stages of life expressed as a product
of survival functions for the risks of deaths under consideration. For many applications information on the numerical
values of parameters in survival functions is not available. Consequently, rationales are developed for assigning plausible
values to parameters that take into account personal ideas of an investigator may have for each stage of life. For every
assignment of parameter values in the paper, a numerical version of survival functions are plotted in graphs so that an
assessment of the plausibility of the chosen parameter values may be made. Also included in the paper is an application
of survival functions in an experiment to make an assessment as to whether a small population of chimpanzees, or some
other endangered species of animals, will have descendants that make up a surviving population 200 years into the future.

Keywords: risks functions, survival functions, Gompertz, Makeham, competing risks, survival of age structured popula-
tions

1. Introduction

In computer simulation experiments designed to study the evolution of age structured animal or human populations with
respect to two or more genetic autosomal loci in deep time, such as hundreds or thousands of years before the present, it is
almost always the case that no mortality data exists. Consequently, an investigator will need to rely on model parametric
survival functions. As is well known, efforts have been made to construct parametric survival functions for nearly the
past two centuries. Among the first such efforts was that of Gompertz B. Gompertz 1825. As Gompertz examined human
survival data at ages 70 or more, he came to the realization that the risk of death increased exponentially for the older ages.
In 1869 Makeham published a paper indicating that a positive constant should be added to Gompertz’s observation to take
into account deaths by accidents. In 1872, Thiele proposed a formula for the risk of death for the whole life. For further
details on the proposals of Gompertz and Makeham, the book by Smith and Keyfitz The work of Thiele is presented In
the book and the formula that Thiele proposed is presented on page 72.

In 1982 Mode and Busby published a paper on an eight parameter model of human mortality. In this model attention was
focused on three stages of life in humans. The first stage was that for early life for ages x in the interval [0, 10 ) expressed
in years. The second stage was for midlife was ages in the interval (10, 30], and that for the older ages was the interval
(30, k], where k > 0 was the greatest age considered in a model. For humans, this age is often chosen as k = 100. A
second paper on formulation of a of parametric survival function was that of Mode and Jacobson (1984) in which age
intervals mentioned above were also used. Although the formula for the parametric function used in the two papers for the
same three age intervals under consideration were different, the same method of splicing the survival functions together
was the same for both papers, which provided a parametric survival function for the entire age interval [0, k]. Although
both models fit survival functions estimated from many period life tables, they are also mildly flawed, because of small
discontinuities at the splice points. The two papers just mentioned were included in the references in the paper by Gage
and Mode (1993) along with several other parametric survival functions, which were tested for goodness of fit to data.
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It should be emphasized, however, that in this paper the focus of attention will be based on rationals for constructing
theoretical parametric survival functions that will be used in computer simulation experiments in evolutionary genetics an
other fields in biology when no survival data are available.

In the paper Mode et al. 2013 a survival function related to that of Mode and Busby was used in a paper on a stochastic
model of a two sex age structured population with a genetic component. A four parameter parametric survival function
that was used to produce the content of the paper was based on partitioning the life span of each individual into two age
intervals [0, 30) and [30, r). For this model, age x = 30 was a splice point and there was a noticeable discontinuity at
that age point that appeared in age distribution estimated from data generated in Monte Carlo simulation experiments
as well as those computed using the embedded deterministic model. Although it seems unlikely that the conclusions
of the paper based on computer experiments would change significantly if another survival model was used to remove
such discontinuities, in future experiments it would be advantageous to use a parametric survival function that did not
have noticeable discontinuities. Moreover, it seems likely that it would also be beneficial to readers of the paper if these
annoying discontinuities were removed.

Even though it was realized that there was need for parametric survival functions that did not have any noticeable discon-
tinuities, no sustained efforts were made to formulate parametric survival functions with no discontinues throughout the
ages considered in future computer simulation experiments. However, some time in 2015 in a search for APL functions
stored in folders on flash memory sticks and other storage devises, by chance an old folder was found containing APL
software designed to implement parametric survival functions with no discontinuities. As it turned out the software had
been written in connection with research on aging funded by the National Institute of Aging during the late 1980s. By
reading the APL code, it was realized that some potentially significant issues were not considered in the software so it
was rewritten to make the output more informative as to the significance of the ideas contained in the written code. An
inspection of the numerical output of the revised code led to a need to further develop the software to fix potentially flawed
ideas. In the remaining sections of this paper, these potential flaws will be investigated and alternative procedures will
also be investigated.

2. A Review of Fundamentals

There is a large literature on survival analysis, but it beyond the scope of this paper to provide review of this literature.
There is also a rather large number of books on the subject, and among them are Elandt-Johnson and Johnson (1980) If
a reader is interested in a more in depth account of the ideas presented in this section, it is recommended that this book
be consulted. To make this paper self contained, in this section attention will be focused on the basic fundamentals and
definitions that are necessary to provide a background for the contents of this paper.

Let X denote a random variable representing the life span of any individual in some biological population. Because age
is measured in terms of a number in the interval R+ = [0,∞], the range of X is this interval. By definition the distribution
function of the random variable X is

P [X ≤ x] = F (x) (2.1)

for all x ∈ R+, and is the probability that an individual dies in the age interval [0, x). It will be assumed that F (0) = 0 and

lim
x↑∞

F (x) = 1. (2.2)

Any new born individual in the population will be assigned the age x = 0. Let S (x) denote the probability that any
individual is alive at age x > 0. Then

S (x) = P [X > x] = 1 − F (x) (2.3)

is called the survival function, and it follows that S (x)→ 0 as x→ ∞ .

If F (x) is differentiable, then there is a function f (x) such that

dF (x)
dc

= f (x) (2.4)

for all x ∈ R+. The function f (x) is called the probability density function p.d. f . It also follows that

F (x) =
∫ x

0
f (s) ds (2.5)

for all x ∈ R+. From this equation, it follows that if one constructs or defines a probability density function f (x) that is
defined for all x ∈ R+ and has the property ∫ ∞

0
f (x) dx = 1 , (2.6)
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then
lim
x↑∞

F (x) = 1 . (2.7)

A well known example of a pd f is that of the exponential distribution which has the form

f (x) = βe−βx (2.8)

for x ∈ R+, where β > 0 is a positive parameter. The distribution function of this distribution is

F (x) =
∫ x

0
βe−βsds = 1 − e−βx , (2.9)

and the survival function is
S (x) = e−βx (2.10)

for all x ∈ R+. From these equations, it can be seen that F (0) = 0, S (0) = 1. Moreover, F (x) → 1 and S (x) → 0 as
x→ ∞.

A central concept in the formulation of parametric survival functions is the idea of a risk function. As a step toward
defining this function, consider the conditional probability

P[x ≤ X ≤ x + h] | X > x (2.11)

and let F (x) denote the distribution of the random variable X and let f (x) denote f (x) the probability density function of
the distribution of X, where x > 0 and h > 0. Then

P[x ≤ X ≤ x + h | X > x] =
F (x + h) − F (x)

1 − F (x)
. (2.12)

By definition, the risk function θ (x) is defined by the limit

lim
h↓0

F (x + h) − F (x)
1 − F (x)

=
f (x)

1 − F (x)
= θ (x) (2.13)

for x > 0. An alternative definition of the risk function is

−d ln (1 − F (x))
dx

=
f (x)

1 − F (x)
= θ (x) . (2.14)

From this definition, it follows that

S (x) = 1 − F (x) = exp
[
−

∫ x

0
θ (s) ds

]
. (2.15)

By taking the derivative of both sides of this equation, it can be seen that the pd f has the form

dF (x)
dx

= f (x) = S (x) θ (x) (2.16)

for x > 0.

From the definition of the risk function, it can be seen that if f (x) is the pd f of some distribution that if a formula for
f (x) is given, then a formula for the risk function may be derived. Consider, for example, the exponential distribution
described above. Then

θ (x) =
f (x)
S (x)

=
βe−βx

e−βx
= β > 0 (2.17)

for all x > 0. From this general formula connecting the survival function and the risk function, it can be seen that the
survival function of the exponential distribution is

S (x) = e−βx (2.18)

as given above.

There are a number of points of view that may be implemented in connection with formulating models of parametric
survival functions. The following example from reliable theory, which is used in connection with quality control in
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manufacturing, will provide a basis for formulating the parametric survival function presented in this paper. Suppose some
device has four components, and let the random variables Xk for k = 1, 2, 3, 4 taking values in the interval 0 ≤ x < ∞
denote that random life spans of the four components, .Suppose these random variables are independently distributed with
survival functions S k (x) for k = 1, 2, 3, 4. Then the survival function of the system is

S (x) =
∏

limits4
k=1S k (x) . (2.19)

When any component of the system fails, the system fails. Consequently, the life span of the system is given by the
random variable

Y = min {X1, X2, X3, X4} . (2.20)

Observe that Y > y , if and only if, Xk > y for every k = 1, 2, , 3, 4. Therefore, the survival function of the system is

S (y) =
4∏

k=1

S k (y) (2.21)

for y > 0.

Let θk (x) denote the risk function for component k = 1, 2, 3, 4.Then the survival function of the system has the form

S (y) =
4∏

k=1

S k (y) =
4∏

k=1

exp

−
y∫

0

θk (s) ds

 = exp

− 4∑
k=1

y∫
0

θk (s) ds

 . (2.22)

Therefore, from the right most formula in 2.22 it can be seen that

d ln S (y)
dy

= −
4∑

k=1

θx (y) . (2.23)

A procedure that has been widely used in the formulation of parametric survival functions is to define the risk function
under consideration and then use expression 2.23 in deriving a symbolic form of a survival function.

The survival function of the Gompertz distribution has the form

S G (y) = exp
[−α (

exp βy − 1
)]

, (2.24)

where α and β are positive parameters. As can be seen from this formula, this function has the property

lim
y→∞

S G (y) = 0 . (2.25)

It is well known that the Gompertz survival function fits the survival function that is estimated in many period life tables
of ages y ≥ 30. Throughout this paper, the Gompertz survival function will be used as a basis for formulating parametric
survival functions for all ages y > 0.

Because it fits empirical survival functions for ages y ≥ 30, it follows that the function needs to be modified only for ages
0 < y < 30.As will be shown is subsequent sections of this paper, the modifying functions may not converge to zero as
y → ∞. But as can be seen from the right most expression in equation 2..22, if the Gompertz survival function is one of
the survival functions for the system, then

lim
y→∞

S (y) =
4∏

k=1

S k (y) = 0. (2.26)

In the following sections of this paper, several examples of the situation just described will be presented.

3. A Brief History of Proposed Risk Functions for Early Life

The form of the risk function for early life model prosed by Thiele in 1871was

µT (x) = α0e−β0 x , (3.1)

where the parameters α0 > 0 and βo > 0 are positive. As can be seen from this formula µT (x) → 0 as x → ∞. The
integral of this risk function is

HT (x) =

x∫
0

µT (s) ds =
α0

β0

(
1 − exp

[−β0x
])

(3.2)
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for x > 0. The survival function in this case is by definition

S T (x) = exp [−HT (x)] . (3.3)

As can be seen from 3.2, it follows that

lim
x→∞

S T (x) = exp
[
−α0

β0

]
. (3.4)

Technically, S T (x) is not a survival function, because S T (x) does not converge to 0 as x→ ∞. However, it could be used
to adjust the Gompertz survival function for the ages 0 < x < 30 as indicated in 2.24 in section 2. Siler (1970). also used
the risk function in 3.1 in his model of animal mortality.

The formula for risk of death in early life in this paper is the modified version that proposed by Thiele and has the form

µ0 (x) = α0β0e−β0 x (3.5)

for x > 0. The integral of this risk function is

H0 (x) =

x∫
0

µ0 (s) ds = α0
(
1 − exp

[−β0x
])

(3.6)

for x > 0. Just as in 3.3, the survival function in this formulation has the definition S 0 (x) = exp [−H0 (x)] . As can be
seen in this case

lim
x→∞

H0 (x) = α0 . (3.7)

When data are not available, then an investigator needs to explain the rationale used to justify his procedure for choosing
numerical values of the parameters .Let p0 denote the probability that an infant born as age x = 0 survives to age 1 year,
and suppose that

e−α0 = p0 . (3.8)

Then
α0 = − ln p0 . (3.9)

For the case of p0 = 0.8,
ln .8 = −0.223 14 (3.10)

Hence, for this choice of p0, the parameter α0 has the value

α0 = 0.223 14 (3.11)

If an investigator is working with human data and if some period life table are available for a few past centuries, then it
would be possible to use this data as a guide for the choice of the numerical value for the parameter p0.

The next step is to consider a rational for choosing a value for the parameter β0. As can be seen from equation 3.6, the
expression (1 − exp

[−β0x
]
), decreases the value of the parameter α0 by a fraction for each x > 0.Suppose, for example,

that at age 3 years the equation
(1 − exp

[−β03
]
) = 0.5 (3.12)

holds. Then
exp

[−β03
]
= 1 − 0.5 = 0.5 , (3.13)

and β0 has the value

β0 = −
ln 0.5

3
= 0.23105 , (3.14)

so that the integral of the risk function has the value at x = 3.

Ho (3) = 0.223 14 × 0.23105 = 5.1556 × 10−2 . (3.15)

Observe that this value is smaller than the value chosen for α0 = 0.22314.

As can be seen from 3.7 and 3.11,

lim
x→∞

H0 (x) = α0 = 0.223 14 > 5.1556 × 10−2 . (3.16)
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From formula 3.6, it can be seen that H0 (x) increases for any chosen value of the parameter β0, but will eventually
converge to the limit α0.

In studies of human mortality in computer simulation experiments, ages from 1 to 100 may be under consideration. In
such experiments, it has been observed that the value of H0 (100) is the limit α0.For the illustrative numerical example
under consideration this value is

H0 (100) = 0.22314 . (3.17)

Consequently,
S 0 (100) = exp [−H0 (100)] = exp [−0.22314] = 0.8 . (3.18)

From equation 2.21, it can be seen that if the survival function S 0 (x) were included in this product, then it may reduce
the values of the Gompertz survival more than intended for ages x > 30.If an investigator, thinks this it is valid for the
situation under consideration, then the survival function S 0 (x) would be included in the product in 2.21 for all ages x ≥ 1.
For example in such a formulation of a model on evolutionary genetics, the function S 0 (x) could represent a genotype
such that individuals of this genotype are more at risk of dying than those of other genotypes so that this survival function
would be considered be valid.

An alternative to formulating a survival function is presented in Mode and Busby . A brief history of risk functions just
outlined is incomplete. In this connection, it is suggested that an interested reader have a look at the paper of Mode and
Jacobson (1984) and the references cited therein. Briefly, the risk of death function used in that paper for early life was
related to the probability density function of the Weibull distribution, which was much more complicated than the one in
3.5. In the early planning stages for this paper, a decision was made to use risks functions that have only a few parameters
in order to minimize the number of parameters that must be assigned values for computer experimenters connected with
evolutionary genetics.

4. A Brief History of Risk Functions That Have Been Proposed for Midlife

In his proposal for a risk function for the whole life, Thiele (1872) thei offered the risk function of the from

µ1 (x) = α1 exp
−  1

2b2
1

(x − c1)2
 (4.1)

for mid-life. As can be seen from this formula is nearly that of the probability density function of a normal distribution
with mean c1 and variance b2

1. If the formula below form is chosen at the risk function

µ1 (x) = α1
1

b1
√

2π
exp

−  1
2b2

1

(x − c1)2
 , (4.2)

then it would be a multiple the probability density function of a normal distribution with mean c1 and variance b2
1. Let

Φ (x) =
1
√

2π

x∫
=∞

exp
[
− z2

2

]
dz (4.3)

for x ∈ (−∞,∞). By definition the function Φ (x) is the distribution function of the standard normal distribution with
mean µ = 0 and variance σ2 = 1. It can be shown that the integral of the risk function in 4.2 is

H1 (x) = α1Φ

(
x − c1

b1

)
. (4.4)

Therefore, the survival function S 1 (x) has the form

S 1 (x) = exp [−H1 (x)] (4.5)

for x ∈ (−∞,∞). It is well known that
lim
x→∞
Φ (x) = 1 . (4.6)

From this observation, it follows from 4.4 and 4.5 that

lim
x→∞

S 1 (x) = exp [−α1] . (4.7)
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Because Φ (x) → 0 as x → −∞, it follows that S 1 (x) may not → 1 as x → 0. For example, from 4.4 and 4.5, it can be
seen that

S 1 (0) = exp
[
−α1Φ

(
−c1

b1

)]
, 1. (4.8)

Consequently, it seems desirable to search for a distribution such that the range of the random variable X representing age
takes on only non-negative values x ≥ 0. Among the distributions with this property is the log-normal distribution, which
is defined as follows. Suppose the random variable W has a normal distribution with mean µ and variance σ2. Then the
random variable

X = exp [W] , (4.9)

then the random variable X takes on values x such that x > 0. From 4.9 it follows that

ln X = W . (4.10)

Thus, the random variable X is said to have a log-normal distribution. In what follows, it will be helpful to represent the
random variable W in the form W = µ + σZ, where Z has a standard normal distribution with mean 0 and variance 1.
Given this representation of W, the distribution function of X may be easily derived. By definition

F (x) = P [X ≤ x] . (4.11)

is the distribution function of the random variable X. But, because the ln x is a monotone increasing function for x > 0, it
follows that

F (x) = P [X ≤ x] = P [W ≤ ln x] = P[µ + σZ ≤ ln x]

= P
[
Z ≤ ln x − µ

σ

]
= Φ

(
ln x − µ
σ

)
. (1)

From this equation, it can be seen from 4.3 that the probability density function of the random variable X has the form

f (x) =
dF (x)

dx
=

1

σx
√

2π
exp

[
− (ln x − µ)2

2σ2

]
(4.13)

From now on the risk function for mid-life will be chosen as µ1 (x) = α1 f (x) in 4.13. It can also be seen that from 4.12,
it can also be shown that

lim
x↓0

F (x) = 0 , (4.14)

which is a desirable property.

To connect the parameters µ and σ with more useful statistical interpretations, it can be shown that the mode of the
log-normal density is

m1 = exp
[
µ − σ2

]
. (4.15)

And if X1 is a log-normal random variable, then its expectation is

E [X1] = µ1 = exp
[
µ +
σ2

2

]
(4.16)

Equation 4.15 may be verified by finding the derivative of the log-normal density function in 4.13 and setting it to 0, and
then solve that resulting equation for mode in 4.15. It would also be wise to check that m1 is indeed the maximum of the
density function in 4.13. As a first step in showing the µ1 in 4.16 is the correct formula for the expectation in 4.16, it well
be helpful to have a look at the formula for the moment generating function of normal random variable with mean µ and
variance σ2. It is well known that the moment generating function of the normal distribution is

GN (s) = E
[
exp X1s

]
=

1

σ
√

2π

∞∫
−∞

exp[xs] exp
[
(x − µ)2

2σ2

]
dx = exp[µs +

s2σ2

2
] . (4.17)

By definition, because X1 = exp W

E [X1] = E
[
exp W

]
=

1

σ
√

2π

∞∫
−∞

exp[w] exp
[
(w − µ)2

2σ2

]
dw = GN (1)

= exp
[
µ +
σ2

2

]
, (2)
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which demonstrates the validity of 4.16.

The integral of the risk function µ1 (x) = α1 f (x), where f (x) is the log-normal density is

H1 (x) = α1

e∫
0

f (x) dx =
α1

xσ
√

2π

x∫
o

exp
[
(ln x − µ)2

2σ2

]
dx = α1Φ

(
(ln x − µ)2

2σ2

)
. (4.19)

Therefore, the survival function for mid-life has the form

S 1 (x) = exp [−H1 (x)] (4.20)

from 4.19, it can be seen that
lim
x→∞

S 1 (x) = exp [−α1] (4.21)

but the rate of convergence may be slow.

Given the formulas for the mode m1 in 4.15 and that in 4.16 for µ1, the expectation of a random variable with a log-normal
distribution, the next step in the formulation is to derive formulas for computing the parameters µ and σ as functions of
m1 and µ1, which in a computer simulation experiment would be assigned values based on some rational used in designing
a computer experiment. From 4.15 and 4.16, it follows that

ln m1 = µ − σ2 (4.22)

and

ln µ1 = µ +
σ2

2
. (4.23)

Let v1and v2 denote two 2 × 1 vectors defined as follows

v1 =

(
ln m1
ln µ1

)
(4.24)

and

v2 =

(
µ
σ2

)
. (4.25)

Then consider the 2 × 2 matrix

A =
(

1 −1
1 1

2

)
. (4.26)

From 4.22 and 4, 23, it can be seen that
Av2 = v1 . (4.27)

If the matrix A is non-singular, then
v2 = A−1v1 . (4.28)

It can be shown that the inverse of the matrix A is

A−1 =

( 1
3

2
3

− 2
3

2
3

)
. (4.29)

It follows that
µ =

1
3

ln m1 +
2
3

ln µ1 (4.30)

and
σ2 = −2

3
ln m1 +

2
3

ln µ1 =
2
3

(ln µ1 − ln m1) . (4.31)

If ln µ1 − ln m1 > 0, then σ2 > 0, and

σ =

√
2
3

(ln µ1 − ln m1) . (4.32)

Thus, if µ , σ and α1are known, then function H1 (x) in (4, 19) could be computed for chosen values of x > 0. Included
in the scientific word processor used to write this paper are symbolic and numerical computation engines. The inverse
matrix in 4.29 was calculated using the symbolic computation engine, and the numerical computation engine was used,
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was used to produce the the numerical computation engine was used to produce the numerical results presented in the rest
of this section.

By way of an illustrative example, suppose that in some computer simulation experiment, it was assumed that ages of
greatest risk of death in mid-life were x ∈ [15, 35]. If it assumed that the risk of death is greatest as age 25, then the
value of the mode of the log-normal density function could be chosen as µ1 = 25.From formula 4.32 in order to compute
a value of σ > 0, the mean µ1 of the log-normal distribution should be chosen as a number such that µ1 > m1. Suppose,
for example, the value chosen for m1 = 22. Then, ln 25 = 3. 218 9 and ln 22 = 3. 091. Then ln 25 − ln 22 = 0.127 83, and

σ =

√
2
3
× 0.12783 = 0.29192 . (4.33)

In this case
µ =

1
3
× 3.091 +

2
3
× 3.2189 = 3.1763 . (4.34)

Given these values of µ and σ, an investigator may wish to graph the log-normal density function in 4.13 for x ∈ [15, 35].
to provide insights into plausibility of the values the chosen values of µ and σ and their implications for predicting the
potential results of the computer simulation experiments being considered. By assigning a value to the promoter α1, it
would also be possible to compute the values of the survival function

S 1 (x) = exp [−H1 (x)] (4.35)

for any x > 0.

In the Mode and Sleeman 2000 , the risk function based on the log-normal distribution as indicated in section was
suggested as a risk function for mid-life in section in chapter 13 section 2 of the book. But the account of this risk
function is much more complete than in the book. Furthermore, one of the formulas presented in this chapter for finding
µ and σ may contain an error, but in this section the formula was derived using a different method based on matrix theory
and its derivation is more transparent. The review presented in this section is incomplete. For example, the risk function
for mid-life suggested by Heligman and Pollard (1980) has not been displayed in this section It was not included, because
of its complexity. But, if a reader is interested in an application of this risk function the paper by Mode and Jacobson
(1984) may be consulted.

5. Makeham and Gompertz Risk Functions

The Makeham risk function is included in the formulation to accommodate the risks of accidents throughout the life span
of an individual. It is assumed that this risk function is constant and is given by

θ2 (x) = α2 (5.1)

,where α2 is a positive constant. In this case, the integral of the risk function is

H2(x) =
∫ x

0
θ2(s)ds = α2x (5.2)

for x ≥ 0. Therefore, for x ≥ 0, the survival function has the simple form

S 2(x) = exp [−α2x] . (5.3)

It has been suggested that a useful trial value of α2, based on period studies of human mortality, is about 0.001. The
two-parameter latent risk function, due to Gompertz (19-th Century) deals with risks of deaths at the older ages. Let α3
and β3 be positive parameters. Then, it will be assumed that for x ≥ 0 the latent risk function θ3(x) has the form

θ3(x) = α3β3 exp
[
β3x

]
. (5.4)

Observe that, as it should, this risk function increases as age x of an individual increases, and, by assumption, the risk of
death increases exponentially with increasing age. The integral of this risk function has the form

H3 (x) = α3 exp
(
exp

[
β3x

] − 1
)

(5.5)

for x ≥ 0. Therefore, the latent survival function for this component is

S 3(x) = exp
[−α3

(
exp[β3x − 1

)]
(5.6)
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for x ≥ 0.

By applying a general but standard formula that a density is the risk function times the survival function, it can be seen
that the probability density function of the Gompertz distribution has the form

f3(x) = θ3(x)S 3(x) = α3β3 exp
[
β3x

]
exp

[−α3
(
exp

[
β3x

] − 1
)]

(5.7)

for x ≥ 0. Although this distribution may be derived from intuitively appealing assumptions, it is more difficult to handle
from a mathematical point of view than some other distributions that arise in probability and statistics. Nevertheless,
because many advanced mathematical functions are now available to research workers in such software packages as
MAPLE, MATHEMATICA, and MATLAB, an outline of the mathematics used in analyzing the Gompertz distribution
seems appropriate.

Because the parameters α3 and β3 do not have obvious statistical interpretations, such as an expectation or variance, it is
difficult to assign tentative values to them. Quite often, however, there is some feeling about the modal age of death for
those who survive to old age. Let m3 denote the mode of the Gompertz distribution. Then by using elementary calculus
to find the maximum of the density f3(x), it can be shown that the equation

α3 = exp
[−β3m3

]
(5.8)

supplies a connection among the parameters α3, β3 and m3. In particular, if m3 is assigned a value and β3 is known, then
α3 is determined. But, to find a plausible value of β3, more input is needed. To this end, one may also have some idea
about plausible values for σ3, the standard deviation of the age of death among those who survive to old age. Thus, it
would be helpful to express σ3 in terms of the parameters of the Gompertz distribution.

In this connection, it will be useful to consider the moment generating function of the Gompertz distribution, which is
defined by

M3(s) =
∫ ∞

0
esx f3(x)dx (5.9)

for those values of s for which the integral converges. By using some advanced calculus, it can be shown that the moment
generating function of the Gompertz distribution has the form

M3(s) = eα3

Γ(
s
β3
+ 1)

α
s
β3
3

−
∞∑
ν=0

(−1)ναυ+1
3

ν!
(

s
β3
+ ν + 1

)
 , (5.10)

where Γ(·) is the famous gamma function and s ∈ (−ϵ,∞) with ϵ > 0 near zero.

Recall that the gamma function is defined by the integral

Γ(z) =
∫ ∞

0
xz−1e−xdx , (5.11)

which converges for all z > 0. As is well known, this function corresponds with the factorial function on the positive
integers. In fact, if z = n, a positive integer, then Γ(n) = (n− 1)!. In a word, this function fills the gaps among the integers,
and, in particular, it can be shown that Γ( 1

2 ) =
√
π.

If the random variable X3 has a Gompertz distribution, then its expectation is

E [X3] = M(1)
3 (0) =

dM3(s)
ds

|s=0 , (5.12)

the second moment is

E
[
X2

3

]
= M(2)(0) =

d2M3(s)
d2s

|s=0 . (5.13)

and the variance of the distribution is given by the well known formula

σ2
3 = E

[
X2

3

]
− (E [X3])2 . (5.14)

After considerable analysis, it can be shown that the exact formula for the expectation is

E [X3] = eα3

m3 −
C
β3
+

1
β3

∞∑
υ=0

(−1)ναν+1
3

ν!(ν + 1)2

 , (5.15)

108



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 8, No. 2; 2019

where C ≃ 0.57721 · ·· is Euler’s constant. Furthermore, the exact formula for the second moment is

E
[
X2

3

]
= eα3

(m3 −
C
β3

)2

+
π2

β2
36
− 2
β2

3

∞∑
υ=0

(−1)ναν+1
3

ν!(ν + 1)3

 . (5.16)

The following two results
Γ(1)(1) = −C (5.17)

and

Γ(2)(1) =
π2

6
+C2 , (5.18)

which were used in deriving the above formulas, are given in several books on special functions and advanced calculus.
The symbol Γ(k) (x) is, by definition, the k-th derivative of the Gamma function.

When α3 > 0 is small, then exp[α3] ≃ 1 and the above infinite series may be neglected. Thus, the approximations

E [X3] ≃ m3 −
C
β3

(5.19)

and

E
[
X2

3

]
≃

(
m3 −

C
β3

)2

+
π2

β2
36

(5.20)

hold for small α3. Therefore, a formula for the approximate variance of the Gompertz distribution is

σ2
3 ≃
π2

β2
36
. (5.21)

Equivalently,
β3 ≃

π

σ3
√

6
(5.22)

is an approximate expression connecting the parameter β3 with the standard deviations σ3. However, if an investigator is
working with MAPLE, MATHEMATICA, MATLAB or other software packages, programs may be written to compute
the variance σ2

3 more accurately, using the above infinite series. Thus, the accuracy of these approximations may be
assessed. Among the classic books that contain information on the above mathematics are those of Artin and Widder.

6. Introducing Randomness Into the Gompertz Survival Function

In a previous study using Monte Carlo simulation methods, it was found that an age structured stochastic process con-
verged in distribution to a parametrized survival function, see Mode and Sleeman 2012 . In previous work the idea of a
stochastic environment has a also been considered see Mode and Jacobson (1987) . In this section. some techniques
for incorporating randomness into the Gompertz distribution will be considered. The Gompertz distribution is based on
two parameters α and β. Consequently, in this section the focus of attention will be some suggestions for introducing
randomness into these parameters. In equation 5.8 there is a formula connecting and parameters α and β as well as the
mode m of the Gompertz distribution.

Among those who study and apply Monte Carlo simulation methods there is a well known equation. Let

F (x) = P [X ≤ x] (6.1)

denote the distribution function of the random variable X. It will be assumed that the domain of the random variable X is
a continuum of real numbers. Then

F (X) = U , (6.2)

where U is a random variable on the interval [0, 1]. Whenever it is possible to solve this equation to express X as a function
of U, then it is possible to compute realizations of the random variable X by computing realizations of the random variable
U.

In order to view the mode of the Gompertz distribution as a random variable, it will be necessary to define positive
numbers that represent ages. Let a and b be positive numbers representing ages such that a < b , and let V denote a
random variable with a uniform distribution on the interval [a, b]. Its probability density function is

g (v) =
1

b − a
(6.3)
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for all v ∈ [a, b], The distribution function of the random variable V is

G (v) =
∫ v

a
g (s) ds =

v − a
b − a

(6.4)

for all v ∈ [a, b]. From the comments stated above, it follows that G (V) = U. Thus,

V − a
b − a

= U . (6.5)

By solving this equation for V , it can be seen that

V = a + (b − a) U . (6.6)

From this equation, it becomes transparent that realizations of the random variable V reduces to computing realizations
of the random variable U. If U = 0,then V = a, and if U = 1,then V = b.From these observations, it follows that that
realizations of the random variable V will always be in the interval [a, b].

For example, if the mode of the Gompertz distribution is m = 60 , b = 70 and a = 50, then b − a = 20, then the above
equation takes the form

V = 50 + 20U. (6.7)

In this case, in a Monte Carlo simulation experiment, the mode of the Gompertz distribution would be somewhere in the
interval [50, 70] for any realization of the process.

Similarly, if the standard deviation σ of the Gompertz distribution is viewed as a random variable such that all realizations
of σ belong to the interval [c, d], where c and d are positive numbers such that c < d, then

σ = c + (d − c) U . (6.8)

From 5.8, it follows that if the mode m is a random variable, then so is the parameter α. It is of interest to note that in this
case β may be constant or a random variable.

When designing a computer simulation experiment, it is of interest to know the expectation and variance of random
variables given in 6.6 and 6.8. It is well known that if the random variable U is uniformly distributed on the interval [0, 1],
then its expectation and variance are given by the formulas

E [U] =
1
2

(6.9)

and

var [U] =
1

12
. (6.10)

From these observations, it follows that the expectation and variance of the random variable V in 6.6 are

E [V] =
a + b

2
(6.11)

and

var [V] =
(b − a)2

12
(6.12)

For example, if a = 50 and b = 70 as suggested above, then

E [V] =
50 + 70

2
= 60.0 (6.13)

and

var [V] =
(20)2

12
= 33. 333 (6.14)

From these observations, it can be seen that the variation around the mean 60.0 will be relatively small in samples of
realizations of the random variable V . In the next section, the concepts described in the preceding sections will be
examined numerically and illustrated by using graphs.
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7. A Method for Computing Numerical Versions of Parametric Survival Functions

In this numerical version of a survival function, the parameters values for early life, see section 3, were chosen as
α0 = 0.953, which is the probability of an infant surviving one year. The chosen value of the expectation of the exponential
distribution was β0 = 1.361.For midlife the parameter α1, which is the probability of surviving midlife, was chosen as
α1 = 1. The values of the mode and mean for the lognormal distribution were, see section 4 for details, were chosen as
m1 = 25 and µ1 = 33. The value of the Makeham parameter was chosen as α2 = 0.001.The value of the standard deviation
σ3 for the Gompertz distribution was chosen σ3 = 13.255 and the value of the mode of the Gompertz was chosen as
age m3 = 75. A detailed account of these parameters is given in section 5. It is also shown in section 5 that the values
of parameters determine the values of the Gompertz parameters α3 and β3. The value of the greatest age was chosen
as GA = 100. It should be emphasized that the values of the parameters stated above, which were chosen to produce a
plausible numerical realization of a survival function for humans that may have long lives, are arbitrary. Any user of the
ideas may chose any values of the parameters that are, in his mind, plausible.

Let S 0 (x) denote the function designed to adjust the Gompertz survival function for deaths in early life. Then, S 0 (0) = 1
and S 0 (x) was evaluated numerically for x = 1, 2, 3, · · ·, 100. The function S 1 (x) was designed to adjust the Gompertz
survival function for midlife deaths was also evaluated numerical for the integers x = 1, 2, 3, · · ·, 100.Similarly, the survival
functions for the Makeham distribution S 2 (x) and Gompertz distribution S 3 (x) were also evaluated numerically for the
positive integers listed above. In this section two additional survival functions will be considered

S 0123 (x) = S 0 (x) × S 1 (x) × S 2 (x) × S 3 (x) (7.1)

and
S 023 (x) = S 0 (x) × S 2 (x) × S 3 (x) (7.2)

and evaluated for x = 1, 2, 3, · · ·, 100. Both these survival function satisfy the condition S 0123 (0) = 1 and S 023 (0) = 1.
Observe that the survival function S 023 (x) differs from S 0123 (x) because the function S 1 (x) for midlife has been excluded.

If S (x) is the survival function for the random variable X with values in the interval 0 ≤ x ≤ 100, then it is well known
that the expected value of X is

E [X] =
100∑
x=0

S (x) . (7.3)

This expectation is known as the expectation of the life span for any newly born infant in the population. For the case of
the survival function S 0123 this expectation has the value

E [X | S 0123] = 40.95676571 . (7.4)

The expectation of S 023 is
E [X | S 023] = 64.084919 . (7.5)

For the case of the Gompertz survival function, this expection has the value

E [X | S 3] = 69.592489 . (7.6)

Presented in Figure 7.1 is a graph comparing the Gompertz survival function with S 0123 for the ages x = 0, 1, 2, · · ·, 100.
As can seen from the graph of the survival function S 0123, it appears that this function over adjusts the Gompertz so
it is doubtful whether this function could be applied in a computer simulation experiment, unless the objective of the
experiment was to project the evolution of a population with high mortality rates. The expectation of the life of an infant
for this survival function is about 41 years,see 7.4 and is much smaller then that of the Gompertz survival function which
is about 70 years, see 7.6. The reason why the function S 0123 (x) over adjust the Gompertz survival function is that the
numerical value of this function at age 100 is less than one. If it were one, then its affects would be neutral and the
numerical value of the Gompertz function would not be changed.

Figure 7.2 contains the graphs of the survival function S 023 and the Gompertz survival function. From these graphs it can
be seen that the high rate of infant immortality my be easily seen by viewing the graph of the survival function S 023 in the
early years of life. Given this survival function, the expectation of life is about 64 years, see 7.5. It seems more likely
that this survival function would be more suitable for using in a computer simulation experiment than the function S 0123
when high mortality rates for infants are under consideration.
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Figure 7.1. A Comparison of the Graphs of the Survival Function S0123 and the Gompertz Survival Function

Figure 7.2. A Comparison of the Graphs of the Survival Function S023 and the Gompertz Survival Function

In experiments not reported in this paper, an attempt was made to use the assumptions that the function S 0 (x) was less
than one only for the ages x = 1, 2, · · ·, 10 and S 0 (x) = 1 for ages x = 11, 12, · · ·, 100. Similarly, the function for mid-life
S 1 (x) was less than one only for the ages x = 15, 16, · · ·, 30, representing mid-life. For all ages not in the mid-life range,
it was assumed that S 1 (x) = 1. According to theory, when these functions were one, the Gompertz function would not
be changed in the products 7.1 and 7.2. However, when these products were used at some ages x = 1, 2, · · ·, 100, the
Gompertz function was not monotone decreasing as the age x increased. Consequently, the adjusted Gompertz function
was no longer useful as a survival function for all ages. A decision was made, therefore, to abandon the approach just
described.

In previous work, Mode and Busby 1984, as mentioned in a previous section, survival function for infancy, mid-life and
older ages were spliced together. When the parameters of this mode were estimated from a life table is was found that
there were small bumps at the splice points, but the over all the fit to data was very good. Consequently, this splicing
method remains an alternative to the methods described in this paper based on the numerical evaluation of all functions in
a product of functions for all ages x = 0, 1, 2, · · ·, 100. But, it should be mentioned that if all the parameters of the were
assigned plausible numercal values not based on data, the bumps in the splice points may be very noticeable.

In section 6, a method was developed to treat the mode of the Gompertz as a random variable. In an illustrative example,
the bounds of variation in the mode of the Gompertz function were 50 and 70. For the case of a mode of 50, the expectation
of life would be

E [X | S 3,m3 = 50] = 44.968 , (7.9)

and the case m3 = 70, this expectation is
E [X | S 3,m3 = 70] = 64.621 (7.10)

Thus, in any Monte Carlo simulation experiment based on these bounds, the expectation of the Gompertz distribution
would lie in the interval [44.968, 64.621], which shows that in such a population the number of deaths would vary sig-
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nificantly among years. Because the computer implementation of these ideas would entail major a change to existing
software, the ideas just mentioned will not be implemented in the software used in this paper.

Natural disasters such as earthquakes, floods and volcanic eruptions are often the cause of deaths in human and animal
population in the regions of such disasters. Such disasters are difficult to predict, but it would be interest to design and
implement some software based on the idea of random waiting times among disasters. An example of such random
waiting times are those among earthquakes in some geological area area. For example in discrete time formulations, it
may be assumed that the waiting times T among earthquakes are random variables in some geological area that follow a
geometric distribution with the probability density function

P [T = t] = p (1 − p)t−1 (7.11)

where 0 < p < 1 and t = 1, 2, · · ·.
In any Monte Carlo simulation experiment, it would be straight forward to simulate a sequence T1,T2, · · · of the random
variables that are realizations of the random variable T.In such an experiment, it would be required that some methods for
simulating deaths would be needed. A very simple way of simulating such deaths across all ages is to assume that the
parameter α2 in the Makeham distribution is a random variable. To illustrate these ideas, suppose the survival function
under consideration is

S 023 (x) = S 0 (x) × S 2 (x) × S 3 (x) , (7.12)

where
S 2 (x) = exp (−α2x) (7.13)

is the Makeham survival function. The value of this parameter in the formulation under consideration was chosen as
α2 = 0.001. If, for example, if this value is increased to α2 = 0.01, then the survival function in 7.12 would be significantly
decreased for all ages x = 0, 1, 2, · · ·, 100, and in any in any Monte Carlo simulation experiment the simulated number of
death using the survival function in 7.11, would be much greater than if the parameter value α2 = 0.001 were used. In the
next section, an algorithm for simulating deaths across all ages will be described, and will be used if all parameters are
constant and not random variables.

8. Algorithms for Projecting an Age Structured Population With Stochastic Laws of Evolution Forward in Time

The objective of this section is to define as set of algorithms to simulate the stochastic evolution of an age structured
population forward in time. It will be assumed that the greatest age any individual may live is 50 years. At time t let
X (x, t) denote the number of females in a population for age x = 0, 1, 2, · · ·, 50 for t = 0, 1, 2, · · ·,N, where N > 1 is the
number of years considered in a projection experiment. Let X (0, t) denote the number of female infants in the population
at time t. Similarly, let Y (0, t) denote the number of male infants in the population at time t , and let Y (x, t) denote the
number of males in the population at time t for ages x = 1, 2, · · ·, 50.

Let S f (x) and S m (x) denote, respectively, the survival functions for females and males. By definition S f (0) = S m (0) = 1.
Let p f (x) denote the conditional probability that a female of age x − 1, survives to age x for x = 1, 2, · · ·, 50. Then, it
follows that

p f (x) =
S f (x)

S f (x − 1)
(8.1)

for x = 1, 2, · · ·, 50. Observe that p f (1) is the conditional probability that an infant female survives to age 1. Similarly,
let pm (x) denote the conditional probability that a male of age x − 1 survives to age x for x = 1, 2, · · ·, 50.The evolution
of the population will be viewed as stochastic, because it will be assumed that the number of females X (x, t) is a random
variable who’s realizations may be simulated.

A random variable X is said to have a binomial distribution with parameters N and p if its pdf has the formula

P [X = x] =
(
N
x

)
px (1 − p)n−x (8.2)

for x = 0, 1, 2, · · ·,N. In this formula N is a positive integer and p is a probability such that (0 < p < 1) In what follows,
it will be convenient to use a kind of shorthand such as

X ∼ B (N, p) (8.3)

to indicate that a random variable X has a binomial distribution with parameters N and p.

The next step in the formulation of the evolutionary model is to take into account the births of infants and their entry into
an evolving population. From now on the focus of attention will be the evolution of a population of wild chimpanzees.
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Suppose that the ages female chimps may give birth to an infant are x = 15, 16, · · ·.40. There are several distributions
depending on one or more parameters that may be viewed as candidates for the number of infants a fertile female chimp
may give birth during every year of her fertile ages. Let the random variable Y (x) denote the number of offspring a female
chimp may have during any year for ages x = 1, 2, · · ·, 40. For the sake of simplicity, it will be assumed that the random
variable Y (x) has a Poisson distribution with probability density function

P
[
Y (x) = y

]
= exp [−λ (x)]

(λ (x))y

y!
(8.4)

with parameter λ (x) > 0 for each age fertile age x. Let the random variable B denote the total number infants the females
of a chimp population have during any year of a population projection. Then, if it is assumed that the random variables
Y (x) for x = 15, 16, · · ·.40 are independent, then the random variable

B =
40∑

x=15

Y (x) (8.5)

has a Poison distribution with the parameter

λ =

40∑
x=15

λ (x) . (8.6)

It is well known that the expectation and variance of B is λ.Let Z be a standard normal random variable with expectation
0 and variance 1. Then it is also well known that the distribution of the random variable

B − λ
√
λ
≃ Z (8.7)

when the parameter λ is large, Z has a standard normal distribution with mean 0 and variance 1. From 8, 7 it can be seen
that

B ≃ λ +
√
λZ . (8.8)

Observe that if λ (x) = 1 for x = 15, 16, · · ·, 40. then λ = 26, which is sufficiently large to use the approximation 8.7. The
number B in 8, 8 may not be positive. Thus, B will be chosen as

B =| λ +
√
λZ | . (8.9)

Therefore, the distribution of the random variable B is the absolute normal distribution with parameter λ. In general, the
number B in 8.9 is not a positive integer. To remedy this situation, for any positive real number X, let [X] denote the
greatest integer in X. Thus, if B is chosen as

B = [B] , (8.10)

then B is non-negative integer.

The next step in the formulation is to define an algorithm for computing the number female and male infant chimps that
are added to the population at any time t. Let p f denote the probability that an infant chimp is female, and let pm denote
the probability an infant is male. Then, pm = 1 − p f . Let the random variable X (0, t) the number of female infant chimps
added to the population at time t, and let B (t) the total number of infants that will become members of the population at
time t. Then, it will be assumed that

X (0, t) ∼ B
(
B (t) , p f

)
. (8.11)

From this result it follows that the number of male infant chimps added to the population at time t is

Y (0, t) = B (t) − X (0, t) . (8.12)

At time t, the number of females in the population by age may be represented by the array

X (0, t) , X (1, t) , X (2, t) . · ··, X (50, t) (8.13)

Let
X ((1, t + 1)) , X (2, t + 1) , · · ·, X (50, t + 1) (8.14)
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denote the array of females by age in the population who are the survivors of the population depicted in 8.13. Then, the
survivors in 8.14 are simulated using the formula

X (x + 1, t + 1) ∼ B
(
X (x, t) , p f (x)

)
(8.15)

for x = 0, 1, · · ·, 49. Note if there are individuals of age 50 in the population, then they will no longer be viewed as
members of an evolving population.

Observe that the age structured population represented by the array in 8.14 does not contain female infants. Therefore,
the number X (0, t + 1) of female infants at time t + 1 could be simulated using the algorithm described above and added
to the array 8.14 to simulate the array

X (0, t + 1) , X (1, t + 1) , · · ·, X (50, t + 1) (8.16)

By using the algorithm just described, an array analogous to that in 8.16 could also be simulated for males. In this paper,
Monte Carlo simulation methods will be used to simulate a realizations of the stochastic process under consideration,
using the algorithms described above. The numerical values of the parameters of the model used in this experiment will
be given in the next section.

At any time during a population projection, it is of interest to display an estimates of total population size and the age
distribution. At time t, the total size of the female population is

T (t) =
50∑

k=0

X (k, t) (8.17)

Therefore, at any time t, the age distribution is

A (x, t) =
X (x, t)
T (t)

(8.18)

for x = 0.1, · · ·, 50. If both females and males are being considered in a population projection experiment, then the same
formulas can be used to estimate the total population size for males as well as their age distribution.

When dealing with a stochastic processes evolving in time, it is often of interest to estimate the value of some random
variable at time t + 1, given the value of the random variable at time t. For the stochastic processes under consideration,
it is well known that the minimum mean square estimate X̂ (x, t + 1) of the random variable X (x, t + 1) is the conditional
expectation

X̂ (x, t + 1) = E [X (x, t + 1) | X (x − 1, t)] = X (x − 1, t) p (x − 1) , (8.19)

for x = 1, 2, · · ·, 50. Observe that this is the expectation of a random variable with a binomial distribution as indicated in
8.3. Estimates of the random function Y (x.t + 1) for males could also be computed using a formula of the type given in
8.19.

The formula in 8.19 may also be written in the form

X̂ (x, t + 1) = X̂ (x − 1, t) p (x − 1) (8.20)

which provides a recursive formula for computing estimates X̂ (x, t) of the random function X (x, t) for t = 1, 2, · · ·, given
X (x, 0) for all ages x = 0, 1, 2 · ··, 50. A similar recursive equation may be used to compute Ŷ (x, t) as an estimate of the
random function Y (x, t) for t = 1, 2, · · · and x = 0, 1, 2, · · ·, 50. At each t in the recursive procedure, the function X (0, t)
will be assigned the value X̂ (0, t) = λ,the expected total number of births, see 8.6.

The recursive equations for the females and males just described will be referred to as the deterministic model embedded
in the stochastic process. For the case of the embedded deterministic model only one trajectory of the process can be
computed, Whereas, for the stochastic model in a computer simulation experiment, each trajectory of the process will
differ from all other trajectories in a sample of R > 1 realizations of the process. It should also be mentioned that when
the embedded deterministic model is used, it will be possible to compute age distributions as well as other sets of values
that may be of interest to an investigator.

During the preliminary testing of the ideas underlying stochastic process, it was observed that if it is assumed that λ, the
expected total number of offspring born in any year was constant, then the number of births in any realization of the
process was nearly constant, i.e., it was not random. To correct this flaw, it was decided to let λ be a random variable
defined as follows. Let a denote a positive number less than b. Then it was assumed that λ was a random variable defined
by the equation

λ = a + (b − a)U , (8.21)
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where U is a uniform random variable on the interval [0, 1]. At this point, it may be helpful to consult section 6 that
contains details on the properties of random variables defined in equation 8.21. For example, the expectation of the
random variable λ is

E [λ] =
a + b

2
. (8.22)

In computer simulation experiments the numbers a and b are usually chosen such that the expression on the right is a
preassigned positive number.

9. Assigned Values of Parameters Used in an Illustrative Monte Carlo Simulation Experiment

The parameter values chosen in the simulation experiment considered in this paper were designed to follow the short term
evolution a population of animals living in the wild with short lives. It was assumed that the greatest age of any individual
in the population as it evolved was 50 years. Differences in the survival on males and female were taken into account
by selecting two survival functions with different parameters values. The survival functions for both sexes were chosen
using the early life survival function in section 3 and Makeham Gompertz survival functions described in sections 3 and
5.

The survival function, S 023F was chosen for both females and males in the experiment under consideration. The reason for
choosing this type of survival function for both females and males is that there is no information from chimp populations
in the wild that there is a midlife effect with regarding mortality. as there is in humans, particularly for males in midlife.
.Consequently the midlife component S 1 was omitted.

Observe that to get a numerical version of the survival function S 0 for females, it is necessary to assign values for two
parameters in S 0, the fraction that survive infancy and a mean of an exponential distribution. The fraction that survived
infancy was chosen as α0 = 0, 80 and the mean of the exponential distribution was assigned the value β0 = 030030.
The parameter for the Makeham distribution was assigned the value α2 = 0.02. Finally to get a numercal version
of the Gompertz survival function numerical values must be assigned for the standard deviation σG and the mode mG.
The numbers chosen for these two parameters were σG = 6 and mG = 33. All the parameters for the male survival
function were the same as those for the females except that the mode of the Gompertz distribution for males was chosen
as mG = 30. Numerical values for the female S 023F and male the survival functions S 023M were computed by using the
procedures set forth in section 7.

Very little about survivorship in populations of wild Chimpanzees is known. Consequently every numerical version of a
survival function must be checked for plausibility. By using the formulas for the expection of life given in section 7, the
numerical values for the expectation of life, expressed in terms of years, for females was

E [X | S 923F] = 18.684 (9.1)

and that for males was
E [X | S 023M] = 17.289. (9.2)

The difference in these two numbers is due to different modes assigned to the Gompertz survival function. For females
the mode of the Gompertz distribution was chosen as mG = 33 and that for males was chosen as mG = 30. These two
expectations of life seem to be plausible for wild Chimpanzee populations.

It is often informative to include graph forms of the two survival functions under consideration. Presented in Figure 9.11
is a graph of the survival functions for females and males.

In the simulation experiment under consideration, a realization of the embedded deterministic model as well a sample
of realizatioins of the stochastic model were computed. The parameter assignments for the deterministic model were as
follows. The number of years of evolution of both the female and male populations was set as 200. The expected number
of the total infants born in any year was assigned the value λ = 20. The initial number of females and males in the
population was chosen as 300. The probability that an offspring was female was chosen as p f = 100/205, and the
probability an offspring was male was the complementary probability pm = 1 − p f .

For the case of the stochastic model, the number of years of evolution of the population was 200, and the number of
replications of the experiment was chosen as 100.The initial number for both females and males was 300 and was the
same as those used in the experiment with the deterministic model. In the experiment with the stochastic model λ was
a random variable, and the numbers in equation 8.21 were chosen as a = 15 and b = 25.It is interesting to note
that the expected value of the random variable λ in this case is

E [λ] = 20, (9.3)

which is the same value for λ used in the experiment with the deterministic model.
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Figure 9.1. A Graph of the Female and Male Survival Functions

An important part of the procedure in setting up a computer simulation experiment is that of specifying the initial age
structure for the female and male populations. Let X (0, 0) denote the initial age structure of the female population and let
Y (0, 0) denote the initial age structure for the male population at time t = 0. Observe that X (0, 0) and Y (0, 0) are vectors
with 1 row and 51 columns, and. as indicated above], the survival function used studying the 200 years of evolution of the
female population was S 023F and that for males it was S 023M . The initial vector for the female population was chosen as

X (0, 0) = 300 × S 023F , (9.4)

and similarly that for the males was chosen as

Y (0, 0) = 300 × S 023M (9.5)

These assignments will work well in experiments with the deterministic model, but when using the stochastic model the
vectors of the female and male populations must have values in the set S = (x | x = 0, 1, 2, 3, · · ·). This set is often referred
to as the set of non-negative integers. Thus if the initial vectors for the age structure of the female and male populations
are as

X (0, 0) = [X (0, 0)] (9.6)

and
Y (0, 0) = [Y (0, 0)] , (9.7)

where the symbols [X (0, 0)] and [Y (0, 0)] indicate that the greatest integer of each element in the vectors X (0, 0) and
Y (0.0) have been selected. The operation defined in equations 9.7 and 9.8 ensures that in the Monte Carlo simulation
experiment the elements of all vector belong to the set S of non-negative integers. The software used in the Monte Carlo
simulation experiment makes it necessary that the elements of all vectors are in the set S.

10. Analysis and Interpretation of Monte Carlo Simulated Data

The results presented in this section were based data that was simulated by what is known by Monte Carlo Methods. A
review of Monte Carlo Simulation Methods as they apply to mutation and selection formulated in Wright-Fisher models
of evolution was published by Mode and Gallop (2008). In this paper, the formula used to compute random numbers in
the experiments described in this section is also presented.

By definition the age structure of a population for females and males is the number of individuals in each age classification:
0, 1, 2, · · ·, 51. As expected in the experiment with the embedded deteministic model, the age structure of the population
converged to a constant for each age classification for both females and males. By a little mode than 50 years into
the population projection experiment, convergence to constant age structure had occurred for both sexes. Various terms
are used to describe such a population. Among these terms is to say that the projected population has converged to an
eqilibrium. Another term that is used that the population has converged to a stable population.

It is of interest to display a graph of the age structure that the deteministic process converged to for females and males
after about 50 years into the projection of 200 years as presented in Figure 10.1.
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Figure 10.1. Age Structure of a Population in Equilibrium for the Deterministic Model

According to the prediction of the deterministic model, after a population reaches an equilibrium in the age structure for
both females and males, this age structure would remain constant year after year. It seems very unlikely that if one were
able to observe a wild population of Chimps, that the age structure of the female and male populations would remain
constant.

For the experiment with the stochastic model, 200 years of evolution were computed and replicated 100 times. Let R
denote the array of simulated data. The first 200 rows of this array contain the simulated data for the first 200 years of the
Monte Carlo simulation experiment, the next 200 rows contain the simulated data for the second 200 years of evolution
and so on. It follows that the array consists of 200 × 100 = 20 , 000 rows and 51columns, representing the set of ages
under consideration. There are many ways to statistically summarize such simulated data.

The method chosen to statistically summarize the simulated data was to order each column of the array from the smallest
number to the largest. In this procedure the array is expressed in terms of the order statistics for each of the 51 ages
considered in the experiment. Row 1 of this array contains the minimum age Min for each age classification. And
similarly, row 20, 000 contains the maximum age Max for each age classification. Let Q25 denote the 0.25 quantile,
which is the fraction of all columns such that the inequality is valid xi j ≤ Q25 for i = 1, 2, · · ·, 25 and j = 0, 1, 2, · · ·, 50.
Note Q25 is the row

Q25 = 0.25 × 20000 = 5000 (10.1)

of the ordered data array. Similarly, the Q50 quantile is row

Q50 = 0.5 × 20000 = 10000 (10.2)

of the ordered data array. Q50 is also known as the median of the data. It is easy to see that the quantile Q75 may also
be defined. For the case under consideration Max is defined as row 20, 000 of the ordered data array. It is clear that the
notation just described could be extended to the case N, some large number rows and that software could be written to
take into account extended the case just outlined

Presented in Figure 10.2 are the graphs of the Min, Max and Quantiles for females.

Figure 10.2. Graphs of the MIN, MAX and Quantiles for Females
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It can be seen by inspecting the above graphs for females, that Min,Q25,Q50 and Q75 are the x - axis, which indicates
that they are small for each age group. It will be informative, therefore, to include a graph of Min,Q25,Q50 and Q75 for
females. Figure 10.3 contains the graph of Min,Q25,Q50 and Q75 for females.

Figure 10.3. Graphs of Min,Q25,Q50 and Q75for Females

From graphs 10.2 and 10.3, it can be seen that the values of Min and the quantiles range from 0 to about 12. These
numbers indicate that the numbers in the quantiles and Min are small, indicating that the Max for all ages is truly an
outlier.

Another statistic that was included in the simulated data was total population size for each year of the projection of
200 years. This number was computed for each year of the projection by summing over all ages and sexes. In the
experiment with the stochastic model, a sample of total population size was computed for each year the projection, which
was replicated 100 times. Presented in Table 10.1 are the summary statistics for this experiment.

Table 10.1. Summary Statistics for Total Population Size


Min 293
Q25 325
Q50 344
Q75 360
Max 9744


From this table it can be seen that there is also an outlier 9744 for total population size. It is also interesting to note
that 0.75 of the realizations of the process are less than or equal to 360. It is of compelling interest to attempt to find an
explanation as to why there are outliers in the simulated data. It is well known that for the type of age structured model
under consideration that the initial age structure of the population has a profound effect on the subsequent evolution of the
population that can seen in the experiments with the deterministic and stochastic models. For the case of the deterministic
model the expectation of the total number of offspring per year was assigned as constant number. Given this number and
a numerical version of the survival function, the population will evolve to a fixed age structure. If the initial age structure
differs from the fixed age structure, then unexpected results may be seen in the simulated data such as outliers that may
appear in the first years of a projection. The initial age structure used in the experiment with the deterministic model was
also used in the experiment with the stochastic model. In the experiment with the stochastic model, outliers were also
observed during the initial years of an experiment.

It is of interest to compare, the evolution of total population size that was observed when using the deterministic model
with that of the stochastic model. In the early years of the projection using the determinist model, total population
size was in the nine thousands but in about fifty years it had converged to 358.912, which is close to the median for the
stochastic model displayed in table 10.1.Presented in Figure 10.4 is a comparison of total population size with the Q50
quantile for the stochastic model.
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Figure 10.4. A Comparison of Age Structure According to the Deterministic Model in Year 100 with the Median for the
Stochastic Model

As can be seen from Figure 10.4, the trajectory for total population size is close to that of the Q50, the median trajectory
for females.

In the experiments with the deterministic and stochastic models, a survival function was computed for females and males
in each year of the projection. In the experiment with the stochastic model each projection of 200 years was replicated
100 times and the mean survival function were computed for both females and males In Figure 10.5 a comparison plot
of the deterministic survival function in year 100 of the projection with the mean survival function for females computed
from the 100 realizations of the stochastic process.

Figure 10.5. A Comparison of the Computed Survival Functions for the Deterministic and Stochastic Models

By inspecting Figure 10.5, it can be seen that the survival function for the deterministic model lies below the mean
survival function for females. This graph illustrates that the output of the deterministic model may differ significantly
from that of the stochastic model. In the graphs displayed above, the focus of attention has been the female population.
Similar graphs for the male population were observed, but they have not been displayed here because they were similar to
the graphs for the female population.

When attempting to forecast whether a small population of chimpanzee or that of another species would still exits 200
years into the future, the presence of outliers in a computer simulation experiment is troublesome, because it would
not be possible for a small population of chimps to grow to a total population size of over 9, 000 in a few years. Such
outliers occur when the initial age structure for females and males differs from that determined by the expected number of
offspring each year and the conditional probabilities that individuals of each age survive another year. In the experiment
with the deterministic model, the convergence to a constant age structure for females and males occurred between 50
and 100 years into the projection. Given this information, a decision was made to do an experiment with the stochastic
model using a slight modification of the age structures for females and males that arose as limits in the experiment with
the deterministic model. Presented in Table 10.2 are the summary statistics computed from the simulated data for total
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Figure 10.6. Graph of Selected Quantiles and the Min and Max for Females

population size in the experiment with the stochastic model.

Table 10.2. Summary Statistics for Total Population Size for Experiment 2 with the Stochastic Model


Min 314
Q25 334
Q50 354
Q75 369
Max 406


Unlike experiment 1 on total population size presented in Table 10.1, where the Max statistic is 9744, the Max statistic in
Table 10.2 is only 406 and would not be classified as an outlier when compared with the other statistics in Table 10.2. This
second experiment provides evidence that when the initial age structures for females and males as chosen as the greatest
integers in the stationary age structure of the deteministic are used as the initial age structures in experiments with the
stochastic model, then the stochastic model performs well in the sense that no outliers appeared in the simulated data on
total population size.

It is also of interest to display a graph of the of selected quantiles as well as the Min and Max age structures. Figure 10.6
contains the graph of interest for the female population.

The information conveyed in Figure 10.6 may be viewed as a forecast as to whether an existing population of chimps
will be the ancestors of a population of chimps in 200 years into the future. It is not possible to state with certainty
that an ancestral population will exist 200 years into the future. But, the statistical information in Figure 10.6 will give
conservationists ideas about the uncertainties of the existence of a future population. As can be seen from Figure 10.6 the
age structure of the quantiles Q25, Q50 and Q75 are zero only at the higher ages as one would expect. The age structure of
the Max is also well above zero except for the higher ages. It is very interesting to note that age structure of the Min is
zero beyond age 15. This result suggest that in some realizations of the process the population became extinct. But, on
the other hand, the statistical information in Table 10.2 on the total population size provides evidence that the population
would not become extinct during 200 years of evolution. The graph for males was very similar to that for females, and
has, therefore, been omitted.

It is well known that the class of stochastic models under consideration will converge to what is called a quasi-stationary
distribution, given that extinction does not occur. In the experiment just discussed, it is not clear as to whether the data
generated by the stochastic mode did converge to the quasi-stationary distribution, because 200 years of evolution is too
short a time for convergence to occur. A knowledge of the existence of a quasi-stationary distribution will, however,
provide a structure for dealing with the uncertainty that arises in Monte Carlo simulation experiments with stochastic
models.

The results just described provide convincing evidence that after all the parameter values have been assigned numerical
values in the deterministic and stochastic models, then the first step of an experiment would be that of using the determin-
istic model to get estimates of the initial age structures for the female and male populations for the stochastic model. In
the experiments reported in this section, a few seconds of running time of the deterministic were sufficient to compute
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200 years of evolution. The next step in the experiment would that of using the adjusted age structures that were esti-
mated in the experiment with the determinist model as initial age structures in an experiment with the stochastic model.
Even though outliers may be observed in the experiment with the deterministic model, it seems very unlikely that outliers
would be observed in an experiment with the stochastic model as suggested by observed results of experiment 2. The
running time to the completion of the experiment 2 with the stochastic model was in the range of 2 to 4 minutes. These
relatively short running times make it feasible to do several exploratory experiments before selecting an experiment with
an intention of publishing the results.
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