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Abstract

In this paper, we apply empirical likelihood method to infer for the regression parameters in the partial functional lin-
ear regression models based on B-spline. We prove that the empirical log-likelihood ratio for the regression parameters
converges in law to a weighted sum of independent chi-square distributions. Our simulation shows that the proposed em-
pirical likelihood method produces more accurate confidence regions in terms of coverage probability than the asymptotic
normality method.
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1. Introduction

With the rapid development of measurement apparatus and computers, it is possible that the data are collected over an
entire time period. In the literature, this kind of data are called functional data. One of the goal of functional data
analysis is to explain the variations of a dependent variable by using an independent functional variable. Functional linear
model is one of the most popular models to realize this. There are mainly two approaches for estimation and inference in
functional linear analysis. One of them is the functional principle component analysis (FPCA), which has the advantages
of interpretability and availability of a good estimate of the slope function (Cai and Hall (2006), Hall and Horowit (2007),
Shin (2009), Yuan and Cai (2010), Cai and Yuan (2012)). Another approach is the polynomial spline method. As a
commonly used method in nonparametric or semiparametric analysis, the polynomial spline method has been introduced
into functional data analysis by different authors (Ramsay and Silverman (1997), Cardot et al. (2003, 2005)). Ramsay and
Silverman (1997,2005) and Cardot et al. (2003) employed spline to estimate the functional slope and Cardot et al. (2005)
proposed a spline estimator for the functional coefficient in quantile regression.

To improve the accuracy of prediction and make the functional linear model more interpretable, sometimes other predictor
variables should be incorporated into the model. Especially, Zhang et al. (2007) introduced the partial functional linear
model and applied it to analyze the effect of women’s hormone on the total hip bone mineral density. Later, using
functional principle component analysis, Shin (2009) proposed a new estimator for the parameters. For estimators based
on B-spline in partial functional linear model, Zhou et al. (2016) established the asymptotic normality for the regression
parameters and the global convergence rate for the slope function.

The empirical likelihood (EL) was introduced by Owen (1990, 2001) to construct confidence region in a nonparametric
setting. As an analog of the parametric likelihood method, it has been extensively applied to different fields due to some
of the nice properties. As nonparametric method, it doesn’t require a prespecified distribution for the data. The confidence
region respects the range of the data and usually performs better than that based on asymptotic normality. Recently, the
EL method has been used for inferences under different models (Zhao (2010), Cheng et al. (2012)). In this paper, we
propose the empirical likelihood based confidence region for the regression parameters in partial functional linear model
and compare it with the ones based on asymptotic normality proposed in Zhou et al. (2016).

The paper is organized as follows. Section 2 presents the partial functional linear model and the asymptotic normality
based confidence region. In section 3, we develop the empirical likelihood confidence regions for the regression parame-
ters. Section 4 includes simulation studies to illustrate the advantage of the EL based confidence region over asymptotic
normality based confidence region in terms of coverage probability. The proof is presented in Section 5.
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2. Methods

2.1 Asymptotic Normality Method

The partial functional linear model is

Y = ZTβ +

∫ 1

0
X(t)α(t)dt + ϵ,

where Y is scalar response variable, Z is p-dimensional predictor variable and X(t) is a random process in L2([0, 1]).
We assume that the random error ϵ is independent of X(t) and Z, E(ϵ) = 0 and Var(ϵ) = σ2. The β is unknown
p-dimensional parameter vector and α(t) is an unknown slope function in L2([0, 1]). Denote ||ϕ1|| = (

∫ 1
0 ϕ

2
1dt)

1
2 and

< ϕ1, ϕ2 >=
∫ 1

0 ϕ1(t)ϕ2(t)dt, for ϕ1, ϕ2 ∈ L2([0, 1]).

Let 0 = t0 < t1 < · · · < tNn < tNn+1 = 1 be a knot sequence in [0, 1]. A polynomial spline of degree k (k ≥ 0) is a
function such that it is a polynomial of degree k on each interval [t j, t j+1] ( j = 0, 1, . . . ,Nn) and is k−1 times continuously
differentiable in [0, 1]. Let S k,Nn be the linear space spanned by splines with degree k and number of knots Nn. It is well
known that S k,Nn is of dimension kn = Nn + k + 1. Let B1, . . . , Bkn be the B-spline basis. For α(t) ∈ Ck+1([0, 1]), we can
approximate it by a unique linear combination of splines, that is,

α(t) ≈
kn∑

i=1

bkBk.

Let (Xi,Zi,Yi), i = 1, . . . , n be the data from the model. Then the model can be written approximately as

Yi = ZT
i β +

kn∑
s=1

bs < Xs, Bs > +ϵi, i = 1, . . . , n.

Then the least square estimators of b = (b1, . . . , bkn )T and β are the minimizers of the following loss function

n∑
i=1

(
Yi − ZT

i β −
kn∑

s=1

bs < Xs, Bs >
)2
.

The profile least square estimators are given by

β̂ = (ZT (I − A)Z)−1ZT (I − A)Y, b̂ = (BT B)−1BT (Y − Zβ̂),

where Y = (Y1, . . . , Yn)T , Z = (Z1, . . . ,Zn)T , B = [< Xi, B j >]1≤ j≤kn
1≤i≤n , A = B(BT B)−1BT . The estimators of α(t) and σ2 are

α̂(t) =
kn∑

s=1

b̂sBs, σ̂
2 =

1
n

∑
(Yi− < Xi, α̂ > −ZT

i β̂).

For two positive sequences {an}+∞n=1 and {bn}+∞n=1, an ≍ bn means an/bn is uniformly bounded away from infinity and zero.
To get the asymptotic normality, the following assumptions are required in Zhou et al. (2016).

(A1) There are positive constants M and 1
4(k+1) < r < 1

2 such that

h = max
0≤ j≤Nn

(t j+1 − t j) ≍ n−r, kn ≍ n−r, h/ min
0≤ j≤Nn

(t j+1 − t j) ≤ M.

(A2) E||X||4 < +∞ and the eigenvalues of the covariance operator Γ of X are strictly positive.

(A3) E|Z11|4 + · · · + E|Z1p|4 + E|ϵ1|4 < +∞.

(A4) E(Z1 j|X1) =< X1, g j > for some function g j ∈ L2([0, 1]), for j = 1, . . . , p. Besides, we assume g j, α ∈ Ck+1([0, 1]).

(A5) Let η1 = (η11, . . . , η1p)T with η1 j = Z1 j − E(Z1 j|X1). Assume Σ = Var(η1) is positive definite.

Under conditions (A1)-(A5), Zhou et al. (2016) established the asymptotic normality for the regression parameters and
global convergence rate for the slope function as follows.
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Lemma 1 Under condition (A1)-(A5), we have
√

n(β̂ − β0)⇒ N(0, σ2Σ−1),

||α̂ − α||2 = Op(
kn

n
+ k−2(k+1)

n ),

n
σ̂2 (β̂ − β0)T Σ̂−1(β̂ − β0)⇒ χ2

p,

where Σ = Var(Z1 − E(Z1|X1)), ”⇒ ” represents convergence in law and

Σ̂ =
1
n

ZT (I − A)Z.

Then the asymptotic (1 − γ)% confidence region is{
β :

n
σ̂2 (β̂ − β)T Σ̂−1(β̂ − β) ≤ χ2

p(1 − γ)
}
.

2.2 The Empirical Likelihood Method

Motivated by the estimation equation, we define

Wi(β) = Zi

(
Yi − ZT

i β − B∗Ti (BT B)−1BT (Y − Zβ)
)
,

where B∗Ti is the i-th row of the matrix B. The empirical likelihood at β is given by

Rn(β) = sup
{ n∏

i=1

nπi|
n∑

i=1

πiWi = 0,
n∑

i=1

πi = 1, πi ≥ 0
}
.

By Lagrange method as in Owen(2001), the solution is

πi =
1
n

1
1 + λT Wi

,

where λ satisfies
1
n

n∑
i=1

Wi

1 + λT Wi
= 0. (1)

To demonstrate Theorem 1 we need the following lemmas.

Lemma 2 Under conditions (A1)-(A5), we have

1
√

n

n∑
i=1

Wi(β0)⇒ N(0, σ2Σ−1).

Proof. Note that

1
√

n

n∑
i=1

Wi =
1
√

n

n∑
i=1

Zi

(
Yi − ZT

i β − B∗Ti (BT B)−1BT (Y − Zβ)
)

=
1
√

n
Z
(
Y − Zβ − BT (BT B)−1BT (Y − Zβ)

)
=

1
√

n
Z
(
(I − A)Y − (I − A)Zβ

)
=

1
√

n
Z(I − A)ZT

(
(Z(I − A)ZT )−1Z(I − A)Y − β

)
=

1
n

Z(I − A)ZT √n(β̂ − β).
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By the Lemma 1 and Theorem 1 in Zhou et al. (2016), the last term converges to N(0, σ2Σ−1). �

Lemma 3 Under conditions (A1)-(A5), we have

1
n

n∑
i=1

Wi(β0)Wi(β0)T P−→ σ2Σ1.

Proof. Firstly, we rewrite the Wi below

Wi(β) = Zi

(
Yi − ZT

i β − B∗Ti (BT B)−1BT (Y − Zβ)
)

= Zi

(
Yi − ZT

i β − B∗Ti (BT B)−1BT (Y − Zβ̂ + Z(β̂ − β))
)

= Zi

(
Yi − ZT

i β − B∗Ti b̂ − B∗Ti (BT B)−1BT Z(β̂ − β)
)

= Zi

(
Yi − ZT

i β− < Xi, α̂ > −B∗Ti (BT B)−1BT Z(β̂ − β)
)

= Zi

(
Yi − ZT

i β− < Xi, α̂ > −B∗Ti (BT B)−1BT Z(β̂ − β)
)

= Zi

(
Yi − ZT

i β− < Xi, α > − < Xi, α̂ − α > −B∗Ti (BT B)−1BT Z(β̂ − β)
)

= Zi

(
ϵi− < Xi, α̂ − α > −B∗Ti (BT B)−1BT Z(β̂ − β)

)
.

Then

1
n

n∑
i=1

WiWT
i =

1
n

n∑
i=1

ZiZT
i

{
ϵ2i + < Xi, α̂ − α >2 −2 < Xi, α̂ − α > ϵi

+B∗Ti (BT B)−1BT Z(β̂ − β)(β̂ − β)T ZT (BT B)−1B∗i
−2B∗Ti (BT B)−1BT Z(β̂ − β)ϵi
+2B∗Ti (BT B)−1BT Z(β̂ − β) < Xi, α̂ − α >

}
= Rn1 + Rn2 + Rn3 + Rn4 + Rn5 + Rn6.

By the law of large number and the fact ϵi and Zi are independent, we have

Rn1 =
1
n

n∑
i=1

ZiZT
i ϵ

2
i

P−→ E(ϵ21 Z1ZT
1 ) = σ2Σ1.

Next, we show the rest terms converge to zero in probability.

E < Xi, α̂ − α >2≤ E||α̂ − α||2||Xi||2 ≤
√

E||α̂ − α||4E||Xi||4

By Lemma 1 and (A2), we have
< Xi, α̂ − α >2= op(1),

hence Rn2 = op(1) and Rn3 = op(1).

Notice that by Theorem 1 and Lemma 1 in Zhang et al. (2016),

B∗Ti (BT B)−1BT Z(β̂ − β) =
1

n
√

n
B∗Ti

(BT B
n

)−1
BT Z
√

n(β̂ − β)

≍ 1
n
√

n
B∗Ti BT Z.
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By (A2) and (A4), one has

E||B∗Ti BT Z||2 = E
∣∣∣∣∣∣∣∣∣∣ n∑

l=1

kn∑
j=1

< B j, Xl >< B j, Xi > ZT
l

∣∣∣∣∣∣∣∣∣∣
2

≤
n∑

l=1

kn∑
j=1

E
∣∣∣∣∣∣∣∣∣∣ < B j, Xl >< B j, Xi > ZT

l

∣∣∣∣∣∣∣∣∣∣
2

≤
n∑

l=1

kn∑
j=1

E||B j||2||Xl|| ||Xi|| ||ZT
l ||2

≤ Cnkn,

where ||.||2 is the Euclidean norm and C is some constant.

Hence,

B∗Ti (BT B)−1BT Z(β̂ − β) = Op(
kn√

n
) = op(1).

Then Rn4 = Rn5 = Rn6 = op(1). �

Lemma 4 Under the assumption (A1)-(A5), one has

max
1≤i≤n
||Wi||2 = op(

√
n), ||λ||2 = Op(n−

1
2 ).

Proof. By the proof of Lemma 3, we have

ϵi− < Xi, α̂ − α > −B∗Ti (BT B)−1BT Z(β̂ − β) = Op(1).

And since 0 < Var(Z1) < +∞, then max1≤i≤n ||Zi||2 = op(
√

n) by Owen (2001), which completes the proof.

�

Theorem 1 Suppose (A1)-(A5) hold. Then at the true β0, we have

−2 logRn(β0)⇒ UTΣ0U,

where ” ⇒ ” means ”convergence in distribution”, U ∼ N(0, Ip), Σ0 = Σ
1
2Σ−1

1 Σ
1
2 , Σ = Var(Z1 − E(Z1|X1)) and Σ1 =

E(Z1ZT
1 ).

Proof. By (1), Lemma 2 and Lemma 4, we have

λ(β0) =
(1
n

n∑
i=1

WiWT
i

)−1 1
n

n∑
i=1

Wi + Op(
1
√

n
).

Then by Lemma 3, it yields the following Taylor expansion

−2 logRn(β0) =

n∑
i=1

λ(β0)Wi(β0) + op(1)

=

( 1
√

n

n∑
i=1

Wi

)T (1
n

n∑
i=1

WiWT
i

)−1( 1
√

n

n∑
i=1

Wi

)
+ op(1)

⇒ GTΣ−1
1 G,

where G ∼ N(0,Σ−1). The proof of Theorem 1 is complete. �

The limiting distribution of the empirical likelihood ratio is not the usual chi-square distribution. Actually, it is a weighted
sum of independent chi-square distributions with degree of freedom 1. However, the confidence regions based on the this
empirical likelihood ratio still have the advantages of having natural shape and respecting the range of β. In application,
Σ and Σ1 are unknown and we propose the following consistent estimators

Σ̂ =
1
n

n∑
i=1

ZiZT
i , Σ̂1 =

1
n

ZT (I − A)Z. (2)
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To construct confidence regions, we use the Monte Carlo method to simulate the limiting distribution and compute the
desired quantile.

3. Simulation Study

In this section, we present simulation results to compare the finite sample behaviors of empirical likelihood(EL) method
and the asymptotic normality(NA) method in terms of covarage probability of the confidence regions. As in Lian (2011),
we generate Xi by the following method,

Xi =

50∑
j=1

ξi j j−1ϕ j(t),

where ϕ1(t) = 1, ϕ j(t) =
√

2 cos(( j − 1)πt) for j ≥ 2 and ξi j are iid with uniform distribution U[−
√

3,
√

3]. We simulate
data based on the following three models, which are similar to the models in Zhou et al.(2016).

Model 1: Yi = Zi1 + Zi2 +
∫ 1

0 Xi(t)α(t)dt + ϵi, α(t) =
√

2
2 +
∑50

j=2 4 j−2ϕ j(t). (Zi1,Zi2) are from bivariate normal with zero
mean vector, Var(Zi1) = 0.9, Var(Zi2) = 0.5 and Cov(Zi1,Zi2) = 0.2. The error follows N(0, 0.36) and skewed normal
distribution with mean 0, standard deviation 1 and skewness parameter 5.

Model 2: Yi = 5Zi1 − 1.7Zi2 +
∫ 1

0 Xi(t)α(t)dt + ϵi. We generate (Zi1,Zi2) from standard bivariate normal distribution and
use the following functional coefficient,

α(t) = 2 sin(0.5πt) + 4 sin(1.5πt) + 5 sin(2.5πt).

The error follows N(0, 1) and skewed normal distribution with mean 0, standard deviation 1 and skewness parameter 5.

Model 3: Yi = 2Zi1 − Zi2 +
∫ 1

0 Xi(t)α(t) + ϵi, where

Zi1 =

∫ 1

0
Xi(t)α1(t)dt + ϵi1, Zi2 =

∫ 1

0
Xi(t)α2(t)dt + ϵi2,

α1(t) =
∑50

j=1 b1 jϕ j(t), α2(t) =
∑50

j=1 b2 jϕ j(t), b11 = 1, b21 = −0.5, b1 j = 2 j−2, b2 j = 3 j−2 for j ≥ 2. The random error
ϵi1 ∼ N(0, 0.25) and ϵi2 ∼ N(0, 0.64). The random model error ϵi ∼ N(0, 0.25) and skewed normal distribution with mean
0, standard deviation 0.5 and skewness parameter 5.

We use B-spline basis with equally spaced knots and degree 2. The number of knots are selected by the ”leave-one-out”
cross-validation(Rice and Silverman 1991). We compute the confidence regions for β based on the EL method and the
NA method. To simulate the limiting distribution in Theorem 1, we firstly estimate the unknown variance and second
moment by (2) and then use Monte Carlo method to simulate the (1 − γ) quantiles. The sample sizes are 30, 50, 80 and
150, representing small, moderate and large sample sizes. The coverage probability is computed by 1000 simulation runs,
with nominal confidence level 0.90 and 0.95 respectively.

The simulation results under Model 1 are summarized in Table A1, with results under Model 2 and Model 3 in Table
A2 and Table A3 respectively. There is a similar pattern in all three tables. As the sample size increases, the coverage
probabilities increase towards the nominal level, regardless of the error type. However, the EL method outperforms the
NA method, since the coverage probabilities based on EL method is larger and closer to the nominal level than that of the
NA method. Hence, the EL method yields more accurate confidence regions than the NA method.

4. Discussion

In many cases, it’s well-known that the empirical likelihood method can produce shorter confidence interval and have
higher coverage probability than the usual asymptotic normality method(Owen(1990, 2001), Cheng et al. 2012). In
the current paper, we employed empirical likelihood method to construct confidence interval(region) for the regression
parameters in the partial functional linear regression models based on B-spline. We derived the limiting distribution of
the empirical log-likelihood ratio for the regression parameters, a weighted sum of independent chi-square distributions.
In practice, the weights are unknown, we provide a method to estimate them. In our simulation, as sample size increases,
the empirical coverage probability getting closer to the nominal one, which confirms our theory; besides, compared to the
asymptotic normality method, the proposed empirical likelihood method have higher coverage probability, which shows
the advantage of our method.
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Appendix A

Table A1. Coverage Probabilities Under Model 1

Normal Error Skewed Normal Error
Sample size n 1 − γ EL NA EL NA
30 0.90 0.793 0.760 0.779 0.763

0.95 0.867 0.841 0.854 0.825
50 0.90 0.840 0.830 0.831 0.822

0.95 0.909 0.897 0.895 0.890
80 0.90 0.843 0.843 0.862 0.853

0.95 0.914 0.906 0.922 0.915
150 0.90 0.895 0.889 0.902 0.909

0.95 0.945 0.934 0.952 0.962

Table A2. Coverage Probabilities Under Model 2

Normal Error Skewed Normal Error
Sample size n 1 − γ EL NA EL NA
30 0.90 0.776 0.752 0.770 0.746

0.95 0.850 0.819 0.846 0.820
50 0.90 0.831 0.818 0.821 0.802

0.95 0.907 0.897 0.888 0.876
80 0.90 0.875 0.875 0.860 0.858

0.95 0.934 0.929 0.914 0.909
150 0.90 0.889 0.883 0.874 0.867

0.95 0.939 0.937 0.925 0.917

Table A3. Coverage Probabilities Under Model 3

Normal Error Skewed Normal Error
Sample size n 1 − γ EL NA EL NA
30 0.90 0.770 0.744 0.786 0.760

0.95 0.839 0.826 0.832 0.816
50 0.90 0.841 0.829 0.837 0.834

0.95 0.906 0.893 0.879 0.877
80 0.90 0.873 0.862 0.859 0.856

0.95 0.926 0.921 0.918 0.915
150 0.90 0.889 0.888 0.879 0.874

0.95 0.941 0.927 0.933 0.919

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

142


