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Abstract

Variable selection or subset selection is an important step in the process of model fitting. There are many ways to select
the best subset of variables including Forward selection, Backward elimination, etcetera. Ordinary least squares (OLS) is
one of the most commonly used methods of fitting the final model. Final sub-model can perform poorly if the variable
selection process failed to choose the right number of variables. This paper gives a new theorem and a mathematical proof
to illustrate the reason for the poor performances, when using the least squares method after variable selection.
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1. Introduction

The use of OLS for multiple linear regression models after variable selection can results in poor models. First, we describe
the Multiple Linear Regression (MLR) model in section 1. In section 2, we discuss the variable selection and in section
3 we introduce a new theorem and its proof to illustrate the reason for the poor performances of some OLS sub-models.
This paper closely follows the author’s related work Pelawa Watagoda (2017), Pelawa Watagoda and Olive (2018), Pelawa
Watagoda and Olive (2018a).

1.1 Multiple Linear Regression Model

Suppose that the response variable Yi and at least one predictor variable xi, j are quantitative with xi,1 ≡ 1. Let xT
i =

(xi,1, ..., xi,p) = (1 uT
i ) and β = (β1, ..., βp)T where β1 corresponds to the intercept. Then the multiple linear regression

(MLR) model is
Yi = β1 + xi,2β2 + · · · + xi,pβp + ei = xT

i β + ei (1)

for i = 1, ..., n. This model is also called the full model. Here n is the sample size, and assume that the random variables
ei are independent and identically distributed (iid) with variance V(ei) = σ2.

In matrix notation, these n equations become
Y = Xβ + e (2)

where Y is an n × 1 vector of response variables, X is an n × p matrix of predictors, β is a p × 1 vector of unknown
coefficients, and e is an n × 1 vector of unknown errors.


y1
y2
...

yn

 =

1 x12 x13 . . . x1p

1 x22 x23 . . . x2p
...
...

...
. . .

...
1 xn2 xn3 . . . xnp

 ×

β1
β2
...
βp

 +

e1
e2
...

en

 (3)

The ith fitted value Ŷi = xT
i β̂ and the ith residual ri = Yi − Ŷi where β̂ is an estimator of β. Ordinary least squares (OLS)

is often used for inference if n/p is large.

It is often convenient to use the centered response Z = Y − Y where Y = Y1, and the n × (p − 1) matrix of standardized
nontrivial predictors W = (Wi j). For j = 1, ..., p− 1, let Wi j denote the ( j+ 1)th variable standardized so that

∑n
i=1 Wi j = 0

and
∑n

i=1 W2
i j = n. Note that the sample correlation matrix of the nontrivial predictors ui is Ru =WT W/n. Then regression

through the origin is used for the model
Z =Wη + e (4)

where the vector of fitted values Ŷ = Y + Ẑ.

There are many methods for estimating β, including forward selection with OLS, principal components regression (PCR),
partial least squares (PLS) due to Wold (1975), lasso due to Tibshirani (1996), and ridge regression (RR): see Hoerl and
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Kennard (1970). Also, there are methods like variant of relaxed lasso that applies OLS to a constant and the predictors that
had nonzero lasso coefficients, which is the LARS-OLS hybrid estimator of Efron et al. (2004), also called the relaxed
lasso (ϕ = 0) estimator by Meinshausen (2007).

These six methods produce M models and use a criterion to select the final model (e.g., Cp or 10-fold cross validation
(CV)). The number of models M depends on the method. Lasso and ridge regression have a parameter λ. When λ = 0,
the OLS full model is used. These methods also use a maximum value λM of λ and a grid of M λ values 0 ≤ λ1 < λ2 <
· · · < λM−1 < λM where often λ1 = 0. For lasso, λM is the smallest value of λ such that η̂λM

= 0. Hence η̂λi
, 0 for i < M.

For forward selection, PCR, and PLS, M ≤ p. See James et al. (2013, ch. 6).

Consider choosing η̂ to minimize the criterion

Q(η) =
1
a

(Z −Wη)T (Z −Wη) +
λ1,n

a

p−1∑
i=1

|ηi| j (5)

where λ1,n ≥ 0, a > 0, and j > 0 are known constants. Then j = 2 corresponds to ridge regression, j = 1 corresponds
to lasso, and a = 1, 2, n, and 2n are common. The residual sum of squares RS S (η) = (Z −Wη)T (Z −Wη), and λ1,n = 0
corresponds to the OLS estimator η̂OLS = (WT W)−1WT Z.

2. Variable Selection

Variable selection is the search for a subset of predictor variables that can be deleted with little loss of information if
n/p is large, and so that the model with the remaining predictors is useful for prediction. Following Olive and Hawkins
(2005), a model for variable selection can be described by

xTβ = xT
S βS + xT

EβE = xT
S βS (6)

where x = (xT
S , x

T
E)T , xS is an aS × 1 vector, and xE is a (p − aS ) × 1 vector. Given that xS is in the model, βE = 0

and E denotes the subset of terms that can be eliminated given that the subset S is in the model. Let xI be the vector of
a terms from a candidate subset indexed by I, and let xO be the vector of the remaining predictors (out of the candidate
submodel). Suppose that S is a subset of I and that model (5) holds. Then

xTβ = xT
S βS = xT

S βS + xT
I/Sβ(I/S ) + xT

O0 = xT
I βI (7)

where xI/S denotes the predictors in I that are not in S . Since this is true regardless of the values of the predictors, βO = 0
if S ⊆ I.

Forward selection forms a sequence of submodels I1, ..., IM where I j uses j predictors including the constant. Let I1 use
x∗1 = x1 ≡ 1: the model has a constant but no nontrivial predictors. To form I2, consider all models I with two predictors
including x∗1. Compute Q2(I) = S S E(I) = RS S (I) = rT (I)r(I) =

∑n
i=1 r2

i (I) =
∑n

i=1(Yi − Ŷi(I))2. Let I2 minimize Q2(I)
for the p − 1 models I that contain x∗1 and one other predictor. Denote the predictors in I2 by x∗1, x

∗
2. In general, to

form I j consider all models I with j predictors including variables x∗1, ..., x
∗
j−1. Compute Q j(I) = rT (I)r(I) =

∑n
i=1 r2

i (I) =∑n
i=1(Yi−Ŷi(I))2. Let I j minimize Q j(I) for the p− j+1 models I that contain x∗1, ..., x

∗
j−1 and one other predictor not already

selected. Denote the predictors in I j by x∗1, ..., x
∗
j . Continue in this manner for j = 2, ...,M. Often M = min(⌈n/J⌉, p) for

some integer J such as J = 5, 10, or 20. Here ⌈x⌉ is the smallest integer ≥ x, e.g., ⌈7.7⌉ = 8.

Consider the six methods forward selection with OLS, PCR, PLS, lasso, relaxed lasso, and ridge regression. When there
is a sequence of M submodels, the final submodel Id needs to be selected. Let the candidate model I contain a terms,
including a constant. For example, let xI and β̂I be a × 1 vectors for the methods excluding PCR and PLS. Then there are
many criteria used to select the final submodel Id.

3. OLS Sub Model Theorem and Proof

This section will prove Theorem 1 bellow and discuss its implications.

Theorem 1. Suppose the usual linear model Y = Xβ + e, with E(Y) = Xβ and E(e) = 0.

Where, Cov(Y) = Cov(e) = σ2I.

Define X and β as follows;

X =
[

XI Xo

]
, β =

[
βI
βo

]
,
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Where XI is the vector of a terms from a candidate subset indexed by I, Xo is vector of the predictors that are out of the
candidate submodel and if S * I then,

E(β̂I) = βI +
[
XT

I XI

]−1
XT

I Xoβo

and

Cov(β̂I) = σ
2
(
XT

I XI

)−1
.

Proof. Assume this is an arbitrary submodel, and I does not contain S. Then,

Xβ = XIβI + Xoβo where βI =
[
XT

I XI

]−1
XT

I Y = AY.

Now consider the expected value of β̂I ,

E(β̂I) = E
([

XT
I XI

]−1
XT

I Y
)

= E (AY)

= AE (Y) = AXβ
= A
(
XIβI + Xoβo

)
=
[
XT

I XI

]−1
XT

I
(
XIβI + Xoβo

)
=
[
XT

I XI

]−1
XT

I XIβI +
[
XT

I XI

]−1
XT

I Xoβo

= βI +
[
XT

I XI

]−1
XT

I Xoβo , βI

Now consider Cov(β̂I),

Cov(β̂I) = Cov(AY) = ACov(Y)AT

= Aσ2IAT = σ2 AAT

= σ2
([

XT
I XI

]−1
XT

I

) ([
XT

I XI

]−1
XT

I

)T
= σ2

[
XT

I XI

]−1
XT

I XI

([
XT

I XI

]−1
)T

= σ2
([

XT
I XI

]T )−1

= σ2
(
XT

I XI

)−1
.

�

According to Theorem 1, when S * I, i.e. when the final submodel does not contain enough predictors, the E(β̂I) , βI ,
and will produce a poor final submodel. On the other hand, following equations 6 and 7, when the submodel contains the
set of predictors S , β0 = 0. Then E(β̂I) = βI +

[
XT

I XI

]−1
XT

I Xoβo = β̂I .

4. Conclusions

This worked mathematically showed the reason for ordinary least squares to perform poorly when the submodel does not
contain enough predictors.

Acknowledgements

Author thanks Dr. David J. Olive and Dr. Hasthika S. Rupasinghe Arachchige Don for guidance and support delivered to
successfully complete this paper.

42



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 8, No. 1; 2019

References

Efron B., Hastie, T., Johnstone, I., & Tibshirani R. (2004). Least Angle Regression. The Annals of Statistics, 32(2),
407-451.

Hoerl, A. E., & Kennard, R. (1970). Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics,
12, 55-67.

Meinshausen, N. (2007). Relaxed Lasso. Computational Statistics & Data Analysis, 52, 374-393.

Olive, D. J., & Hawkins, D. M. (2005). Variable Selection for 1D Regression Models. Technometrics, 47, 43-50.

Pelawa, W. L. C. R. (2017). Inference After Variable Selection. (PhD Thesis), Southern Illinois University, USA, at
(http://lagrange.math.siu.edu/Olive/slasanthiphd.pdf).

Pelawa, W. L. C. R., & Olive, D. J. (2018). Inference For Multiple Linear Regression After Model or Variable Selection
(Preprint) (http://lagrange.math.siu.edu/Olive/ppvsinf.pdf)

Pelawa, W. L. C. R., & Olive, D. J. (2018a). Comparing Shrinkage Estimators With Asymptotically Optimal Prediction
Intervals (Preprint) (http://lagrange.math.siu.edu/Olive/pppicomp.pdf)

Tibshirani, R. (1996). Regression Shrinkage and Selection Via the Lasso. Journal of the Royal Statistical Society, B(58),
267-288.

Wold, H. (1975). Soft Modelling by Latent Variables: the Nonlinear Partial Least Squares (NIPALS) Approach. Perspec-
tives in Probability and Statistics, Papers in Honor of M.S. Bartlett, ed. 117-144.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

43


