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Abstract

The objective of this research is to develop a fast, simple method for detecting and replacing extreme spikes in high-
frequency time series data. The method primarily consists of a nonparametric procedure that pursues a balance between
fidelity to observed data and smoothness. Furthermore, through examination of the absolute difference between original
and smoothed values, the technique is also able to detect and, where necessary, replace outliers with less extreme data.
Unlike other filtering procedures found in the literature, our method does not require a model to be specified for the data.
Additionally, the filter makes only a single pass through the time series. Experiments show that the new method can be
validly used as a data preparation tool to ensure that time series modeling is supported by clean data, particularly in a
complex context such as one with high-frequency data.
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1. Introduction

An important topic in time series analysis is how to deal with data that consist of on-the-minute, hourly, daily or weekly
observations. Among the reasons for this interest is that high-frequency time series inevitably show unexpected spikes
(peaks and troughs) that appear to be grossly inconsistent with neighboring values. Since occasional large disturbances
may have serious consequences for model identification and parameter estimation in time series, it is important to attenuate
their adverse effects before the data are used. This paper presents a new filter intended to remove or reduce potentially
troublesome behavior in a time series, even though, in the preliminary stage, we ignore the specific model that is eventually
to be applied to the data.

Let pt ≥ 0 be the observed values at period t and n be the length of the time series pt, t = 1, 2, · · · , n. We assume that, for
each point of time, pt is given by

pt = p̂t + at (1)

where at is a random variable with zero mean and finite variance σ2
a. The values p̂1, p̂2, · · · , p̂n lie on a function (the

reference curve) that should be flexible enough to represent a wide range of curvatures, but that should also be as smooth
as possible. In this article, we detect extreme spikes (or outliers) by examining the absolute difference between observed
values and the corresponding point in the reference curve. Therefore, peaks or troughs that are too high are considered
anomalous and become candidates for an appropriate statistical treatment. However, only one pass is made through the
data because of the length of the time series. The reference curve is obtained by solving the following problem: given a
real λ>0 and a positive integer m, find the values of p̂= ( p̂1, · · · , p̂n) that minimize the convex combination:
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where ∇ denotes the difference ∇p̂t = p̂t − p̂t−1. The function (2) has two terms: goodness of fit and smoothness. F
(̂
p
)

measures fidelity to the data in terms of the squared deviations between smoothed and observed values. In particular, Fm

is the maximum of F (̂p), which occurs when all m-th differences are equal to zero. In this case, the reference curve is
determined by fitting to p a polynomial of degree (m−1) by the least squares. For example, if m = 1 then Fm = n · var(p),
where var(p) is the variance of the observed values. The term S

(̂
p
)

expresses the smoothness as the sum of squares of
m-th differences between smoothed values. The constant S m is the maximum of S (̂p), which occurs when p̂t = pt,∀t,
implying that S m =

∑n
t=m+1(∇m pt)2. The constants Fm and S m re-scale Q(̂p,m, λ) to the [0, 1] interval, so that smoothness

16



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 8, No. 1; 2019

and goodness-of-fit are balanced consistently. In short, the normalized linear filter (2)-(3) can be considered a variant
of the Whittaker-Henderson graduation. See Knorr (1984). Central to (2) is the trade-off between F (̂p), which relates
to the goodness-of-fit and S (̂p), relating to the smoothness. The equilibrium between goodness of fit and smoothness is
achieved by a reasoned choice of the smoothing constant λ. If λ→ 0, then the dominant component will be the squared
Euclidean norm ∥̂p−p∥2 and p̂ will increasingly resemble the original values, no matter how irregular p may be. As λ→1,
smoothed prices approach the polynomial p̂t =

∑m−1
j=0 b jt j t = 1, 2, · · · , n regardless of the goodness-of-fit component. A

very simple choice is λ = 0.5, which implies that fidelity and smoothness are equally balanced. Apart from these three
cases, the solution of (2) is a serious concern because the degree to which we are justified in sacrificing fidelity in order to
obtain smoothness varies greatly from one problem to another. See Whittaker (1923). The paper is organized as follows:
in the next section, we present the normalized linear filter (NLF) together with computation of the thresholds beyond
which outliers are detected. The effectiveness of the proposed method is assessed in section 3 by comparing the results of
SARIMA models fitted to original time series with those of the same models fitted to filtered time series. The final section
discusses our findings and points out some improvements for further applications.

2. Optimal Smoothing

The smoothness component of the NLF smoother can be rewritten as

∇m p̂t =

n∑
j=1

Dm,t, j p̂ j, t = 1, 2, · · · , (n − m) , (4)

where Dm is an m-th differencing matrix with (n − m) rows and n columns

Dm =
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. (5)

The matrix Dm transforms a column vector into the column of m-th differences of the elements in thew vector. A typical
row of Dm contains n − (m + 1) zeros and the 1 × (m + 1) vector dm = (d0, d1, · · · , dm) starting from column t and ending
with column t + m + 1. The elements dm are the successive binomial coefficients of order m with alternating signs

d j = (−1) j
(
m
j

)
, j = 0, 1, 2, · · · ,m . (6)

The nonzero elements of Dm form a diagonal band from the upper left to the lower right. Moreover, thanks to Dm, (2) can
be presented as
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To minimize Q(̂p,m, λ), its derivatives with respect to the p̂ have to be equated to zero
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which leads to [In + β(Dt
mDm)]̂p = p with β = [λ(1 − λ)−1(Fm/S m)] where In is the (n × n) identity matrix of order n. The

second order condition for a minimum of (7) is

∂2Q
(̂
p
)

∂p̂ ∂p̂t
= 2

(1 − λ)
Fm

[
In + β

(
Dt

mDm

)]
being positive definite . (9)

It is easy to show that the matrix A =
[
In + β

(
Dt

mDm
)]

is a symmetrical and positive definite and therefore p̂ = A−1p. The
computation of p̂ is simple as long as the scheme described above is applied to short time series, but the solution appears
problematic for long time series. However, there are fewer difficulties than at first appear. Indeed, several authors, have
devised very efficient computing software by exploiting the characteristics of the matrices involved. See, for example,
Garcia (2010) and Cornea-Madeira (2017).

2.1 Choice of the Smoothing Constant

There are various techniques for choosing the smoothing constant. For example, Brooks et al. (1988) applied the general-
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ized cross-validation (GCV) score suggested in Golub & Wahba (1979). Guerrero (2008) outlines a new formalization of
the concept of trend to choose the smoothing constant. Frasso & Eilers (2015) proposes the use of two curves for finding
the appropriate value of λ automatically. The problem that both methods have is that the optimal value leads to substantial
under (over)-smoothing and the resulting long-term pattern tends to have too many (or too few) wiggles that often show
up in the wrong places. Other techniques, such as Morozov’s discrepancy principle (see, for example, O’Leary (2001))
often work well, but produce quite unexpected results when their outcome is inaccurate. These considerations lead us to a
direct calculation of the smoothing constant. As in Knorr (1984), our point of departure is an appealing analogy between
λ ∈ [0, 1] and the confidence level of a statistical test where 0.50 or 0.60 are of little interest, but levels such as 0.95 or 0.99
may be important in terms of identifying the appropriate result of a test. To achieve a reasonable degree of smoothness,
the recommended constant is the weighted average:

λ̂ =
Fm ∗ 0.95 + S m

100 (Fm + S m)
. (10)

The rationale is that when a time series behaves like a polynomial of degree (m−1), then Fm is near its maximum (and
hence S m → 0), we need less smoothness; when the reference values are very similar to the observations (that is, Fm ≈ 0),
we need more smoothness. Therefore, strategy (10) can provide adequate smoothness without producing unnecessarily
large deviations from the observed values. At first glance, the interval [0.95, 1] may appear to be narrow, but it is not,
because of the extreme reactivity of the NLF toward λ.

2.2 Detection of Extreme Spikes

Let ât = pt − p̂t, t = 1, 2, · · · , n be the absolute difference between observed values and points on the reference curve. We
look for deviations ât that fall outside the following range

µ̃ − Kσ̃ < ât < µ̃ + Kσ̃ t = 1, 2, · · · , n (11)

where µ̃ is a measure of central tendency, σ̃ is a measure of scale and K is a positive multiplier. Since high-frequency
time series often contain atypical values, the two statistics need to be robust to the presence of outliers. In this regard, in
our experiments, we considered two well-known robust statistics. The measure of location is chosen to be the Sen rank
weighted mean (Sen (1964))

S ν =

[(
ν

2 j + 1

)]−1 ν∑
i=1

(
i − 1

j

)(
ν − i

j

)̂
a(i) , (12)

where â(i) is the i-order statistic with 0 < j< (ν−1)/2. Our choice is j= 2. As a robust statistic of scale we use the first
quartile of the sorted pair-wise absolute differences:

Qν = 2.21914
{
| |̂a|i − |̂a| j |; i < j, |a|i, |a| j > 0

}
(q)

, (13)

where q=
(

n
2

)
/4. See Rousseeuw & Croux (1993). If ât surpasses the warning limits in (11), then the corresponding value

is considered an extreme spike. This, however, does not imply that the spike should automatically be eliminated. The
presence of sharp peaks and/or narrow valleys is a rule rather than an exception in high-frequency time series. If too many
of them are deleted and/or imputed, by using an average of the remaining data for example, then prediction modes may
be applied to an unrealistic time series. It would be better to down-weight dubious observations rather than reject them.
We recommend replacing a suspect spike pt with a linear combination of observed and smoothed values

p̃t = γpt + (1 − γ) p̂t 0 < γ < 1 . (14)

In so doing, we preserve the peak or trough nature of the data point. In other words, we assume that the direction of the
changes is compatible with the local behavior of the time series, but the magnitude is substantially larger than what is
expected under standard conditions. The NLF has three parameters that need to be specified: K, m and γ. We note that
the choice of m is not related to the degree of non-stationarity of a stochastic process or even to the representation of a
trend by an algebraic curve. Rather, m is associated with the leveling necessary to correct the oscillations: the higher the
degree of the polynomial in the smoothness component, the greater is the danger of getting misleading results when using
smoothed values. The appropriate value of m, K and γ must be determined experimentally.

2.3 Segmentation

While NLF is a useful tool, it can be slow and inefficient if the time series is so long that the robust statistics of location
and scale used in (12)-(13) completely loose their representativeness with respect to the various “local behavior” of time
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data. A possible strategy that could be used is a breakdown of long time series into contiguous non-overlapping periods (or
segments) and separate, indipendent application of the NLF filter to each segment. Let nb be the number of segments and
let nc = ⌊n/nb⌋ be the common length of the segments. The pairs of integers [bi = 1 + (i − 1)nc, ei = inc], i = 1, 2, · · · , nb

indicate the start and the end of each segment, respectively. Note that if n(ubnc) < n, then nb is set equal to n. NLF can
now be applied to each segment pbi , pbi+1, · · · , pei , i = 1, 2, · · · , nb. Clearly, the segments do not have common elements
and together constitute the original time series. In many applications, the calculation of the number of segments and the
determination of the boundaries is formulated as an optimization problem. There are various methods and systems that
can be used to solve the problem of dividing a time series into periods of similar behavior. See, for example, Keogh et al.
(2004). Given the variety of requirements that can be proposed in any segmentation procedure and the lack of specific
esperiences we restrict our attention to a mere subdivision of the time series into a prefixed number of segments of equal
size. The combination of optimal smoothing and extreme spikes detection described in this section has been implemented
in an R script which is available from the authors upon request.

3. Monte Carlo Analysis

When a filter is applied to a time series, an obvious question arises: how effective is the filter? This section reports
a simulation study on the performance of the NLF detection/correction method in a specific example of high-frequency
time series (hourly electricity prices) analyzed in the framework of seasonal ARIMA models. Accuracy is assessed relative
to the number and size of observations being classified, correctly or wrongly, as outliers. See Janczura et al. (2013).

3.1 SARIMA Models

We analyze hourly time series of electricity spot prices from 1am on Friday, 1 January 2016 to 12 pm on Sunday, 31
December 2017, one for each macro-region of the Italian electricity market GME, 2018. Every time series is n = 17544
hours long. The dominant seasonality is s = 24. For each time series we will identify and estimate a SARIMA(p, d, q) ×
(P,D,Q)s model

pt =
[
ϕ∗(B)

]−1 [
θ∗(B) at

]
, (15)

where at, t = 1, 2, · · · , are mutually uncorrelated random variables with zero mean and finite variance σ2
a. The symbol B

denotes the backward shift operator and ϕ∗(B) and θ∗(B) are polynomialsϕ∗(B) =1−ϕ∗1B−ϕ∗2B2−· · ·−ϕ∗p∗Bp∗

θ∗(B) =1−θ∗1B−θ∗2B2−· · · − θ∗q∗Bq∗
, (16)

where p∗ = p + sP, q∗ = q + sQ are the orders of the AR and MA polynomials, respectively. If all the roots of ϕ∗(B)
are greater than one in absolute value, then the process is stationary. What is more, if all roots of θ∗(B) are greater
than one in modulus, with no single root common to both polynomials, the process is invertible. We do not expect to
obtain accurate results in terms of fitting ability. One reason for this is that , although hourly electricity prices exhibit
numerous seasonalities ranging from daily to weekly to monthly, our study only considered s = 24. Moreover, we
have ignored many factors that could act as external regressors: holiday effects, temperatures, alternative energy sources
and heteroskedasticity. We also ignored the interconnections used for managing possible congestion occurring in the
electricity market. Nonetheless, we think that, for the purposes of the present work, it is sufficient just to achieve an
acceptable fit to the observed values. We have studied six time series pt, j, t = 1, 2, · · · , n; N; j = 1, 2, · · · , 6, one for each
zone of the Italian electricity market, by using the auto.arima function of the R package f orecast (Hyndman (2015)),
which chooses whether to include autoregressive and moving average components (and how many terms to include for
each one) by using the AICc criterion. In particular, we use 0 ≤ p, d, q, P,D,Q ≤ 2 which include 729 distinct processes
to be explored for each time series. The search for the best model is carried out in a non-stepwise automatic mode with
parameters that are constrained to be stationary. The models reported in Table 1 satisfy the suggested criterion.

Table 1. Best SARIMA models for electricity zonal prices in Italy.

Parameter Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6
ϕ1 0.9030 0.8853 0.8834 1.5789 0.883 1.5128
ϕ2 − − − -0.5963 − -0.5315
θ1 0.1097 -0.0159 0.0073 -0.6875 -0.1581 -0.7843
θ2 -0.0150 -0.0592 -0.0786 -0.1324 -0.1310 -0.0540
Φ1 0.2304 0.2044 0.2181 0.1493 0.1774 −
Θ1 -0.9162 -0.9134 -0.9207 -0.9184 -0.9199 -0.7689
σ2

a 15.950 24.646 21.342 17.092 50.203 49.710
AICc 98278 105907 103386 99498 118374 118202
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3.2 Effects of Smoothing on Point Forecast Accuracy

In order to assess the effects of the normalized linear filter (NLF), we compare some accuracy measures before and after
the filter usage. In this regard, the time series analyzed in Table 1 are considered to be the “training” period of our analysis.
To this, we add the days from Monday, 1 January 2018 to Friday, 5 January 2018 inclusive (120 hours), which acts as the
“validation” period.

The point forecast p̂n,t, j at origin n and lead time t of the j-th time series is obtained by identifying and estimating a
SARIMA process for the training period. The search for the best model is conducted as described in the preceding
paragraph. Forecast errors are obtained from the difference between actual values in the validation period and the corre-
sponding forecast produced using the values in the training period: en,t, j = pn+t, j − p̂n,t, j, t = 1, 2, · · · , L where L = 120 is
the forecast horizon

en,l =

l−1∑
j=0

ψ jaL+l− j where
∞∑

i=0

|ψi| < ∞, ψ0 = 1. (17)

To evaluate the specific impact of NLF, we use the coefficient proposed by Hyndman & Koehler (2006)

g =
L∑

t=1

|en,t |
Q̂

Q̂ = (L − 24)−1
L∑

t=24+1

|p̂n,t − p̂n,t−24| (18)

As the numerator and denominator both involve values on the scale of the original data, the quantity g is independent of
the scale of the data.

For ease of comparison, we also report the more common forecasting criteria: Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE). See, for example, Samir & White (2017)

MAE =
∑L

t=1|pn+t, j − p̂n,t, j|
L

, RMS E =

√∑L
t=1

(
pn+t, j − p̂n,t, j

)2

L

MAPE = L−1
L∑

t=1

|pn+t, j − p̂n,t, j|
pn+t, j

(19)

Table 2 shows the results for a filter with the following parameter’ settings : m = 2, γ = 0.25, K = 5.25, nb = 4.

Table 2. Accuracy of point forecasts before and after smoothing.

Stage Index Zone 1 Zone 2 Zone 3 Zone 4 Zonel 5 Zone 6
Before sm. g 284.881 268.166 257.345 236.163 263.925 263.370

MAE 9.890 9.745 9.542 7.965 14.985 9.941
RNSE 11.642 11.578 11.419 10.381 19.060 11.759
MAPE 0.314 0.311 0.305 0.274 0.420 0.315

After sm. g 268.699 266.991 246.678 231.663 223.858 253.997
MAE 8.768 8.971 8.445 7.086 12.718 8.854
RNSE 10.205 10.444 9.995 9.127 16.199 10.316
MAPE 0.276 0.282 0.269 0.242 0.355 0.278

It can immediately be noticed that the smoothing brings about an improvement in forecasting results in all of the six zones.
This is confirmed if one looks at the values of all four accuracy measures before and after the use of the NLF method.
The coefficients after smoothing are always lower than the same coefficients computed before smoothing. Although the
findings in Table 2 do not appear striking, the fact that the progress, although small, is obtained at a small computational
cost should not be ignored.

3.3 Simulation Design

The models in Table 1 are used to generate N = 250 time series p̂t,i, j, t = 1, 2,· · ·, n; i = 1, 2, · · · ,N; j = 1, 2, · · · , 6.
In this regard, we used simulate.Arima of the R package f orecast (Hyndman, 2015). Successively, the time series are
intentionally corrupted with gamma distributed noise, that is, the original data points are replaced with simulated outliers.

In view of the poor fitting, simulated time series may be affected by two types of systematic error. First, some of the p̂t,i, j

may be negative, so contradicting the standard assumption in models of electricity prices. Second, although generated by
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a stationary Gaussian process, unwanted spikes are always possible in a very long time series. A necessary consequence
is the appearance of “endogenous” spikes, which usually give rise to false positive errors. The simulation design must
cancel or attenuate both forms of bias. Our strategy is to do as follows:

• 0. Simulate a time series p̂i, j from one of the models in Table 1. Set t = 1 and νa = 0, where νa is the number of
artificial outliers.
• 1. Remove zero values. Let nz be the number of simulated values less than or equal to zero and let Pz be the

corresponding time points. Set p̂t∈Pz,i, j = pt∈Pz,i, j. Hence, negative values are replaced with the corresponding
observed values. If, however, the negative values are more than 5 % of the total length, then reject the time series
and return to point 0.
• 2. Modify “endogenous” outliers. Let Qθ1 < Qθ2 be the quantiles of p̂i, j defining the thresholds outside which

simulated values may be confused with “exogenous” outliers, but will not be taken into account for accuracy. Let
PL and PU be the observations in p̂i, j less than Qθ1 and greater than Qθ2 , respectively. Change p̂t∈PL,i, j= (1 − u1 )̂µi, j

and p̂t∈PU ,i, j = (1 + u2 )̂µi, j where u1 and u2 are random numbers in the [0, 0.25] interval and µ̂i, j = E(p̂i, j). Values
which are potentially too low (too high) are replaced with random values near to, but lower than (but greater than)
µ̂i, j.
• 3. Insert an outlier. Set t1 = 1 + (t − 1), t2 = r + (t − 1). Compute the mean µ̂i1:i2 and the standard deviation σ̂i1:i2 of

simulated values p̂t1,i, j, · · · , p̂t2,i, j. Define the bounds Lt = µ̂i1:i2 − ησ̂i1:i2 , Ut = µ̂i1:i2 + ησ̂i1:i2 . The positive constant
η, in practice, governs the range of values entitled to become outliers.
• 4. If Lt< p̂t,i, j<Ut then p̂t,i, j it is not a good candidate because the risk of generating a non-detectable outlier is too

high. Increase t by one and repeat step 3, provided that t ≤ (n − r + 1). Otherwise stop.
• 5. Generate a random number u in the [0, 1] interval. If u ≥ τ then increase t by one and go to step 3. The constant
τ controls the rarity of outliers.
• 6. Generate gt from a gamma(a, β) distribution probability, where a=αµ̂i, j, E(gt) = (α/β)̂µi, j, var(gt) = (α/β2 )̂µi, j.

If p̂t,i, j<µ̂i, j, then set p̂∗t,i, j= p̂t,i, j−gt, otherwise set p̂∗t,i, j= pt,i, j+gt. Increase t and ν by one and return to step 3.

Figure 1 shows an example simulated from the first model in Table 1.
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Figure 1. Simulated time series with νa=152 spikes marked in black.
Parameters: τ=0.40, α=1.4, β=2, η=2.3, r=24, θ1=0.001, θ2=0.999
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One aim of the simulation design is to keep error rates as low as possible, while remaining realistic. Despite the efforts
made, not all the simulated spikes can be considered “extreme” in a meaningful sense and, thus, are likely to induce false
negative errors. Additionally, false-positive errors remain a possibility when adhering strictly to the simulated time series.
The occurrence of both false positive and false negative errors leads to incorrect decisions that could represent a limitation
to the present work.

3.4 Performance of the Normalized Linear Filter (NLF)

The ability of NLF to identify outliers can be assessed by comparing the number of artificial outliers νa inserted into the
time series with the number of outliers identified by the method νd. More particularly, we refer to the 2×2 table of the
decisions taken


Detected as outlier Not detected as outlier

True outlier True positives (A) False negatives (B)

Non-outlier False positives (C) True negatives (D)

 . (20)

A valid anomaly detection technique maximizes decisions of type A while, at the same time, keeping decisions of the
types B and C at the lowest levels possible. Obvious measures of performance are

C1 =
A

A +C
; C2 =

A
A + B

. (21)

The frequency A of values correctly considered as extreme spikes is central for both the coefficients. The frequency D of
non-outliers, not detected as outliers is not included because outliers, by nature, are rare and, consequently, D is much
larger than A, BorC and its involvement would give a distorted picture of the degree of success. Coefficients (21) are
plausible indices of performance, but have an evident drawback: they are not symmetrical with respect to B and C. It is
therefore reasonable to choose some kind of mean of C1 and C2. We apply the harmonic mean of C1 and C2, known as
the “coincidence index” (Dice, 1945).

C3 =
A[

(A +C) + (A + B)
2

] = 2A
2A + B +C

=
A

A + 0.5 (B +C)
. (22)

We have 0 ≤ C3 ≤ 1 where 0 implies that no outliers are detected and 1 indicates that all, and only, the outliers are
detected. The larger the coefficient becomes, the greater the effectiveness of the detection method is. We have evaluated
(22) for all the simulation runs (250 time series of 17, 544 time points for each zone). The parameter’ setting of the
NLF method is the same as in paragraph 3.2. In Table 3 we report mean and standard deviations of νs, νd,C1,C2 and
C3 (averaged over the repetitions). The column headed ∆% refers to the relative variation ∆% = (νa − νd)100/νa of
the true/detected outliers. With an initial general examination, we note the consistent behavior of the mean value
of the coincidence index C3. As expected, C3 (as well as C1 and C2) increases as τ, the frequency of the simulated
outliers, increases. Practically the same conclusions apply to the standard deviations of all of the coefficients. Regarding
the number of simulated and detected extremes, we observe that the latter is slightly, but systematically higher than the
former. This is presumably due to the parameter setting, which is the same throughout the SARIMA models whereas a
more differentiated approach seems warranted. Coefficient C2 is known as sensitivity, that is, the probability the proposed
method will discover a real outlier if there is one. In all the repetitions, the average value of C2 is around 99% (with a
negligible standard deviation), so indicating that there are few false negatives. Coefficient C1 is known as the positive
predictive value, that is, the probability that a detected outlier is indeed an extreme spike. Table 3 shows that the average
values of C1 are relatively low (but remain at acceptable levels) only for τ = 0.10, that is, in the case of time series that
are contaminated by sporadic outliers. The findings in Table 3 show that the NLF method is capable of great accuracy
in detecting extreme spikes in high-frequency time series. The values reached by the Dice coefficient C3 are particularly
remarkable and, hence, we can state that when NLF classifies an observed value as an outlier, it does so with a high degree
of reliability.

4. Conclusions and Future Research

The filtering of high-frequency time series removes noise introduced by anomalous conditions, which are mostly self-
explanatory and might not contribute significantly to modeling and forecasting. The NLF method described in this paper
is a fast, easily applicable and versatile pre-processing treatment of sequences affected by a spike phenomenon. Experi-
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Table 3. Comparison of average performance measures over 250 runs.

Mean St. Dev.
τ Z νa νd ∆% C3 C1 C2 νa νd C3 C1 C2

2 27 33 18.2 0.901 0.851 0.984 12 16 0.123 0.166 0.046
3 22 27 18.5 0.923 0.877 0.994 10 16 0.105 0.152 0.024
4 23 27 14.8 0.912 0.860 0.990 10 14 0.105 0.155 0.035
5 20 23 13.0 0.946 0.918 0.989 11 18 0.091 0.135 0.031
6 21 26 19.2 0.912 0.861 0.994 11 17 0.120 0.171 0.022

0.20 1 52 58 10.3 0.928 0.888 0.982 22 25 0.074 0.115 0.043
2 53 59 10.2 0.935 0.901 0.986 22 29 0.083 0.125 0.035
3 42 46 8.7 0.947 0.915 0.991 18 20 0.075 0.112 0.031
4 44 49 10.2 0.950 0.918 0.991 18 23 0.063 0.100 0.022
5 41 44 6.8 0.965 0.948 0.989 23 33 0.061 0.093 0.027
6 39 44 11.4 0.950 0.919 0.995 19 23 0.079 0.122 0.015

0.40 1 108 114 5.3 0.950 0.925 0.981 43 47 0.047 0.08 0.032
2 107 110 2.7 0.954 0.944 0.971 44 45 0.052 0.069 0.061
3 81 85 4.7 0.971 0.956 0.989 35 37 0.042 0.067 0.025
4 88 91 3.3 0.967 0.951 0.987 42 43 0.045 0.072 0.028
5 72 74 2.7 0.978 0.973 0.985 39 41 0.037 0.058 0.029
6 79 82 3.7 0.977 0.962 0.994 37 41 0.034 0.057 0.014

mental findings show that the proposed methods can efficiently clean long time series and improve their quality. There are
currently several ways in which a time series can be smoothed and filtered. One example is the Savitzky-Golay method,
which is based on local least-squares polynomial approximation. See Barak (1995) and Shafer (2011) for more details.
Another example is the moving weighted average discussed by Borgan (1979) in which each observation consists of a
value determined by a local polynomial plus a random error term that satisfies the usual constant variance and uncorre-
lated assumptions of linear statistical models. A further possibility is the de-noising technique based on wavelets transform
(Weron, 2006 [section 2.4.8]). Weron & Zator (2015) also show the validity of a smoother based on the Hodrick-Prescott
filter. Finally, there is the tsoutliers function(of the R package forecast) for the automatic detection and replacement of
outliers. We have not compared the aforementioned techniques with the NLS method. This is because of both the lack
of software tools to assist application of these methods and the strict dependence of their algorithm on certain parameter
settings, which have to be supplied by the user according to the desired strategy and which cannot be generalized beyond
their own area of specialization. We plan in the future to compare our results with those obtained through the other tech-
niques looking at a careful design of the experiment, which precludes one method from being preferred merely because
data used for the comparison are more in accordance with the theory on which the method is based.
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