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Abstract

In this study, we introduce a new family of integer sequences which are related to prime-counting function and we focus
on some properties of these sequences. Sequence A316434 in OEIS is the fundamental member of solution family that
we study. More precisely, we investigate the solutions of recurrence a(n) = a(π(n)) + a(n − π(n)) with some natural initial
conditions where π(n) is defined by A000720 in OEIS.
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1. Introduction

The Hofstadter-Conway $10000 sequence is recursively defined by the nested recurrence relation c(n) = c(c(n − 1)) +
c(n− c(n− 1)) and initial values c(1) = c(2) = 1 (Mallows, 1991). This sequence has many amazing properties and a very
intriguing generational structure (Alkan, Fox, & Aybar, 2017). One of the most important reasons behind its fascinating
nature is the construction of parent spots which are c(n − 1) and n − c(n − 1) and the resulting symmetry that comes from
here (Kubo & Vakil, 1996). If we rename c(n−1) = x(n), we can easily observe that c(n) = c(x(n))+c(n− x(n)) is the form
of Conway’s recurrence. At this point, it can be seen as natural to think that different x(n) functions may also have some
interesting results with this recurrence formula. In this study we will use the prime-counting function π(n) (A000720 in
OEIS) for this purpose (Sloane, 2018) due to its curious asymptotic form. π(n) is a slow sequence by definition and there
are many rigorous works on it in the literature. One of the most important result of it is Prime Number Theorem (PNT)
which states that π(n) ∼ Li(n) where Li(n) ∼ ∑∞k=0

n·k!
(ln n)(k+1) (Hadamard, 1896). Corresponding error term is improved by

important studies and it is still very interesting in terms of different perspectives (Reyna & Toulisse, 2013).

This paper is structured as follows. In Section 2, we define and prove some properties of our sequence family. Then,
in Section 3, we report a variety of interesting observations about asymptotic behaviors of the solutions and we obtain a
conjectural result on this family. Finally, we provide some concluding remarks in Section 4.

2. Basic Properties of Family

We will define a sequence family similar with Newman generalization on Conway’s sequence (Newman & Kleitman,
1991). This natural selection of initial conditions will provide many behavioral similarities and existence of infinitely
many different slow solutions.

Definition 1. Let ai(n) = ai(π(n)) + ai(n − π(n)) for n > i, with the initial conditions ai(n) = 1 for 1 ≤ n ≤ i.

See Table 1 in order to observe initial terms of ai(n) for i ≤ 10. Definion 1 essentially guarantees that ai(n) ≥ ai+1(n) for
all n, i ≥ 1 based on selection of initial conditions by induction.

See also Table 2 in order to observe selected terms of ai(n) for i ≤ 5. One can easily see that a2(n) + a3(n) = n for n > 1
and a4(n) + a5(n) = a2(n) for n > 2 based on Table 1 and Table 2. In fact, this is also correct for a6(n) + a7(n) = a3(n) for
n > 3.

Proposition 1. a1(n) = n for all n ≥ 1.

Proof. We can see that this is true for small n and it is clear that π(n) < n and n − π(n) < n for all n > 1. So if ai(k) = k
for all k < n, then ai(n) = ai(π(n)) + ai(n − π(n)) = π(n) + n − π(n) = n holds by induction for all n.

�

Proposition 2. ai(n) = a2·i(n) + a2·i+1(n) for all n > i and 1 ≤ i ≤ 3.
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Table 1. Initial terms of first ten members of ai(n) generalization.

ai(n) Initial terms of ai(n) sequence
a1(n) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 . . .
a2(n) 1, 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 7, 8, 8, 9, 10, 10, 11, 11, 11, 12, 12 . . .
a3(n) 1, 1, 1, 2, 2, 2, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 9, 9, 10, 10, 10 . . .
a4(n) 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 7, 8, 8 . . .
a5(n) 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7 . . .
a6(n) 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5 . . .
a7(n) 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5 . . .
a8(n) 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 5, 5 . . .
a9(n) 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4 . . .
a10(n) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3 . . .

Table 2. Values of a2(n), a3(n), a4(n), a5(n) where n = 10t for 0 ≤ t ≤ 9.

n a2(n) a3(n) a4(n) a5(n)

1 1 1 1 1
10 6 4 3 3
102 59 41 31 28
103 588 412 315 273
104 5863 4137 3148 2715
105 58737 41263 31467 27270
106 587279 412721 314860 272419
107 5872093 4127907 3148391 2723702
108 58722632 41277368 31482786 27239846
109 587236948 412763052 314845574 272391374

Proof. We can see that this is true for small n where 1 ≤ i ≤ 3. So if ai(k) = a2·i(k) + a2·i+1(k) for all i < k < n, then
ai(n) = ai(π(n)) + ai(n − π(n)) = a2·i(π(n)) + a2·i+1(π(n)) + a2·i(n − π(n)) + a2·i+1(n − π(n)) = a2·i(π(n)) + a2·i(n − π(n)) +
a2·i+1(π(n)) + a2·i+1(n − π(n)) = a2·i(n) + a2·i+1(n) holds by induction for all n.

�

Proposition 3. ai(n + 1) − ai(n) ∈ {0, 1} for all n, i ≥ 1. In other words, ai(n) is slow for all i ≥ 1.

Proof. Initial conditions ai(k) = 1 for 1 ≤ k ≤ i provide the basis for induction since ai(i+1) = 2 and ai(k+1)−ai(k) ∈ {0, 1}
for 1 ≤ k ≤ i. We must show that ai(n + 1) − ai(n) ∈ {0, 1} for all n ≥ i + 1.

ai(n + 1) = ai(π(n + 1)) + ai(n + 1 − π(n + 1))
ai(n) = ai(π(n)) + ai(n − π(n)).

From above equations,

ai(n + 1) − ai(n) = ai(π(n + 1)) − ai(π(n)) + ai(n + 1 − π(n + 1)) − ai(n − π(n))

Case 1. π(n + 1) = π(n). At this case,

ai(n + 1) − ai(n) = ai(π(n + 1)) − ai(π(n)) + ai(n + 1 − π(n + 1)) − ai(n − π(n))
= ai(n + 1 − π(n + 1)) − ai(n − π(n)) ∈ {0, 1}.

Case 2. π(n + 1) = π(n) + 1. At this case,

ai(n + 1) − ai(n) = ai(π(n + 1)) − ai(π(n)) + ai(n + 1 − π(n + 1)) − ai(n − π(n))
= ai(π(n + 1)) − ai(π(n)) ∈ {0, 1}.
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This completes the induction about slowness of ai(n) for all i ≥ 1.

�

Proposition 4. ai(n) hits every positive integer for all i ≥ 1.

Proof. Let us assume that ai(n) = Ki is the maximum value of sequence and Ni is the first occurence Ki. So, ai(Ni+ti) = Ki

for all ti ≥ 0. At this case ai(Ni + ti) = ai(π(Ni + ti)) + ai(Ni + ti − π(Ni + ti)) for all ti ≥ 0. If we choose ti such that
π(Ni + ti) = Ni then Ki = Ki + ai(ti) and this is contradiction. Since ai(n) is slow, ai(n) must hit every positive integer.

�

Proposition 5. Both (ai(π(n)))n>1 and (ai(n−π(n)))n>1 are slow sequences for all i ≥ 1 and they hit every positive integer.

Proof. Since we show that ai(n) is slow and unbounded, π(n) and n − π(n) slow parent spots give this result similar with
above propositions for n > 1 and for all i ≥ 1. �

Definition 2. Let fi(n) = ai(n−π(n))
ai(π(n)) for n > 1.

We know that f1(n) = n−π(n)
π(n) since a1(n) = n. See Figure 1 in order to observe fi(n) for i ≤ 7. Figure 1 suggests that

fi(n) ∼ n−π(n)
π(n) for i ≤ 7. More detailed empirical investigation also confirms this suggestion, at least for i ≤ 100.

Figure 1. f1(n) : black, f2(n) : red, f3(n) : orange, f4(n) : yellow, f5(n) : green, f6(n) : blue, f7(n) : violet.

3. Experiments On Behaviour of ai(n)
n

Based on previous section, it is natural to think that ai(n) sequences have considerable similarities in terms of proportion
between ai(π(n)) and ai(n − π(n)). This is particularly interesting since fi(n) conjecturally generalizes the distributional
behavior of n−π(n)

π(n) , at least in our experimental range. Additionally, oscillations of ai(n)
n provide a curious collection of

conjectural constants. Statistical analysis based on successive selected intervals suggests that limn→∞
a2(n)

n < 41/3 − 1, if
it exists. This empirical investigation is also determinative for limn→∞

a3(n)
n since a2(n) + a3(n) = n for n > 1, that is,

limn→∞
a3(n)

n > 2 − 41/3, if it exists and previous observation is correct. Similar analysis can be done for a5(n)
a2(n) based on

a4(n) + a5(n) = a2(n) for n > 2. Figure 2 shows that a5(n)
a2(n) oscillates around e

e+π in our investigation range. Although such
results are observed in limited range that this study focuses on, exact analysis is also related to corresponding frequency
sequences which are relatively complicated to investigate in detail. On the other hand, for more general perspective, see
Figure 3 and Figure 4 in order to observe order signs in asymptotic behavior of ai(n) family. Based on these empirical
evidences and analysis in previous section we can conjecture the general property about these sequences.

151



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 7, No. 6; 2018

Figure 2. e
e+π : red, a5(n)

a2(n) : blue where n = 10t for 3 ≤ t ≤ 9.

Figure 3. a2(n)
n : red, a3(n)

n : orange, a4(n)
n : yellow, a5(n)

n : green, a6(n)
n : blue, a7(n)

n : purple.

Conjecture 1. limn→∞
ai(n)

n exists and it is constant ci with ci > ci+1 for all positive integer i ≥ 1. In other words,
ai(n−π(n))

ai(π(n)) ∼ (
∑∞

k=0
k!

(ln n)(k+1) )−1 for all i ≥ 1 as a result of PNT.

At this point it would be nice to remember similar analysis on Newman generalization of Conway’s sequence gives the
result that is completely soluble by the largest root of the characteristic polynomial that sequences correspond (Kubo &
Vakil, 1996) based on their well-behaved generational strucutures (Dalton, Rahman, & Tanny, 2011). On the other hand,
Figure 4 suggests a remarkably predictable behaviour despite the complicated nature of π(n).

4. Conclusion

Many slow solutions and corresponding recurrences are investigated in the literature thanks to concept of meta-Fibonacci
sequences. However, ai(n) sequences have different and much more complicated structure due to nature of π(n). It remains
as an open question what are the complete structures of these sequences and values of ci constants for i > 1 with their
distribution characteristics. Additionally, different slow sequences can be constructed such as A316942 and A316388 in
OEIS thanks to similar approaches (Sloane, 2018). In other words, slow sequence families can be extended curiously with
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the help of certain natural mathematical functions.

Figure 4. Plot of ai(k)
k for 1 ≤ i ≤ 50 and k = 105.
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