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Abstract

This paper presents a set of normality general results for kernel weighted averages. We extend existing literature for
independent data (Yao, 2007) to stationary dependent longitudinal data. The asymptotic properties of proposed weighted
averages are investigate under a-mixing conditions. These results are useful for covariance function estimation based on
nonparametric kernel method.
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1. Introduction

We present a set of asymptotic normality results of real-valued function that we assume to be formed by weighted averages
of longitudinal data. Since it’s well known that the most commonly nonparametric kernel type estimators are written as
kernel weighted averages, our results take in account a large class of estimators (Nadaraya, 1964; Watson, 1964; Stone,
1977; Miiller, 1984).

Recently, Yao (Yao, 2007) has given general normality results for some function of kernel averages formed by longitudinal
independent data. He has applied his general result to covariance function estimator to derive its asymptotic distribution.
Soro & Hili (Soro & Hili, 2012) have generalized the results of Yao (Yao, 2007) to three-dimensional context. The data
were equally independent.

In this paper, we extend the two-dimensional general result (Yao, 2007) to dependent longitudinal data. Our main results
are the asymptotic normality of a sample averages of some function that we suppose to be formed by longitudinal data. We
suppose that the data are strongly mixing. The results we provide are applicable to covariance function kernel estimator
to derive its asymptotic distribution under alpha-mixing conditions.

In Section 2, we introduce the model as well as assumptions that are necessary in deriving the main results of this paper.
Section 3 presents main results of the paper.

2. Model and Some Assumptions

Let {(X;;, Ui, Tiy),1 <i <n,1 <r < N}benx N random variables, identically distributed as the random triple (X, U, T)
with values in R X R x T, where T is such that T = [0, 7] with 7 < oo.

For the multi-index of integers A = (1;,4) and k = (ky, k»), let define || = A; + Ay, k| = ky + kp; A! = A;14,! and
k! = ki'ky!.

We consider a model for repeated measurements, which is typically used for longitudinal data treatment :
U, = X(T,)+e€, 1<i<n1<r<N. ()

In the model (1), U;, is referred to the r-th observation of the random variable X;, made at the random time T;,.
Assume that

e the number of observations N(n) depends on the sample size n. For simplicity, N(n) will be noted N.
e X takes values in a probability space (Q2, A, IP) whereas U is a real random variable.

o the observation times 77, are i.i.d. with a marginal density f(¢).

100



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 7, No. 6; 2018

For r # s, and (r,s) # (1, s”), we define the joint probability densities as follow.
Let fi(t;, 1) be the joint density of (T, Ty), g(t, u) the density of (T, Uy), g1(t1, 2, u1, uy) be the joint density of (7', T, U,, Uy)
and ga(11, 12, 1, 1, U1, Uz, Uy, uy) be the joint density of (T, T, T, Ty, Uy, Uy, Uy, Uy).

We consider averages of longitudinal data of the form:

N

®n,( = ®n,€(tlv t2)

1 - I - Tir I — Tis
—3 Tiy, Tis, Uiy, Uis)K y— |, 2
NN — DA 2 2 v . ( Tk Ik ) @

i=1 1<r#s<N

for 1 < ¢ < L, where h, g is a bandwidth, K : R? —s R s a kernel function and ¥, : R? — R are real functions.
Let

De(t, 1) = ||K||§f Wit o, ur, u2)gi (1, b, uy, up)dus dus, 3)
dA
Oe(ti, 1) = dlﬁ]dthflﬁ[(tl,fz,ul,Mz)gl(fl,lz,Ml,Mz)dulduz, “)
(=D X
B(t1,1) = w2 K, wydvdw———— l/’l(fl,fz,Ml,Mz)gl(l‘l,l‘z,ul,uz)dulduz for 1 << L.(5)
B \Je” k,d 2

Let Ny, 1,) be a neighborhood of (¢, £2) € [0; T ]°.
Now, we introduce the following basic assumptions that are necessary in deriving the main result of this paper.
(H1) (i) The kernel K is symmetric with a compact support.

(i) [IK1B = [, K2(v, w)dvdw < oo.

(iii) K is a kernel function of order (|4], |k|), that is,

=

. 0|l < |k, 11 # V.
f Viwt K (v, wydvdw = =DMyt 1 =, (6)
2 C, |l = Ikl

where C is a non null constant.

(H2) The bandwidth h, k satisfies,

@) hyx — 0, nN(N — )h‘,fl;('z —> o0, nN(N — I)hi{’}('+2 — a?, where ais a positive constant, as n — +oo.
(ii) A —> oo, nhl* — oo and N(N — DAY — o0, a5 n —> 0.

(H3) (1) W Sfi(v,w) exists and is continuous for (v, w) € Ny, 1,);

(i1) g1(v,w,u1,uz) is continuous for (v, w) € N, 1,), uniformly for (u;, uy) € R?;

(H4) (1) d"‘ldwkz g1(v,w, uy, up) exists and is continuous for (v, w) € N, ,), uniformly for (u;,u,) € RZ;

(ii) go(v, w,v', W', u1, ua, u}, u5) is continuous for (v, w,v',w’) € N, (I Y uniformly for (u1, up) € R

(H5) The collection {¢/}-

) ng(tl, t2, U1, Up) is continuous for (¢1, #,) uniformly for (u;, u) € R?,

(ii)

; of real functions ¥, : R* — R satisfies:

.....

kldkz We(ty, ta, uy, up) exists for all arguments (¢1, 1, uy, us) € R*.

Let 2 be the sigma algebra generated by the random variables {X;, Y; }f’:a
The stationary process {X;, Y;. }m is called strongly mixing (Rosenblatt, 1956) if
a(j)=sup sup |[P(ANB)-PAPB)|— 0, as j— oo.
t AeF! . BEFS,

t+j

(H6) The process {X;, ¥;} is strongly mixing with coefficient

Zj“[a(j)]l’z/‘; < oo forsomea>1-2/6, and some ¢ > 2. @)
=1
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Comments on the assumptions. Assumptions (H1) and (H2) are technical conditions for the proofs. Assumptions (H3)
and (H4) are regularity conditions for joint probability densities. Assumption (H6) is mixing condition verified by the
process.

3. Main Results: Consistency and Asymptotic Normality of Kernel Averages

Before establishing the main results of the paper, we first prove the consistency and the asymptotic normality of weighted
averages (2).

3.1 Consistency of Kernel Averages
In this part of paper, we establish the consistency of (2). The result is given in the following theorem.

Theorem 1 If assumptions (H1)-(HS5) are satisfied, we have

. P
O, 1) —  Oe(t1, 1), 3

where 0p(t1,1,) is defined in (4) for £ = 1, ..., L.
Proof. To establish the consistency of (8) we have to consider the following decomposition

PN

E{(@n,i(ﬁ, ) — (11, fz))z} = Var{Qn,K(Il, fz)} + {E[én,{’(tl,tZ)] = Oc(t1, fz)}z-

©))

2
We denote by N (respectively l) the convergence in IL? (resp. in probability) and we also recall that when (9) goes to
zero, we have

. L2 A P
O,,0(t1,12) — O¢(t1, 1) implies O, ((11,12) — O¢(t1,12).

e et prove that the second term in (9) goes to O when n goes to +co. We have

. 1 C n=Ti =T
EO, (11, 12) ——E (T, Tis, Ui, Uis)K (—, —)
TR N - DR {Z 2 v Tk g

K i=1 1<r#s<N n,K
1 = Tir I — Tis
= Bl ), Wl T U, U,AS)K( : 2—)
N(N - l)hr:/,l( 1<r#s<N hn.x hn.x
1 th-Ty HLh-T
= —=EdTn, T, Ui, U)K =z i
h|r:’|;(' hn,K hn,K

(=K
= Ou(t;, ) + % {f Vawk K(v, wydvdw
. RZ

an
k1 kz
dt)'dty

= Ot ) + Bty ) x B 4 oMY, (10)

k|—|A k|—|A
fz Yoty tr, uy, up)gi(ty, ta, Uy, up)duduy Xl’lln’lKl } +0(hL’|K‘ I)
R

Then,
E®ue(ti.0) = Ot ) = By, 1) x B4 oY),
And it follows that
E®,(t1,12) — Oc(t1, 1) —> 0. (11)
e Now, we prove that Var(@,,,g(tl, tz)) —> 0,as n — oo.

Let

—
=~
|

; 12)

th-=T; tob-T;
irs = w[(TiraTiSannUis)K(] 2 ”).

hn,K hn,K
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Using the definition of the variance, we have

Var( nf(ll,fz)) = ;V (r{,ll)

~~Concerning J,

Jo=

nN(N — 1);;2“‘+4

+

555, 5 i)

{HN(N 1)hu|+2 =1 =1 1sr#5'<N 1% <N

31 + jz.

1
nN(N — 1)h“'+2

=Ty H- le)
hn,K ’ hn,K

{ [ MHZ%(TU, T2, Uy, U12,)K2(
hnK

We have by changing variables

i

~~>Concerning J,,

put

Given that triples {Y;;, Yi,

-Ty -T
2 2 11 h—Tpn
E {hl;ll;{—le[(Tll,TlZ’UII,UIZ’)K ( Tk )}
1
nN(N — DAY
1 , 0, (=t =t ,
{W fR4 g1t u, w8, 1 uy, up)K ( Tk s Tk dtdt’ du,du;
2
: k(D2 220 drar dund
W gt uy, up)e(t, 1 uy, up) hnK’ hnK tdt’ duyduy
] { : f (t1 —h th—nh )%
= T =\ g1ty — Ny gV, Iy — Ny kW, U1, U
[1+2 1 > :
aN(N — DR | A Jrs
WA(t1 = v, by = hy xw, uy, u)K? (v, w) dvdwdu duy
1
- hi,K {Wf 81(t1 = hyxv,ty — hy gw, u, us)
hn’K R4
Ye(ty — hygv, ta — hy gw, ur, u2)K (v, w) dvdwdulduz]z}
1
= ——————1(t1, ) + o(1)
nN(N = DR { }
— 0,n — +oo. (13)

(1,2 1) (2 /(1)
1—‘lrb =¥ (Tlr ’le ’Utr ’

hnl( ’ hnK

Yy} and {Y;j, Y, Yy} are independent and equidistributed then we can write

~ NN - Dy -
3 o= e ZZCOV (rornTis?)
{nN(N DR} =1 =

= 2h2w+4 Z Z Cov rfll 12,1““222)

i=1 i'=

i#i’

= WZZCOV(E[, Tr). (14)

i=1 i'=

i#i’

(1) (2)
U(2))K( Ttr o) T ] )
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Let A, be a positive sequence tending to oo to be specified later on. Define
={G,i): 0<li=11 < Apisi = 1,.mi# ).
Split (14) into two separate summations over index in S and not in §. That is

Jy = To1 +Jn,

where
1 n
= |53 emtares
n°n, g \ir=1(ies
1 n
Jn = YN Z Z Cov(Tig;Tog)y-
n-n, ii'=1(i,i")¢S

172
For (16), using Holder’s inequality, |Cov (T; ¢, Ty ¢)| < (IEI? (ET% f) - (EITy.¢)?, it follows that

~ 2 pr2 \1/2
|J21| < hM|+2 Z Z {n2 [A+2 ]Eri,ZEFi',Z) t+—s n h|/”+2 (Elrl [|) }
nK iLi’=1(,i")eS n,K
1 n
i 2, 2y Wt + o).
hn K ii’=1(,1")eS
Since Card(S) < nA,, then
ni\,

[Tl < W{ﬂf(ﬁ,h)‘*‘O(l)}

Ay,
S At 1) +o(D)).
nhn K

Clearly, if taking A, = (Inlnn)?Inn, h, x = % in (18), one obtain

A
A, — oo, hu|+2 — 0, nh"™? — o0 and —— — 0,
n,K |A1+2
nh,

SO

Joy — 0, as n — +oo.
Turn to J,;. Applying Davydov’s Lemma (see Hall & Heyde, Corollary A.2), and assumption (H6) we have

Cov (T Tre)| < 8(EILl)” (atli - i)'

IA

IA

8Const [h'n{‘;z] [a(li — '),
Using (21)

2/5
8Const. [hlf';z n

~ +_ ar\11-2/6
Pzl < 2200 >0 > ladi- i)
n ii'=1(i,i)eS
8Const. -2
/6
<
T AT Z 2 lai= D]

Li’'=1 (i,i")¢S

Reducing the double sum above to a single sum, it follows that

n

8Const.
S e Eeeriae ) WA (100)

<
- (IA1+2)2(1-1/6))
n2 han et
8nConst.
< — a 1-2/s
- 2h(IAI+2)(2(1 1/6) la(0)]
(=N, +1
8Const. = s
<
- h(ld\+2)(2(1 1/6)) Z “la(0)] )
)l+
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Since 6 > 2, it is easy to see that (2 — 1/5) > 0, by (H2) nh!"t> —> oo and applying (H6) in (22) it follows that
J» — 0, as n — +co.

Finally Var(®,,/(11.12)) — 0, as n —> oo via (13), (19) and (23).

This conclude the proof of theorem 1 O

3.2 Asymptotic Normality of Kernel Averages

Here, we give the asymptotic normality of (2) in the following theorem.

Theorem 2 If assumptions (H1)- (H5) and (H6) are satisfied, we have

NN = DR800, 1) ~ E@,e(t1. 1) > N(0.9:(11,12)).

D e g
where — denote the convergence in distribution.

Proof. We will establish the asymptotic normality of @n,g(tl, 1) — E@n![(ll, 1) suitably normalized.
We have

JAN(N = DR o
AN(N = DR (0,011, 12) — BO, 411, 12)) = )

nN(N — 1)h',j“g2 p

[l

t _Tir t _Tis
>, [MT,-,, Tis, Ui, U,-.oK(l— 2—)

1<r#s<N hn.x

hn,K

e

( nK
Z R
r#s<

- EW(TW Tzs’ Uzr» Uzs)K

1/nN(N— l)h2 i=1 1<

1
T — [ lrs Erfr S:I
T isrzssy ([nN(N = Dh,

=

I

where T'? is defined in (12).

L1,
Denote
1

== ¢t
—ijkl = ir,s*
nN(N = Dh?
Then

\AN(N - l)hum( et 1) — E®n€(f1,f2)) = Z Z Eiju — EE;jur)

i=1 1<j#k#I<N

n
z :._

= = .

= e
i=1

(23)

(24)

(25)

We now introduce Bernstein’s big-block and small-block decomposition. We partition the set {1,2,...,n} into 2k, + 1

subsets with large blocks of size u,, and small blocks of size v, and we set k,, = L
v, = o(nN(N l)hw”) The symbol |.] is integer part. Using (H2), one has

Up+vy

n n N(N -1
v——>0,u——>0 , nN( )—>O,£a(vn)—>0,asn—>+oo.
Un n “nhix Uy
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(26)



http://ijsp.ccsenet.org

International Journal of Statistics and Probability

Vol. 7, No. 6; 2018

Let U, V,, and W,, be defined as follows:

m(un+Vy)+itn

Then, we obtain the decomposition

U, = Bpir 0<m<k,—1
i=m(uy,+vy)+1
(m+1)(up+vy)
V, = Eni» 0<m<k, -1
i=m(uy,+vy )+, +1
n
Wm = En,i-
i=kp (ty+vy)+1
n kn—1 kn—1
Z, = Epi = Z Un+ Z Vin + Wi
i=1 m=0 m=0

Sn,l +S,,!2 + S,,)3.

Now, let start the proof of theorem 2. The main idea is to show that as n — oo,

E[S2,] —
E[S:,] —
k,—1
Elexp(iuS,1) - [ | Elexp(uU,)]| — 0
m=0
ElU,] — Sult1,1)
ky,—1
ZE[U,%J“UM > Sﬂ[(tlatZ)}] —  0,for every &> 0.

m=0

27

(28)

(29)

(30)

€1y

(32)
(33)

(34)
(35)

(36)

Remark: Relations (32) and (33) imply that S,,, and S, 3 are asymptotically negligible; (34) and (35) show that the sum-
mands {U,,} in S, | are asymptotically independent, verifying that the sum of their variances tends to 9,(¢,, ;). Expression
(36) is the Lindeberg-Feller’s condition for asymptotic normality of S, ; under dependence. Asymptotic normality of Z,
is a consequence of equations (34)-(35):

e Proof of (32)

~~ Concerning Ji,
we have

Var(V,,)

2y = N0, 9,11, 12)).

k,—1
E[s2,] = Var[z Vm)
m=0
k,—1 ky—1 k,—1
- Z Var(V,,) + Z Z Cov(V,, V)
m=0 m=0 m’=0

m#m’

= U1 +J.

(m+1)(up+vy)

var( E,,,i]
i=m(uy+vy )+, +1

(m+1)(un+vy) (m+1)(up+vy)
Var(E,;) +

i=m(uy+vy)+uy+1 7 =m(u,+vy,)+u,+1
i’

(m+1)(up+vn)

i=m(uy+vy)+u,+1

106

COV(En,i’ En,i’ )

(37)

(38)

(39)
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Using the second-order stationarity and the fact that {Z;,,} and {Z;-} are independent, (39) becomes

Vn Vo Vn

> VarE,) + ). Z CoV(En s Enp)
i=1

i=1 i'=
i

VYar(V,,)

Vn  Vn

= y,Var(E,)) + Z Z Cov(E,;, Epir)-

i=1 i"'=1

i#i!

First, we have

Var(E,1)

Z (Elrs - EEIM)]

1<r#s<N

> G- JEE”)]

1<r#s<N

= Var

= Z var (Z,s — EE,)
1<r#s<N

= N(N— I)Var(E“ —EE“)

= NN -D{EEn - (BEn)’)

_ B De(t1,12)
= N(N 1){—nN(N—1)(1+0(1))}
Ve, 1)
= (14 o(D)).
Secondly,
NN -1
|Cov(Eyis Eni)l < % h|A|+2C0V(r,11a o)
n,K
< M{ﬂ?(;l,tz)m(l)}
ZZ|Cov<_m,_m>| < LN = D) + o(D))
i= 1 i'=
= D omy
n
= v0(1).
Thirdly, replacing (41) and (42) in (40), it follows
Var) = v (1) 4001
- vn{w0+o(l))+o(l)}.
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At the end, J; in (38) is such that

~ Concerning J»,

ky—1
Gl S {M(l +o(1)) +o(1)}
m=0 n
= kv, {M(l +o(1) + 0(1)}

_ knvnvn{ﬂf(i;”Z)(1+o(1)>}

- kn‘;—nﬁg(tl, n)(1+o(1))

n

J B 9e(t1, 2)(1 + o(1)
U, +v, | n

~ iv—"ﬁg(tl,tz)(l+o(l))
U, n

- :_"mm,tz)(uo(n)
—> O, by (26)-

k=1 k,—1

D0 CovVins Vi)

m=0 m’=0
m#m’

kn—1 k=1 (m+1)(up+vy) (' +1)(up+vy)

DD S ConEniEa)

m=0 m’=0 i=m(u,+v,)+u,+1 i=m’ (u,+vy,)+u,+1
m#m’ il

kn=l ky=1 vy, vy

C = =
ov(h‘n,m(u,,+v”)+u,,+i s =n,m’ (Uy+vy )+, +i’ )
m=0m'=0i=1 i=1

m#m’ i#i!

k=1 k,—1 v, v,

§ § § E Cov(Enp,+is Engy+ir)

m=0m'=0i=1 i=1
m#m’ i#i!

since |1,, — gy + 1 — 1’| = u, then we reduce the sums and we write

n n
Bl < 0 ) ICOWEn: Bl
i= 1 =1
li—i’ |Zun
NN -1) 1+242/6 O 1-2/5
< = SCULTE ) 0]
n,K =1

_ 8CNIN-1) &, Loss
= 2, (1)
n nk =1

= o(l) by (26) .

Therefore Jo, — 0, as n —> +oo.

Combining (44) and (45), it follows that E[S ﬁ,z] — 0and

This achieves the proof of (32).

Su2 — 0 in probability.

o Proof of (33) Using the same arguments as in the proof of (32), one has
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ky,—1
E[S2,] = Var(z U,
m=0
< DTV n) + o(1).
~ “; {11, 12) + o(1)}.
— 0.

e Proof of (34)

We make use of Volkonskii & Rozanov’s (1959) Lemma (see the appendix in Masry (2005)).
Note that Uy, is {¥7,....i, }-measurable with i; = m(u, +v,) + 1 and
iy, = m(u, + v,) + u,. Note that using that V,, = exp(iuU,,) as in the Lemma of Volkonskii & Rozanov, we have
o1
|IE{ exp(ius )}~ | | Ef exp(iuUm)}| < 16k, + 1)
m

=0

~ 162 aw, +1)
U

n

— 0 by (26)
as n goes to infinity.
e Proof of (35)
Replacing u, by v, we have
m(u,+vy)+uy,
Var(U,) = var[ Z En,,-]
i=m(u,+v,)+1
m(uy+vy)+uy, m(uy+vy)+uy,  m(uy+vy)+u,
= > Var@G)+ oy D, CovEniEn)
i=m(u,+v,)+1 i=m(u,+vy)+1 i =m(u,+v,)+1

= uyte(t1, )(1 + o(1)).
So

kn—1

D EU;]
m=0

kn%w(n, 1)(1 + o(1))

~ %ﬁ((ll,tz)(l +o(1))

— (11, ).

e Proof of (36)

(46)

(47)

(48)

We first establish the asymptotic normality (37) for the particular case where ¢, is bounded. The case of ¢, possi-
bly unbounded is then establish by using a truncation argument. Let 7, be a fixed truncation point. We can replace

Yo(Ty, Tis, Uy, Ujs) with the truncated process
wZ(Tir, Tis, Uirs Uix)]I{'l//[(Tirs Tis9 Uirs Uis) < Tn} il’l (Uir’ Ui.v)- Denote

1

U Ye(Tir, Tis, Ui, Uis)H{|W(Tir, Tis, Uir, Ujs)| < Tn}
nN(N - Dhl'?
K(tl - Tir’ I — Tis),
hn,K hn,K
= o= ), (En-EZ])

1<r#s<N
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Define Z," = Y7, " and

n,i

Z::Tn = Z(En,i - E;;) = i En,iﬂ{’lpf(Tir, Tis, Uir, Uis)

i=1 i=1

> Tn}. (49)

Since |y (T, Tis, Uir, Uig)

< 1, and from (H.5), it follows that

N(N - D1,
=n < 20— N Dt
’ |2
nN(N = DAY
and
NN - Du,7,

max |U;r| <2C

0<m<k,-1 ’nN(N _1 )h|r:1’|;{r2

1/27140+3
n hn,K

Therefore if we take 7, and u,, such that

UpTy = W’
then,
N(N — 1 ntn
| max_|Un] < 2C (N = Du,7 0.
<m<k,—1 }’lN(N - l)h‘:‘;z

T,
Un'

Hence, for n sufficiently large, the set { > ede(ty, lz)} becomes empty for all £ > 0. Thus, IP’(|U,:1"| > ede(ty, tz)) — 0

for large n, for all € > 0. So
k-1

D B[O Ul > 89,11, 12)}] = 0, for all &> 0.

m=0

Hence
D
zy = N(0.9¢r, (1. 1). (50)

In order to complete the proof, namely to establish (37) for the general case, it suffices to show that as first n — +co and
T, — +oo (see Masry, 2005 or Fan & Masry, 1992) we have

n

Var(Z*T”) — 0. (51)

Indeed,
'IE exp {iuZn} - exp{ - uzﬁg(tl, tz)/Z}’

'E exp {iu(Z,f" + Z;T")} - exp{ - Mzﬁ[,r,,(tl, t2)/2}
+oxp{ = w0, (1,12)/2) = exp | = 1201, (11,1212}

'ECXP {iuZ,f"} - GXP{ — ¢, (11, tz)/Z}’ + IE| exp {iuZ,*lT”} - 1'

IA

+exp{ = w2, (1, 0)/2) = exp{ — 2Bl 0)/2.

Letting n — +o0, the first term goes to zero by (50), for every 7,, > 0; the second term converges to zero by (51), because
first n — +o0 and then 7, — +o0; the third term goes to zero as 7,, — +oo by the dominated convergence theorem.

=Ty

Therefore, it remains to prove (51). Note that by (50), Z,™ has the same structure as Z," except that &, is replaced

by (En,,» - E;l) Applying the Lemma 2.3 in Fan & Masry (1992) or using the same arguments as in Masry (2005) we
conclude that, for all fixed 7,, > 0, one has (51).

Then, it suffices to choose 7, sufficiently large, such that the non-truncated part becomes asymptotically negligible. O
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The following theorem provides the first main result of the paper.

Theorem 3 Under assumptions of theorems 1 and 2, we have

NN = DIR[0, (01, 12) = Bp(t1,12)] > N(B11, ). 9e(11, 12)): (52)

Proof. According to the Proposition 2, p 243 (Miiller & Song, 1993), Theorem 3 is a consequence of theorem 1 and
theorem 2.0

Now, we extend the general result (Theorem 2 of Yao, 2007) under alpha-mixing conditions. Then, additional assumptions
on the bandwidth are given in assumptions (H.2).

Let H : RE — R be a function with continuous second order derivatives. If we denote the gradient vector (277 W), ..., (')x, (v))
by DH(v), and let

L
= (-DMa X
B(t.n) = —5 ; i A K (v, wydvdw——- k‘dk2 W(h,tz,M1,Mz)gl(fl,lz,m,uz)dulduz
oH
X 8 —(6,....00)7
{c’)OL( 1 L) }
and
Bt ) = ||K||§f4l//c’(ll,12,Ml,Mz)'ﬁf'(fl,lz,lh,uz)gz(ll,tz,ll,tz,Ml,Mz,u'l,u/z),dmduzdu']dué,
R
vV = (ﬁg![/(l‘l,lz))l<[ reL the variance-covariance matrix,

then the second main result of the paper follows.
Theorem 4 Assume that assumptions of theorem 3 hold. Then

n,K

NN = DR H@y . O1) — HOY, o 0))] > N(B(t1.12), [DH(®,, ..., 6,)] VIDH,, ... 6))]).  (53)

Proof. A L-dimensional Taylor expansion of H around (my, ..., my)T of order 1 combined with (8) gives

JANN = D2 HE®,, .., Op) = HOY, o, 6)] — Bl 1), (54)

Applying the Cramér-Wold device to (24) it comes

\AN(N = DI (H@y, .., O1a) = HEByy, .. EOL))  —  N(0,[DH( 1, .... 001" VIDH (), ... 00)]). (55

Finally, (54) and (55) lead to (53). O
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