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Abstract

We propose and develop the properties of a new generalized distribution called the beta log-logistic Weibull (BLLoGW)
distribution. This model contain several new distributions such as beta log-logistic Rayleigh, beta log-logistic expo-
nential, exponentiated log-logistic Weibull, exponentiated log-logistic Rayleigh, exponentiated log-logistic exponential,
log-logistic Weibull, log-logistic Rayleigh and log-logistic distributions as special cases. Structural properties of this gen-
eralized distribution including series expansion of the probability density function and cumulative distribution function,
hazard function, reverse hazard function, quantile function, moments, conditional moments, mean deviations, Bonferroni
and Lorenz curves, Rényi entropy and distribution of order statistics are presented. The parameters of the distribution are
estimated using maximum likelihood estimation technique. A Monte Carlo simulation study is conducted to examine the
bias and mean square error of the maximum likelihood estimates. A real dataset is used to illustrate the applicability and
usefulness of the new generalized distribution.
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1. Introduction

Generalized distributions are of tremendous practical importance and have recieved considerable attention by many au-
thors in recent years. Eugene, Lee and Famoye (2002) introduced a generalized beta distributions and presented results on
the beta normal distribution. The work presented by Jones (2004) is also related to the beta-generated family. Recently,
Barreto-Souza, Santos and Cordeiro (2010) introduced the beta generalized exponential distribution where they derived
mathematical properties of the distribution. Also, Pescim et al. (2010) studied the beta generalized half-normal distribu-
tion. Nadarajah, Cordeiro & Ortega (2012) presented general results on the beta modified Weibull distribution. Famoye,
Lee & Olumolade (2005) studied beta Weibull distribution and showed that the lifetime distribution is unimodal and
Cordeiro and Nadarajah (2011) extended the beta Weibull distribution by beta exponentiated Weibull distribution. There
are several generalizations of the log-logistic distribution including beta log-logistic distribution, presented by Lemonte
(2014) and the log-logistic Weibull distribution by Oluyede et al. (2016).

The primary motivation for the development of the beta log-logistic Weibull distribution is the modeling of lifetime data
and other data types with a diverse model that takes into consideration not only shape, and scale but also skewness, kurtosis
and tail variation. Also, motivated by various applications of log-logistic, Weibull and beta distributions in several areas
including reliability, exponential tilting (weighting) in finance and actuarial sciences, as well as economics, where log-
logistic distribution plays an important role in income, we construct and develop the statistical properties of this new class
of generalized distribution called the beta log-logistic Weibull distribution and apply it to real lifetime data in order to
demonstrate the usefulness of the proposed distribution.

In this paper, the results are organized in the following manner. The beta log-logistic Weibull (BLLoGW) distribution, its
sub-models, quantile function, hazard and reverse hazard functions are given in section 2. In section 3, moments, moment
generating function and conditional moments are presented. Mean deviations, Lorenz and Bonferroni curves are given in
section 4. Section 5 contain results on Rényi entropy, density of the order statistics and L-moments. Maximum likelihood
estimates of the model parameters are given in section 6. A Monte Carlo simulation study to examine the bias and mean
square error of the maximum likelihood estimates are presented in section 7. Section 8 contains an application of the new
model to real data set. A short conclusion is given in section 9.
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2. The Model Definition

If G(x) denote the cumulative distribution function of a random variable X, then a generalized class of distribution can be
defined by

F(x) = IG(x)(a, b) =
1

B(a, b)

∫ G(x)

0
ta−1 (1 − t)b−1 dt, (1)

where the parameters a and b are shape parameters, B(a, b) = Γ(a)Γ(b)/Γ(a + b) denote the beta function and Γ(.) is the
gamma function. The corresponding probability density function (pdf) is given by

f (x) =
1

B(a, b)
[G(x)]a−1 [1 −G(x)]b−1 g(x), (2)

where g(x) is the pdf of the baseline cumulative distribution function (cdf) G(x).

2.1 Beta Log-Logistic Weibull Distribution

In this subsection, the model is presented. A series expansion of the BLLoGW cdf is given. The new BLLoGW cdf is
given by

FBLLoGW (x; c, a, b, α, β) =
1

B(a, b)

∫ GLLoGW (x;c,α,β)

0
ta−1 (1 − t)b−1 dt

= IGLLoGW (x;c,α,β)(a, b), (3)

where GLLoGW (x; c, α, β)=1− (1 + xc)−1 e−αxβ is the log-logistic Weibull cdf (Oluyede et al., 2016) with parameters c, α and
β > 0. If |t| < 1 and b > 0 is real non-integer, we apply series representation

(1 − t)b−1 =

∞∑
j=0

(−1) jΓ(b)
Γ(b − j) j!

t j, (4)

to the BLLoGW cdf to obtain

FBLLoGW (x; c, a, b, α, β) =
1

B(a, b)

∞∑
j=0

(−1) jΓ(b)
Γ(b − j) j!

∫ [
1−(1+xc)−1e−αxβ

]
0

ta+ j−1dt

=
1

B(a, b)

∞∑
j=0

(−1) jΓ(b)
[
1 − (1 + xc)−1 e−αxβ

]a+ j

Γ(b − j) j!(a + j)

=

∞∑
j=0

w ( j, a, b) GELLoGW (x),

for x > 0, c > 0, a > 0, b > 0, α > 0, β > 0, where GELLoGW (x) is the exponentiated log-logistic Weibull cdf with the
exponentiated parameter a + j > 0. The corresponding pdf from equation (2) is given by

fBLLoGW (x; c, a, b, α, β) =
1

B(a, b)

[
1 − (1 + xc)−1 e−αxβ

]a−1 [
(1 + xc)−1 e−αxβ

]b

×
[
cxc−1 (1 + xc)−1

+ αβxβ−1
]

(5)

for x > 0, c > 0, a > 0, b > 0, α > 0, β > 0.

2.2 Expansion of Density Function

In this section, the expansion of the BLLoGW pdf is presented. Applying equation (4) to the expression

(
1 − (1 + xc)−1 e−αxβ

)a−1
=

∞∑
i=0

(−1)iΓ(a)
i!Γ(a − i)

(1 + xc)−i e−α(i)xβ , (6)

the BLLoGW pdf can be written as

fBLLoGW (x; c, a, b, α, β) =
1

B(a, b)

∞∑
i=0

(−1)iΓ(a)
i!Γ(a − i)

(1 + xc)−(i+b) e−α(i+b)xβ
[
cxc−1 (1 + xc)−1

+ αβxβ−1
]
,

(7)
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for x > 0, c > 0, a > 0, b > 0, α > 0, β > 0, where parameter α control the scale of the distribution and the parameters c,
β, a, and b control the shape, skewness and tail weight of the distribution.

Consequently, the BLLoGW pdf can be written as

fBLLoGW (x; c, a, b, α, β) =

∞∑
i=0

w(i, a, b)g(x; c, (i + b), α(i + b), β), (8)

where

w(i, a, b) =
(−1)iΓ(a)

i!Γ(a − i)B(a, b)(i + b)
(9)

and g(x; c, (i + b), α(i + b), β) is the pdf of the Burr XII Weibull distribution with parameters c, (i + b), α(i + b), β > 0.
Plots of the BLLoGW pdf for selected values of the model parameters are given in Figure 1. The graphs of the BLLoGW

Figure 1. Plots of the BLLoGW Density Function

distribution can be increasing and decreasing L-shaped, uni-modal and decreasing-increasing-decreasing among many
potential shapes. The survival or reliability function of the BLLoGW distribution is given by

FBLLoGW (x; c, a, b, α, β) = 1 − IGLLoGW (x;c,α,β)(a, b). (10)

2.3 Hazard and Reverse Hazard Functions

The hazard and reverse hazard functions of the BLLoGW distribution are presented in this subsection. The hazard rate
and reverse hazard functions of the BLLoGW distribution are given by

hF (x) =
fBLLoGW (x)

FBLLoGW (x)
=

[
1 − (1 + xc)−1 e−αxβ

]a−1 [
(1 + xc)−1 e−αxβ

]b

B(a, b)
(
1 − I[1−(1+xc)−1e−αxβ

](a, b)
) [

cxc−1 (1 + xc)−1
+ αβxβ−1

]
, (11)

and

τF (x) =
fBLLoGW (x)
FBLLoGW (x)

=

[
1 − (1 + xc)−1 e−αxβ

]a−1 [
(1 + xc)−1 e−αxβ

]b

B(a, b)I[1−(1+xc)−1e−αxβ
](a, b)

[
cxc−1 (1 + xc)−1

+ αβxβ−1
]
, (12)

respectively. Graphs of the hazard function are presented in Figure 2. The graphs show different shapes including mono-
tonically decreasing and increasing, bathtub followed by upside-down bathtub and upside-down bathtub shapes. The
BLLoGW distribution is flexible to accommodate both monotonic and non-monotonic hazard behaviors that are likely to
be encountered when dealing with lifetime and reliability data.
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Figure 2. Plots of the BLLoGW Hazard Function

2.4 Some Sub-models

In this subsection, the nested-models of the BLLoGW distribution are presented.

• When β = 1, we obtain beta log-logistic exponential (BLLoGE) distribution. The cdf of BLLoGE distribution is
given by

FBLLoGE (x; c, a, b, α) =
1

B(a, b)

∫ GLLoGE (x;c,α)

0
ta−1 (1 − t)b−1 dt, c, a, b, α > 0. (13)

• When β = 2, we obtain beta log-logistic Rayleigh (BLLoGR) distribution. The cdf of BLLoGR distribution is given
by

FBLLoGR (x; c, a, b, α) =
1

B(a, b)

∫ GLLoGR (x;c,α)

0
ta−1 (1 − t)b−1 dt, c, a, b, α > 0. (14)

• When α→ 0+, we obtain beta log-logistic (BLLoG) distribution. The cdf of BLLoG distribution is given by

FBLLoG (x; c, a, b) =
1

B(a, b)

∫ GLLoG (x;c)

0
ta−1 (1 − t)b−1 dt, c, a, b > 0. (15)

• When b = 1, the BLLoGW distribution becomes the exponentiated log-logistic Weibull (ELLoGW) distribution.
The cdf of ELLoGW distribution is given by

FELLoGW (x; c, a, α, β) =
[
1 − (1 + xc)−1 e−αxβ

]a
, c, a, α, β > 0. (16)

• When b = 1 and β = 1, the BLLoGW distribution becomes the exponentiated log-logistic exponential (ELLoGE)
distribution and the cdf is given by

FELLoGE (x; c, a, α, ) =
[
1 − (1 + xc)−1 e−αx

]a
, c, a, α > 0. (17)

• When α → 0+ and b = 1, the BLLoGW distribution becomes the exponentiated log-logistic (ELLoG) distribution.
The cdf of ELLoG distribution is given by

FELLoG (x; c, a) =
[
1 − (1 + xc)−1

]a
, c, a > 0. (18)

• When a = 1, we obtain Lehmann type-II log-logistic Weibull (LELLoGW) distribution. The cdf of LELLoGW
distribution is given by

FLELLoGW (x; c, b, α, β) = 1 −
[
(1 + xc)−1 e−αxβ

]b
, c, b, α, β > 0. (19)
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• When a = 1 and β = 1, we obtain Lehmann type-II log-logistic exponential (LELLoGE) distribution. The cdf is
given by

FLELLoGE (x; c, b, α) = 1 −
[
(1 + xc)−1 e−αx

]b
, c, b, α > 0. (20)

• When a = 1 and β = 2, we obtain Lehmann type-II log-logistic Rayleigh (LELLoGR) distribution. The cdf is given
by

FLELLoGR (x; c, b, α) = 1 −
[
(1 + xc)−1 e−αx2]b

, c, b, α > 0. (21)

• When α→ 0+, and a=1, we obtain Lehmann type-II log-logistic (LELLoG) distribution. The cdf is given by

FLELLoG (x; c, b, ) = 1 −
[
(1 + xc)−1

]b
, c, a, b > 0.

• When a = b = 1, the BLLoGW cdf reduces to the log-logistic Weibull (LLoGW) distribution. The cdf is given by

FLLoGW (x; c, α, β) = 1 − (1 + xc)−1 e−αxβ , c, α, β > 0. (22)

• When a = b = β = 1, the BLLoGW cdf reduces to the log-logistic exponential (LLoGE) cdf and is given by

FLLoGE (x; c, α) = 1 − (1 + xc)−1 e−αx, c, α > 0. (23)

• When a = b = 1 and α→ 0+, the BLLoGW cdf reduces to the log-logistic (LLoG) cdf and is given by

FLLoG (x; c) = 1 − (1 + xc)−1 , c > 0. (24)

2.5 Quantile Function

To obtain the quantile function of the EBW distribution, we can invert the following equation: FBLLoGW (x) = u, 0 ≤ u ≤ 1,
that is,

I1−(1+xc)−1e−αxβ (a, b) = u, and 1 − (1 + xc)−1 e−αxβ = I−1
u (a, b).

Consequently, we obtain the quantile function of the BLLoGW distribution by solving the equation (25) using numerical
methods.

log (1 + xc) + αxβ + log
(
1 − I−1

u (a, b)
)
= 0, (25)

Consequently, random number can be generated based on equation (25). The quantile for selected values of the BLLoGW
distribution parameters are listed in Table 1.

Table 1. BLLoGW quantile for selected values

(c, a, b, α, β)

u (0.8,0.5,5.0,7.0,4.0) (1.0,3.0,2.5,5.0,1.8) (1.2,2.0,3.0,3.0,0.6) (2.2,4.5,1.0,3.5,5.5) (0.9,10.0,12.0,0.9,4.0)

0.1 0.0157 0.2224 0.7348 0.1195 0.5233

0.2 0.0379 0.5026 0.7865 0.1567 0.5909

0.3 0.0656 0.6677 0.8205 0.1885 0.6400

0.4 0.1005 0.7299 0.8473 0.2193 0.6821

0.5 0.1442 0.7685 0.8707 0.2514 0.7215

0.6 0.2009 0.7983 0.8924 0.2868 0.7609

0.7 0.2784 0.8247 0.9139 0.3287 0.8033

0.8 0.3945 0.8509 0.9373 0.3831 0.8527

0.9 0.6077 0.8822 0.9667 0.4686 0.9210
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3. Moments and Conditional Moments

In this section, we present moments and conditional moments of the BLLoGW distribution.

Moments

Moments are used to understand different characteristics of a distribution such as skewness, kurtosis, central tendency and
dispersion.
Theorem: The rth non-central moment of the BLLoGW distribution is given by

E (Xr) =

∞∑
i=0

∞∑
m=0

(−1)i+mΓ(a) [α(i + b)]m

B(a, b)Γ(a − i)i!m!(i + b)
(i + b)B

(
i + b − r

c
− mβ

c
,

r + mβ + c
c

)
+

α(i + b)β
c

B
(
i + b − r

c
− mβ

c
− β

c
,

r + mβ + β
c

)
.

Proof: Now, we apply the expansion ex =
∑∞

p=0
xp

p! to obtain

E (Xr) =

∫ ∞

0
xr fBLLoGW (x)dx

=

∞∑
i=0

(−1)iΓ(a)
i!Γ(a − i)B(a, b)(i + b)

∫ ∞

0
xr (1 + xc)−(i+b) e−α(i+b)xβ

×
[
cxc−1 (1 + xc)−1 (i + b) + α(i + b)βxβ−1

]
dx

=

∞∑
i=0

∞∑
m=0

(−1)i+mΓ(a) [α(i + b)]m

B(a, b)Γ(a − i)i!m!(i + b)

∫ ∞

0
xr+mβ (1 + xc)−(i+b)

×
[
cxc−1 (1 + xc)−1 (i + b) + α(i + b)βxβ−1

]
dx

=

∞∑
i=0

∞∑
m=0

(−1)i+mΓ(a) [α(i + b)]m

B(a, b)Γ(a − i)i!m!(i + b)

[
c(i + b)

∫ ∞

0
xr+mβ+c−1 (1 + xc)−(i+b+1) dx

+ α(i + b)β
∫ ∞

0
xr+mβ+β−1 (1 + xc)−(i+b) dx

]
.

Let y = (1 + xc)−1, then x =
(

1−y
y

) 1
c and dx = − y−2(1−y)

1
c −1y1− 1

c

c dy, so that

E (Xr) =

∞∑
i=0

∞∑
m=0

(−1)i+mΓ(a) [α(i + b)]m

By(a, b)Γ(a − i)i!m!(i + b)

[
c(i + b)

∫ 1

0

[ (1 − y
y

) 1
c ]r+mβ+c−1

yi+b+1 y−2(1 − y)
1
c −1y1− 1

c

c
dy

+ α(i + b)β
∫ 1

0

[ (1 − y
y

) 1
c ]r+mβ+β−1

yi+b y−2(1 − y)
1
c−1y1− 1

c

c
dy

]
=

∞∑
i=0

∞∑
m=0

(−1)i+mΓ(a) [α(i + b)]m

B(a, b)Γ(a − i)i!m!(i + b)

[
(i + b)

∫ 1

0
yi+b− r+mβ+c

c −1(1 − y)
r+mβ+c

c −1dy

+
α(i + b)β

c

∫ 1

0
yi+b− r+mβ+β

c −1(1 − y)
r+mβ+β

c −1dy

=

∞∑
i=0

∞∑
m=0

(−1)i+mΓ(a) [α(i + b)]m

B(a, b)Γ(a − i)i!m!(i + b)
(i + b)B

(
i + b − r

c
− mβ

c
,

r + mβ + c
c

)
+

α(i + b)β
c

B
(
i + b − r

c
− mβ

c
− β

c
,

r + mβ + β
c

)
,

where B(a, b) =
∫ 1

0 ta−1(1 − t)b−1dt is the beta function.

The first six moments, standard deviation (SD), coefficient of variation (CV), coefficient of skewness (CS) and coefficient
of kurtosis (CK) for some selected parameters values of the BLLoGW distribution are given in Table 2. The variance
(σ2), (SD (σ)), CV, CS and CK are given by

σ2 = µ′2 − µ2, CV =
σ

µ
=

√
µ′2 − µ2

µ
=

√
µ′2
µ2 − 1,
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CS =
E

[
(X − µ)3

]
[
E(X − µ)2]3/2 =

µ′3 − 3µµ′2 + 2µ3

(µ′2 − µ2)3/2 , and CK =
E

[
(X − µ)4

]
[
E(X − µ)2]2 =

µ′4 − 4µµ′3 + 6µ2µ′2 − 3µ4

(µ′2 − µ2)2 ,

respectively.

Table 2. BLLoGW Moments for selected parameter values

(c, a, b, α, β)

Moments (8.0,1.0,1.0,2.2,0.9) (6.5,1.0,1.0,4.5,0.8) (5.0,1.0,1.0,2.5,0.6) (4.0,1.0,1.0,2.0,0.9) (3.0,1.0,1.0,5.0,0.3)

EX 0.3774 0.1685 0.2562 0.3992 0.0273

EX2 0.2507 0.0677 0.1693 0.2839 0.0114

EX3 0.2094 0.0408 0.1568 0.2686 0.0107

EX4 0.1989 0.0309 0.1794 0.3130 0.0169

EX5 0.2070 0.0274 0.2479 0.4393 0.0468

EX6 0.2331 0.0272 0.4229 0.7419 0.2651

SD 0.3291 0.1982 0.3219 0.3528 0.1029

CV 0.8722 1.1759 1.2562 0.8838 3.7734

CS 0.9274 2.0684 1.8105 1.2734 8.9839

CK 3.0807 8.1493 6.7484 5.1151 140.6982

Figure 3. Plot of Skewness and Kurtosis for selected parameter values of the BLLoGW distribution

Figure 4. Plot of Skewness and Kurtosis for selected parameter values of the BLLoGW distribution

Plots of skewness and kurtosis of the BLLoGW distribution as a function of different model shape parameters are presented
in Figures 3, 4, 5, and 6. The plots shows the dependence of the kurtosis and skewness measures of the shape parameter
a, b, c and β, respectively. Note that plot of the skewness and kurtosis decreases as the parameters a and β increase, while
the plot of the skewness and kurtosis increase as parameters b and c increase.
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Figure 5. Plot of Skewness and Kurtosis for selected parameter values of the BLLoGW distribution

Figure 6. Plot of Skewness and Kurtosis for selected parameter values of the BLLoGW distribution

3.2 Conditional Moments

The rth conditional moment of the BLLoGW distribution is given by

E (Xr |X > t) =
1

FBLLoGW (t)

∫ ∞

t
xr fBLLoGW (x)dx

=
1

FBLLoGW (t)

∫ ∞

t
xr
∞∑

i=0

(−1)iΓ(a)
B(a, b)(i + b)i!Γ(a − i)

(1 + xc)−(i+b) e−α(i+b)xβ

×
[
cxc−1 (1 + xc)−1 (i + b) + α(i + b)βxβ−1

]
dx

=
1

FBLLoGW (t)

∞∑
i=0

∞∑
m=0

(−1)i+m [α(i + b)]m Γ(a)
B(a, b)(i + b)i!m!Γ(a − i)

× (i + b)B[1+tc]−1

(
i + b − r

c
− mβ

c
,

r + mβ + c
c

)
+

α(i + b)β
c

B[1+tc]−1

(
i + b − r

c
− mβ

c
− β

c
,

r + mβ + β
c

)
,

where By(a, b) =
∫ y

0 ta−1(1− t)b−1dt is the incomplete beta function. The mean residual life function E(X − t|X > t) can be
readily obtained.

4. Mean Deviations, Bonferroni and Lorenz Curves

The amount of scatter in a population can be measured to some extent by the totality of deviations from the mean and
median. These are known as the mean deviation about the mean and the mean deviation about the median.

Bonferroni and Lorenz curves are widely used tool for analyzing and visualizing income inequality. Lorenz curve, L(p)
can be regarded as the proportion of total income volume accumulated by those units with income lower than or equal
to the volume x, and Bonferroni curve, B(p) is the scaled conditional mean curve, that is, ratio of group mean income of
the population. Bonferroni and Lorenz curves have applications not only in economics for the study income and poverty,
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but also in other fields such as reliability, demography, insurance and medicine. Mean deviations, Lorenz and Bonferroni
curves for the BLLoGW distribution are presented in this section.

4.1 Mean Deviations

The mean deviation about the mean µ and the mean deviation about the median M are defined by

δµ(X) =
∫ ∞

0
|x − µ| f (x)dx = 2µF(x) (µ) − 2µ + 2

∫ ∞

µ

x f (x)dx, (26)

and

δM(X) =
∫ ∞

0
|x − M| f (x)dx = −µ + 2

∫ ∞

M
x f (x)dx. (27)

respectively. The mean deviation about the mean µ for BLLoGW distribution is given by

δ1(X) = 2µFBLLoGW (µ) − 2µ + 2T (µ),

where

T (µ) =

∫ ∞

µ

x fBLLoGW (x)dx

=

∞∑
i=0

∞∑
m=0

(−1)i+m [α(i + b)]m Γ(a)
B(a, b)(i + b)i!m!Γ(a − i)

(i + b)B[1+µc]−1

(
i + b − 1

c
− mβ

c
,

1 + mβ + c
c

)
+

α(i + b)β
c

B[1+µc]−1

(
i + b − 1

c
− mβ

c
− β

c
,

1 + mβ + β
c

)
.

The mean deviation about the median M for BLLoGW distribution is given by

δ2(X) = −µ + 2T (M),

where

T (M) =

∫ ∞

M
x fBLLoGW (x)dx

=

∞∑
i=0

∞∑
m=0

(−1)i+m [α(i + b)]m Γ(a)
B(a, b)(i + b)i!m!Γ(a − i)

(i + b)B[1+Mc]−1

(
i + b − 1

c
− mβ

c
,

1 + mβ + c
c

)
+

α(i + b)β
c

B[1+Mc]−1

(
i + b − 1

c
− mβ

c
− β

c
,

1 + mβ + β
c

)
.

4.2 Bonferroni and Lorenz Curves

Lorenz and Bonferroni curves for the BLLoGW distribution are presented in this subsection. Bonferroni curve for the
BLLoGW distribution is given by

B(p) =
1
pµ

∫ q

0
x fBLLoGW (x)dx =

1
pµ

[
µ − T (q)

]
,

where

T (q) =
∫ ∞

q
x fBLLoGW (x)dx =

∞∑
i=0

∞∑
m=0

(−1)i+m [α(i + b)]m Γ(a)
B(a, b)(i + b)i!m!Γ(a − i)

× (i + b)B[1+qc]−1

(
i + b − 1

c
− mβ

c
,

1 + mβ + c
c

)
+

α(i + b)β
c

B[1+qc]−1

(
i + b − 1

c
− mβ

c
− β

c
,

1 + mβ + β
c

)
.

Lorenz curves for the BLLoGW distribution is given by

L(p) =
1
µ

∫ q

0
x fBLLoGW (x)dx =

1
µ

[
µ − T (q)

]
,
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where T (q) is given above.

5. Rényi Entropy and Order Statistics

The concept of entropy plays a vital role in information theory. The entropy of a random variable is defined in terms of
its probability distribution and can be shown to be a good measure of randomness or uncertainty. Order statistics play
an important role in probability and statistics, particularly in reliability and lifetime data analysis. Rényi entropy and
distribution of order statistics from the BLLoGW distribution are presented in this section.

5.1 Rényi Entropy

Rényi entropy is defined as

IR(v) =
1

1 − v
log

(∫ ∞

0
[ fBLLoGW (x; c, a, b, α, β, )]vdx

)
, v , 1, v > 0. (28)

Note that,

f v
BLLoGW

(x) =
1

B(a, b)v

[
1 − (1 + xc)−1 e−αxβ

]av−v [
(1 + xc)−1 e−αxβ

]bv [
cxc−1 (1 + xc)−1

+ αβxβ−1
]v

=
1

B(a, b)v

∞∑
i, j=0

(−1)i+ jΓ(av − v + 1) [α(bv + i)] j

Γ(av − v + 1 − i)i! j!
(1 + xc)−(bv+i) x jβ

[
cxc−1 (1 + xc)−1

+ αβxβ−1
]v
.

Therefore, ∫ ∞

0
f v

BLLoGW
(x)dx =

1
B(a, b)v

∞∑
i, j=0

(−1)i+ jΓ(av − v + 1) [α(bv + i)] j

Γ(av − v + 1 − i)i! j!

×
∫ ∞

0
x jβ (1 + xc)−(bv+i)

[
cxc−1 (1 + xc)−1

+ αβxβ−1
]v

dx.

Using the binomial expansion,[
cxc−1 (1 + xc)−1

+ αβxβ−1
]v
=

∞∑
k=0

(
v
k

) [
cxc−1 (1 + xc)−1

]v−k [
αβxβ−1

]k
, (29)

we have ∫ ∞

0
f v

BLLoGW
(x)dx =

1
B(a, b)v

∞∑
i, j,k=0

(−1)i+ jΓ(av − v + 1) [α(bv + i)] j

Γ(av − v + 1 − i)i! j!

(
v
k

)
× (αβ)k (c)v−k

∫ ∞

0
x jβ+βk+cv−ck−v (1 + xc)−v+k−bv−i dx.

Let y = (1 + xc)−1, then∫ ∞

0
f v

BLLoGW
(x)dx =

1
B(a, b)v

∞∑
i, j,k=0

(−1)i+ jΓ(av − v + 1) [α(bv + i)] j

Γ(av − v + 1 − i)i! j!

(
v
k

)
(αβ)k (c)v−k−1

×
∫ 1

0
ybv−k+i+v− jβ−βk−cv+ck+v

c − 1
c−1(1 − y)

jβ+βk+cv−ck−v
c + 1

c −1dy

=
1

B(a, b)v

∞∑
i, j,k=0

(−1)i+ jΓ(av − v + 1) [α(bv + i)] j

Γ(av − v + 1 − i)i! j!

(
v
k

)
(αβ)k (c)v−k−1

× B
(
bv − k + i + v − jβ − βk − cv + ck + v

c
− 1

c
,

jβ + βk + cv − ck − v
c

+
1
c

)
.

As a result, Rényi entropy is given by

IR(v) =
1

1 − v
log

[ 1
B(a, b)v

∞∑
i, j,k=0

(−1)i+ jΓ(av − v + 1) [α(bv + i)] j

Γ(av − v + 1 − i)i! j!

×
(
v
k

)
(αβ)k (c)v−k−1B

(
bv − k + i + v − jβ − βk − cv + ck + v

c
− 1

c
,

jβ + βk + cv − ck − v
c

+
1
c

)
(30)
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for v > 0, v , 1.

5.2 Order Statistics

Suppose that X1, X2, ...., Xn denote continuous independent BLLoGW random variables with common cdf and pdf. The
pdf of the kth order statistic for a random sample of size n from BLLoGW distribution is given by

gk:n(x) =
n! f (x)

(k − 1)!(n − k)!
[F(x)]k−1[1 − F(x)]n−k

=
n! f (x)

(k − 1)!(n − k)!

n−k∑
p=0

(−1)p
(
n − k

p

)  1
B(a, b)

∞∑
j=0

(−1) jΓ(b)
[
1 − (1 + xc)−1 e−αxβ

]a+ j

Γ(b − j) j!(a + j)


k+p−1

.

(31)

Note that,

[F(x)]k+p−1 =

 1
B(a, b)

∞∑
j=0

(−1) jΓ(b)
[
1 − (1 + xc)−1 e−αxβ

]a+ j

Γ(b − j) j!(a + j)


k+p−1

=
(Γ(b))p+k−1

(B(a, b))p+k−1

∞∑
j=0

da+ j,p+k−1

[
1 − (1 + xc)−1 e−αxβ

] j

(32)

by using the identity
(∑∞

j=0 a jx j
)m
=
∑∞

j=0 c j,mx j for n positive integer (see Gradshteyn and Ryzshik (2000)), where

a j =
(−1) j

Γ(b − j) j!(a + j)
, (33)

da+ j,k+p−1=((a + 1)c0)−1 ∑a+ j
l=1 [(n − i + 1)l − a − j + l]clda+ j−1,k+p−1 and d0=c0

k+p−1. Now, using the series representation

(
1 − (1 + xc)−1 e−αxβ

)k+p−1
=

∞∑
m=0

(−1)mΓ(k + p)
m!Γ(k + p − m)

(1 + xc)−m e−α(m)xβ ,

we have

[F(x)]k+p−1 =
(Γ(b))k+p−1

(B(a, b))k+p−1

∞∑
m=0

(−1)mΓ(k + p)
m!Γ(k + p − m)

(1 + xc)−m e−α(m)xβda+ j,k+p−1.

The distribution of the kth order statistics is given by:

gk:n(x) =
n!(Γ(b))k+p−1Γ(a)

(k − 1)!(n − k)!(B(a, b))k+p

n−k∑
p=0

∞∑
i,m=0

(−1)p+m+iΓ(k + p)
(i + b)Γ(a − i)Γ(p + k − m)m!i!

×
(
n − k

p

)
da+ j,k+p−1 (1 + xc)−(i+b+m) e−α(i+b+m)xβ

[
cxc−1 (1 + xc)−1 (i + b) + α(i + b)βxβ−1

]
.

(34)

The tth moment of the distribution of the ith order statistics of BLLoGW distribution can be derived from the result of
Barakat and Abdelkader (2004), that is,

E[Xt
i:n] = t

n∑
p=n+i−1

(−1)p−n+i−1
(
p − 1
n − i

)(
n
p

) ∫ ∞

0
xt−1[1 − F(x)]pdx. (35)

Note that∫ ∞

0
xt−1[1 − FBLLoGW (x)]pdx =

p∑
l=0

(−1)l
(
p
l

) ∫ ∞

0
xt−1[FBLLoGW (x)]ldx

=

p∑
l=0

(−1)l
(
p
l

) ∫ ∞

0

xt−1

(B(a, b))l

 ∞∑
j=0

(−1) jΓ(b)
[
1 − (1 + xc)−1 e−αxβ

]a+ j

Γ(b − j) j!(a + j)


l

dx.

(36)
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That is,

[
FBLLoGW (x)

]l
=

 1
B(a, b)

∞∑
j=0

(−1) jΓ(b)
[
1 − (1 + xc)−1 e−αxβ

]a+ j

Γ(b − j) j!(a + j)


l

=
Γ(b)l

B(a, b)l

[
1 − (1 + xc)−1 e−αxβ

]al

 ∞∑
j=0

(−1) j
[
1 − (1 + xc)−1 e−αxβ

] j

Γ(b − j) j!(a + j)


l

.

Therefore, ∫ ∞

0
xt−1[1 − FBLLoGW (x)]pdx =

p∑
l=0

(−1)l
(

p
l

)
Γ(b)l

[B(a, b)]l

∫ ∞

0
xt−1

[
1 − (1 + xc)−1 e−αxβ

]al

×
 ∞∑

j=0

a j

[
1 − (1 + xc)−1 e−αxβ

] j
l

dx,

where

a j =
(−1) j

Γ(b − j) j!(a + j)
. (37)

Using the identity
(∑∞

k=0 ak xk
)n
=
∑∞

k=0 ck,nxk for n positive integer (see Gradshteyn and Ryzshik (2000)), we have ∞∑
j=0

a j

[
1 − (1 + xc)−1 e−αxβ

] j
l

=

∞∑
j=0

c j,l

[
1 − (1 + xc)−1 e−αxβ

] j
, (38)

where c0,l = al
0 and c j,l=( ja0)−1 ∑ j

q=1(lq − j + q)aqc j−q,l. Therefore,

∫ ∞

0
xt−1[1 − FBLLoGW (x)]pdx =

p∑
l=0

∞∑
j=0

(−1)l
(

p
l

)
Γ(b)l

[B(a, b)]l c j,l

×
∫ ∞

0
xt−1

[
1 − (1 + xc)−1 e−αxβ

]al+ j
dx.

Note that [
1 − (1 + xc)−1 e−αxβ

]al+ j
=

∞∑
v=0

(−1)vΓ(al + j + 1)
Γ(al + j + 1 − v)v!

[
(1 + xc)−1 e−αxβ

]v
. (39)

Using the series expansion above, we have∫ ∞

0
xt−1[1 − FBLLoGW (x)]pdx =

p∑
l=0

∞∑
j,v=0

(−1)l+v
(

p
l

)
Γ(b)lΓ(al + j + 1)

B(a, b)lΓ(al + j + 1 − v)v!
c j,l

∫ ∞

0
xt−1

[
(1 + xc)−1 e−αxβ

]v
dx

=

p∑
l=0

∞∑
j,v,r=0

(−1)l+v+r
(

p
l

)
Γ(b)lΓ(al + j + 1) (α)r (v)r

B(a, b)lΓ(al + j + 1 − v)v!r!c
c j,l

∫ 1

0
yv− t

c−
rβ
c −1(1 − y)

t+rβ
c −1dy

=

p∑
l=0

∞∑
j,v,r=0

(−1)l+v+r
(

p
l

)
Γ(b)lΓ(al + j + 1) (α)r (v)r

B(a, b)lΓ(al + j + 1 − v)v!r!c
c j,lB

(
v − t

c
− rβ

c
,

t + rβ
c

)
. (40)

Therefore, the tth moment of the distribution of the ith order statistic from BLLoGW distribution is given by

E[Xt
i:n] = t

n∑
p=n+i−1

(−1)p−n+i−1
(
p − 1
n − i

)(
n
p

) ∫ ∞

0
xt−1[1 − FBLLoGW (x)]pdx

= t
n∑

p=n+i−1

p∑
l=0

∞∑
j,v,r=0

(−1)p−n+i+l+v+r−1
(

p
l

)(
p−1
n−i

)(
n
p

)
Γ(b)lΓ(al + j + 1) (α)r (v)r

B(a, b)lΓ(al + j + 1 − v)v!r!c
c j,l

× B
(
v − t

c
− rβ

c
,

t + rβ
c

)
, for c > t + rβ. (41)
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6. Estimation and Inference

Let x1, x2, ..., xn denote a random sample of size n from BLLoGW distribution and φ = (c, a, b, α, β)T the vector of
parameters. The log-likelihood function of the parameter vector can be written as

ℓ = log L = (a − 1)
n∑

i=1

ln
(
1 − (

1 + xc
i
)−1 e−αxβi

)
− (b − 1)

n∑
i=1

ln
((

1 + xc
i
)−1 e−αxβi

)
− ln (B(a, b)) −

n∑
i=1

ln
(
1 + xc

i
) − α n∑

i=1

xβi +
n∑

i=1

ln
(
cxc−1

i
(
1 + xc

i
)−1
+ αβxβ−1

i

)
.

The associated score vector is

Un(φ) =
(
∂ℓ

∂c
,
∂ℓ

∂α
,
∂ℓ

∂β
,
∂ℓ

∂a
,
∂ℓ

∂b

)T

, (42)

where the elements are given by

∂ℓ

∂c
= (a − 1)

n∑
i=1

(1 + xc
i )−2e−αxβi xc

i ln(xi)(
1 −

(
1 + xc

i

)−1
e−αxβi

) − (b − 1)
n∑

i=1

(1 + xc
i )−2e−αxβi xc

i ln(xi)(
1 + xc

i

)−1
e−αxβi

−
n∑

i=1

xc
i ln(xi)(
1 + xc

i

) + n∑
i=1

xc−1
i + cxc−1

i ln(xi) + cxc−1
i xc

i ln(xi)

cxc−1
i

(
1 + xc

i

)−1
+ αβxβ−1

i

, (43)

∂ℓ

∂β
= (a − 1)

n∑
i=1

(
1 + xc

i

)−1
e−αxβi αxβi ln(xi)(

1 −
(
1 + xc

i

)−1
e−αxβi

) + (b − 1)
n∑

i=1

(
1 + xc

i

)−1
e−αxβi αxβi ln(xi)(

1 + xc
i

)−1
e−αxβi

− α

n∑
i=1

xβi ln(xi) +
n∑

i=1

αxβ−1
i (1 + β ln(xi))

cxc−1
i

(
1 + xc

i

)−1
+ αβxβ−1

i

, (44)

∂ℓ

∂α
= (a − 1)

n∑
i=1

(
1 + xc

i

)−1
xβi e−αxβi(

1 −
(
1 + xc

i

)−1
e−αxβi

) + (b − 1)
n∑

i=1

(
1 + xc

i

)−1
xβi e−αxβi(

1 + xc
i

)−1
e−αxβi

−
n∑

i=1

xβi +
n∑

i=1

βxβ−1
i

cxc−1
i

(
1 + xc

i

)−1
+ αβxβ−1

i

,

∂ℓ

∂a
= − (ψ(a) − ψ(a + b)) +

n∑
i=1

(
1 − (

1 + xc
i
)−1 e−αxβi

)
, (45)

and

∂ℓ

∂b
= − (ψ(b) − ψ(a + b)) +

n∑
i=1

((
1 + xc

i
)−1 e−αxβi

)
. (46)

respectively. Solving the nonlinear system equations, Un(φ) = 0 yields the maximum likelihood estimates. These equa-
tions can be solved numerically via iterative methods such as Newton-Raphson technique using statistical software.

We maximized the likelihood function using NLmixed in SAS as well as the function nlm in R (R Development Core
Team (2011)). These functions were applied and executed for wide range of initial values. This process often results or
lead to more than one maximum, however, in these cases, we take the MLEs corresponding to the largest value of the
maxima. In a few cases, no maximum was identified for the selected initial values. In these cases, a new initial value was
tried in order to obtain a maximum.

The issues of existence and uniqueness of the MLEs are theoretical interest and has been studied by several authors
for different distributions including Seregina(2010), Santos Silva and Tenreyros (2010), Zhou (2009), and Xia, Mi, and
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Zhou (2009). At this point we are not able to address the theoretical aspects (existence, uniqueness) of the MLE of the
parameters of the BLLoGW distribution.

6.1 Asymptotic Confidence Interval

The Fisher information of the BLLoGW distribution is a 5 × 5 symmetric matrix given by I(φ) = [Iθi,θ j ]5X5 = E(− ∂
2 log L
∂θi∂θ j

),

i, j = 1, 2, 3, 4, 5. The total Fisher information matrix nI(φ) can be approximated by In(φ̂) ≈
[
− ∂2ℓ

∂θi∂θ j

∣∣∣∣∣
φ=φ̂

]
5X5
, for i, j =

1, 2, 3, 4, 5. Let φ̂ = (â, b̂, ĉ, α̂, β̂) be the maximum likelihood estimates of φ=(a, b, c, α, β). Under the usual regularity
conditions and that the parameters are in the interior of the parameter space, but not on the boundary, are met, we have
√

n(φ̂-φ̂)
d→ N5(0, I−1(φ)), where I(φ) is the expected Fisher information matrix. The multivariate normal distribution with

mean vector 0 and covariance matrix I(φ) can be used to construct confidence intervals for the BLLoGW distribution
parameters. A large sample 100(1 − ξ)% two-sided confidence intervals for BLLoGW distribution parameters: a, b, c, α

and β are given by: â±Zξ/2
√

I−1
aa (φ̂), b̂±Zξ/2

√
I−1
bb (φ̂), α̂±Zξ/2

√
I−1
αα(φ̂) β̂±Zξ/2

√
I−1
ββ (φ̂), and ĉ±Zξ/2

√
I−1
cc (φ̂), where

Zξ/2 is the 1 − ξ
2 quantile of the standard normal distribution.

6.2 Likelihood Ratio Test

The likelihood ratio (LR) test can be used to compare the fit of the BLLoGW distribution with its nested-models for a
given data set. For example, to test a = b = c = 1, the LR statistic is ω = 2[ln(L(ĉ, â, b̂, α̂, β̂)) − ln(L(1, 1, 1, α̃, β̃))],
where ĉ, â, b̂, α̂, and β̂ are the unrestricted estimates, and α̃ and β̃ are the restricted estimates. The LR test rejects the null
hypothesis if ω > χ2

d
, where χ2

d
denote the upper 100d% point of the χ2 distribution with 3 degrees of freedom.

7. Simulation Study

The performance and accuracy of MLEs of the BLLoGW distribution parameters is examined by conducting a simulation
study in this section.

The simulation study is repeated N = 2000 times with each sample size n = 35, 50, 70, 100, 200, 400, 800, 1600 and true
parameters values I : a = 1, b = 1, c = 1, α = 0.02, β = 2.2 and II : a = 1, b = 1, c = 0.8, α = 0.5, β = 3. In this simulation
study, we computed three quantities: the mean estimate, root mean square error and average bias. The mean estimate,
average bias (Abias) and root mean square error (RMSE) of the MLE φ̂ for the parameter φ = a, b, c, α, β are given by

Mean =
∑N

i=1 φ̂i

N , ABias(φ̂) =
∑N

i=1(φ̂i−φ)
N and RMS E =

√∑N
i=1(φ̂i−φ)2

N , respectively. The mean MLEs of the BLLoGW
distribution parameters along with their respective root mean squared errors (RMSE) and average bias for different sample
sizes are listed in Table 3.
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Table 3. Monte Carlo Simulation Results: Mean, Average Bias and RMSE

I II

Parameter n Mean Average Bias RMSE Mean Average Bias RMSE

a 35 9.9150 8.9150 22.6950 10.3933 9.3933 23.4362
50 8.4664 7.4664 22.0104 7.8071 6.8071 17.7589
70 6.3712 5.3712 17.5209 6.7053 5.7053 14.6949
100 5.0748 4.0748 14.4317 6.0698 5.0698 12.3993
200 2.5801 1.5801 6.9832 4.4065 3.4065 9.3691
400 1.9886 0.9886 5.1553 3.0216 2.0216 6.1737
800 1.3256 0.3256 1.7279 1.9382 0.9381 3.7781
1600 1.1287 0.1287 0.5203 1.4826 0.4826 2.4887

b 35 9.3545 8.3545 22.6797 9.8245 8.8245 23.3862
50 8.0962 7.0962 21.6772 7.2515 6.2515 17.6077
70 6.1140 5.1140 17.1819 6.1587 5.1587 14.2823
100 4.9397 3.9397 14.1993 5.4726 4.4726 11.8467
200 2.5441 1.5441 6.8594 3.8884 2.8884 8.6754
400 1.9800 0.9800 5.1388 2.6128 1.6158 5.5992
800 1.3172 0.3172 1.7139 1.6353 0.6353 3.3627
1600 1.1241 0.1241 0.5129 1.2164 0.2164 2.1924

c 35 2.1987 1.9187 2.0646 1.9752 1.1752 2.0525
50 1.3183 0.3183 1.6161 1.9222 1.1222 2.0422
70 1.2193 0.2196 1.0583 1.7558 0.9558 1.0843
100 1.2619 0.2619 0.9383 1.6413 0.8413 1.0019
200 1.1557 0.1557 0.6914 1.5667 0.7667 0.8545
400 1.0669 0.0669 0.5177 1.1015 0.3015 0.7588
800 1.0251 0.0258 0.3651 1.0963 0.2963 0.6174
1600 1.0067 0.0067 0.2502 1.0517 0.2517 0.4857

α 35 0.7919 0.2919 1.8947 0.7929 0.2929 1.8015
50 0.1567 0.1367 1.0336 0.7773 0.2773 1.7688
70 0.1248 0.1048 1.1052 0.7159 0.2159 1.6068
100 0.0708 0.0508 0.4115 0.7270 0.2270 1.4274
200 0.0410 0.0210 0.1406 0.6552 0.1552 0.9203
400 0.0275 0.0075 0.0393 0.6354 0.1354 0.6805
800 0.0244 0.0044 0.0243 0.5654 0.0654 0.4141
1600 0.0221 0.0021 0.0139 0.5429 0.0429 0.2917

β 35 3.8670 0.8670 2.9265 3.8255 0.8256 2.8539
50 2.6502 0.4502 1.3907 3.6269 0.6289 2.5258
70 2.6205 0.4205 1.2397 3.4538 0.4538 1.9566
100 2.6051 0.4051 1.2056 3.1443 0.1443 0.3926
200 2.5591 0.3591 0.9352 2.9959 -0.0041 0.8291
400 2.3593 0.1593 0.6060 2.9615 -0.0385 0.6049
800 2.2581 0.0581 0.4069 2.9874 -0.0126 0.4349
1600 2.2215 0.0215 0.2725 2.9699 -0.0301 0.3207

From the results in the Table 3, it can be verified that the mean estimates of the parameters converges to the true parameter
and the RMSEs decay toward zero as the sample size n increases. We also notice that for all the parametric values, the
biases decrease as the sample size n increases.

8. Application

In this section, we present an example to illustrate the flexibility of the BLLoGW distribution and its sub-models for data
fitting. We compared the fit of the BLLoGW distribution with the fits of the nested BLLoG, ELLoG, LLoG distributions
and the non-nested beta Weibull log-logistic (BWLLoG) distribution. The pdf of the BWLLoG distribution (Makubate et
al. (2018)) is given by

gBWLLoG (x; a, b, c, α, β) =
αβc

B(a, b)
xc−1(1 + xc)−2

[
1 − (1 + xc)−1

]β−1[
(1 + xc)−1]β+1

× exp
{
−αb

[
(1 + xc) − 1

]β} [1 − exp
{
−α [

(1 + xc) − 1
]β}]a−1

. (47)

for a, b, c, α, β > 0.

8.1 Stress-Rupture Life of Kevlar 49/Epoxy Strands Data

This data reported by Cooray and Ananda (2008) consist of observations that represent the stress-rupture life of kevlar
49/epoxy strands which are subjected to constant sustained pressure at the 90% stress level until all have failed, so that
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the complete dataset with the exact times of failure is recorded and shown in Table ??. Andrews and Herzberg (1985)
and Barlow, Toland and Freeman (1984) gives the recorded failure times in hours. Initial values for BLLoGW model in R
code are a = 0.8, b = 1.0, c = 0.2, α = 1.0, β = 2.0.

Table 4. Failure times data of kevlar 49/epoxy strands with pressure at 90%

0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.04 0.05 0.06 0.07 0.07 0.08 0.09
0.09 0.10 0.10 0.11 0.11 0.12 0.13 0.18 0.19 0.20 0.23 0.24 0.24 0.29
0.34 0.35 0.36 0.38 0.40 0.42 0.43 0.52 0.54 0.56 0.60 0.60 0.63 0.65
0.67 0.68 0.72 0.72 0.72 0.73 0.79 0.79 0.80 0.80 0.83 0.85 0.90 0.92
0.95 0.99 1.00 1.01 1.02 1.03 1.05 1.10 1.10 1.11 1.15 1.18 1.20 1.29
1.31 1.33 1.34 1.40 1.43 1.45 1.50 1.51 1.52 1.53 1.54 1.54 1.55 1.58
4.20 4.69 7.89

The asymptotic covariance matrix of the MLE’s for the BLLoGW distribution I−1
n (φ̂) is given by:

232.886258 202.793181 −4.46670232 −5.09291312 −4.69378563
202.793181 178.012075 −3.83400390 −4.61840501 −3.87711698
−4.46670232 −3.83400390 0.08883694 0.09040585 0.09748933
−5.0929132 −4.61840501 0.09040585 0.13669012 −0.07204885
−4.693786 3.87711698 0.09748933 −0.07204885 0.14308952

 (48)

and the approximate 95% two-sided confidence interval for the parameters a, b, c, α and β are given by:

6.46809 ± 29.9107982, 5.07658 ± 26.1505485, 0.22372 ± 0.5841883, 0.244637 ± 0.7246439,

and 0.93981 ± 0.7414126, respectively.

Table 5 gives the maximum likelihood estimates (MLE), standard errors (in parentheses), Akaike Information Criterion
(AIC), Bayesian Information Criterion (BIC), Consistent Akaike Information Criterion (AICC) and Hannan-Quinn infor-
mation criterion (HQIC) of BLLoGW, BLLoG, ELLoG, LLoG and BWLLoG distributions. The values of the goodness-
of-fit statistics W∗ and A∗ are also presented. The smaller the values of these statistics the better the fit. For the probability

plot, we plotted F(y( j); ĉ, α̂, β̂, â, b̂) against
j − 0.375
n + 0.25

, j = 1, 2, · · · , n, where y( j) are the ordered values of the observed
data. The measures of closeness are given by the sum of squares

S S =
n∑

j=1

[
F(y( j)) −

(
j − 0.375
n + 0.25

)]2

.

Table 5. Estimation of Models for Failure Times of Kevlar Dataset

Estimates Statistics
Model â b̂ ĉ α̂ β̂ −2 log L AIC AICC BIC HIQC W∗ A∗

BLLoGW 6.468097 5.07658 0.22372 0.24463 0.93981 204.0771 214.0771 214.7087 227.1527 219.3705 0.1333 0.8042
(15.26061) (13.34212) (0.29806) (0.36972) (0.37827)

BLLoG 0.581650 1.091929 1.295956 - - 462.1078 468.1078 468.3552 475.9531 471.2838 0.4176 2.2683
(0.036581) (0.133559) (0.108778) - -

ELLoG 1.211659 0.570392 - - - 587.683 591.683 3591.8055 596.9133 593.8004 0.4388 2.3777
(0.096551) (0.034775) - - -

LLoG 1.2265 - - - - 237.589 239.589 239.6294 242.2041 240.6476 0.4760 2.5805
(0.1057) - - - -

BWLLoG 0.70773 0.15311 1.45779 5.74192 0.72356 204.8205 214.8205 215.4521 227.8961 220.1139 0.4673 3.3332
(0.21792) (0.15378) (84.60684) (6.12430) (41.99367)

64



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 7, No. 6; 2018

The LR statistics for testing the hypothesis H0: BLLoG against Ha: BLLoGW, H0: ELLoG against Ha: BLLoGW and H0:
LLOG against Ha: BLLoGW are 258.0299 (p-value < 0.0001), 374.6059 (p-value < 0.0001), 33.5119 (p-value < 0.0001),
respectively. Since the p-values are small, we reject the null hypothesis and conclude that the BLLoGW distribution is
significantly different from BLLoG, ELLoG and LLoG distributions. The BLLoGW distribution is the better model since
it has the smallest value for each of the statistics: AIC, AICC, BIC and HIQC. The values of the goodness-of-fit statistics
W∗ and A∗ gives clear and convincing evidence that the BLLoGW distribution fits better for kevlar 49/epoxy strands data.
Plots of the estimated pdf of the BLLoGW, BLLoG, ELLoG, LLoG and BWLLoG distributions fitted to the dataset are
given in Figure 7. The Figure showed that BLLoGW distribution is good lifetime distribution when compared with the
three sub-models and the non-nested BWLLoG distribution. Also, the Probability Plots of the compared distributions
using the failure times of the kevlar data set is shown in Figure 8. The value of SS from the probability plots is smallest
for the BLLoGW distribution.

Figure 7. Fitted PDF for Failure Times of Kevlar Data Set

Figure 8. Probability Plots for Failure Times of Kevlar Data Set
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9. Concluding Remarks

A new and generalized distribution called the beta log-logistic Weibull (BLLoGW) distribution has been proposed and
studied. The BLLoGW distribution has several new and well known distributions as special cases. The BLLoGW distri-
bution possesses hazard function with very flexible behavior. We also obtain closed form expressions for the moments,
conditional moments, mean deviations, Bonferroni and Lorenz curves, distribution of order statistics and Rényi entropy.
Maximum likelihood estimation technique was used to estimate the model parameters. Finally, the BLLoGW distribution
is fitted to a real dataset in order to illustrate its applicability and usefulness.
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