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Abstract

Machine translation, a product of technical growth, is advancing the field of translation. With the aid of
visualization analysis techniques, this study examines the machine translation literature published in the CNKI
database from 1959 to 2021 while analyzing its history, key issues, arguments, and future directions of related
research. The proposal is then made that, in light of the tendency toward technological advancement, the fields
of translation research and education should take on the disciplinary duties associated with the motivation for
“collaborations between humans and machine and use of machines for humans.” The study also emphasizes how
important it is to improve students’ technological competence, support the localization of language services, and
integrate information technology into language and translation instruction.

Keywords: machine translation, human-machine cooperation, translation research and education, literature
visualization research

1. Research Background

With the progress of high technology, machine translation has experienced a long history and quick growth. The
following phases have been reached in its development, according to Lulu Gao and Wen Zhao (2020): (1) the
period of initial development (1949-1961): In 1949, Warren Weaver proposed the use of computers for
translation, arguing that in order to avoid “word-for-word” translation, it was essential to consider how context
affects lexical meaning, linguistic logic and reasoning, the translation and decoding process, as well as the
universal characteristics of the language (Poibeau, 2017). (2) The period of sluggish development (1960—1967)
saw the establishment of a number of machine translation models based on syntactic analysis. In 1958,
Bar-Hillel drew attention to the semantic barrier that automatic machine translation systems faced. He proposed
that they be overcome through machine-assisted translation to give the translator the aid they need during the
pre- and post-translation processes (Bar-Hillel, 1958, 1959). The Automatic Language Processing Advisory
Committee (ALPAC) was founded around this time to evaluate the financing for the advancement of machine
translation. (3) the period of slow development (1967-1990): Although machine translation as a whole
developed slowly, there was some significant potential in some nations and regions, including Canada, France,
and the European Union. For instance, the European Union collaborated with Systran, one of the first machine
translation companies founded by Peter Toma in 1968, to realize automatic machine translation between EU
member languages. (4) The period of new development (1990-): The International Conference on
Computational Linguistics in Finland in 1990 launched the statistical machine translation era based on massively
parallel corpora, which was followed by the emergence of neural machine translation based on “deep learning”
(Hinton et al., 2012).

In recent years, continuous breakthroughs in machine translation technology have been making headlines. For
example, on September 27, 2016, “Google Brain Group” announced the launch of a new neural machine
translation system GNMT (Google Neural Machine Translation system) (Note 1), which can significantly reduce
the translation error rate between key language pairs done by the more classic machine translation models
significantly down to 55%—85%; on December 22, 2016, the research team rode the wave of success to relaunch
the Zero-shot multilingual neural machine translation system, which enables translation of language pairs and
phrases that have not been previously trained for direct translation (Note 2). As research on big data, deep
learning, and neural network machine translation continues to gain momentum, machine translation is bound to
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replace humans to complete a larger number of translation tasks. The gradual transformation of the translation
job market will inevitably make foreign language teaching adjust accordingly. The research on machine
translation will undoubtedly be the key to efficient integration and significant breakthrough. Therefore, this
study combines the trend analysis of literature with the review of representative literature, aiming to present the
history, focus, and development prospects of relevant studies in the CNKI database from January 1959 to June
2021.

2. Research Tools and Literature Sources

A literature review is carried out with CiteSpace, a tool for visualizing literature. It is a powerful tool for
scientific literature research and is developed by Dr. Chaomei Chen of the School of Information Science and
Technology at Redsell University in the United States in conjunction with the WISE Lab at Dalian University of
Technology, which can provide visual analysisof literature based on data sources such as Web of Science,
PubMed, arXiv, ADS, NSF, CNKI, etc. (Chen, 2004).

First, we searched the CNKI database, the largest research database in China, for journal papers containing the
phrase “machine translation” in the titles. We found that the first journal paper included in the database was
published in 1959. From January 1959 to June 2021, a total of 1723 papers were published in both English and
Chinese journals, and these 1723 papers formed the data pool for this study. Based on a detailed review of
representative studies, a total of 649 Chinese journal articles from the fields of “foreign language and literature”
and “Chinese language and literature” will be discussed.

3. Overall Research Developments

Among the 1723 Chinese and English journal papers containing “machine translation” in the titles collected in
the CNKI database from January 1959 to June 2021, the following research trends of machine translation are
shown: In terms of the number ofstudies, the related studies have been developing continuously since 2001,
especially in 2016.

300
- RERFEBS

_. 200 —
&
ﬁ

100 —

0 | | | | | | | | | | | | |
7%2) 7%6 ;%9 ,999 /9% 79%) 800/ 8007 800) eo}o e% eo,d 80,9

Figure 1. Trend of the number of Chinese and English journal papers with the title containing “machine
translation” in CNKI

In terms of topic distribution, in addition to “machine translation,” there are “neural machine translation,”
“machine translation systems,” “machine translationresearch,” “statistical machine translation,” and “statistical
machine translation,” which reflect the achievements of technological innovation in machine translation.
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Figure 2. Topic distribution of Chinese and English journal papers with the title containing “machine translation”
in CNKI

In terms of journal distribution, Computational Linguistics, Chinese Translation, and IEEE/ACM Transactions
on Computational Biology and Bioinformatics are the three academic journals with the most “machine

translation”-related papers, two of which are foreign academic journals in the field of computer expertise.
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Figure 3. Journal distribution of Chinese and English journal papers with the title containing “machine
translation” in CNKI

Concerning disciplinary distribution, Chinese language and literature, computer science and applications, and
foreign language and literature are the three disciplines with the most published studies on “machine translation.”
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Figure 4. Disciplinary distribution of Chinese and English journal papers with the title containing “machine
translation” in CNKI

Regarding authorship, papers on machine translation were mainly finished by scholars working in computer
science.
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Figure 5. Authorship distribution of Chinese and English journal papers withthe title containing “machine
translation” in CNKI

To further understand the work in the field of linguistics, literature, and translation on the issue of machine
translation, we continue to focus on the visual analysis of literature in CiteSpace for 649 documents belonging to
two disciplines, Chinese language and literature, and foreign language and literature. First, the informationon the
frequency of occurrence, centrality, and year of the first occurrence of keywords is presented. The following
table contains the top 30 keywords in the order of frequency.

101



ijel.ccsenet.org

International Journal of English Linguistics

Vol. 12, No. 6;2022

Table 1. Keywords used in the journals of Chinese and foreign language and literature with the title containing
“machine translation” in CNKI

No. Keyword Frequency centrality Year of the first occurrence
1 % % 1 (machine translation) 531 0.92 1959
2 K % 8 1E & (low-resource language) 64 0.02 1959
3 = %A 4. % & 3% (Chinese and Korean machine translation) 63 0.00 1959
4 [ ¥ (translate back) 63 0.00 1959
5 $£ F % #(shared parameter) 63 0.00 1959
6 % 1% & 4 H % B (multilingual neural machine translation) 60 0.00 1959
7 # R L AE (differentiating features) 59 0.00 1959
8 % 1% = # ¥ (multilingual translation) 59 0.00 1959
9 # 1k % 3] (intensive learning) 59 0.00 1959
10 . Y "B B 1 (unsupervised translation) 58 0.00 1959
11 .2 B 1 i & 1T & (quality assessment of machine translation) 53 0.00 1959
12 AX #1% = (pivot language) 50 0.00 1959
13 A I ## (manual translation) 49 0.14 1984
14 2 W % .2 115 (neural network machine translation) 49 0.01 1959
15 WX -H4 2 HL 25 15 (Chinese-Vietnamese Neural Machine 47 0.00 1959

Translation)
16 X VE -3 1E-45 4] 1E (Chinese-English-Burmese) 45 0.00 1959
17 P - 1T % #& (Chinese-Vietnamese parallel corpus) 43 0.00 1959
18 i B ¥ JR 5 = (scarce resource language) 38 0.00 1959
19 4 2 #L % B % (neural machine translation) 37 0.11 2017
20 B 4| 4 (joint training) 34 0.00 1959
21 it #% % 3 (transfer learning) 31 0.01 1959
22 & % [8] B2 4t (semantic space mapping) 29 0.00 1959
23 1% & i % (language features) 29 0.00 1959
24 i & fl it (quality estimation) 26 0.00 1959
25 M2 #11F Z % (machine translation systems) 25 0.15 1982
26 A L% b (artificial intelligence) 25 0.05 1997
27 ¥ J& %% %8 (post-translation editing) 20 0.05 2017
28 % 1t 1. B 1 (statistical machine translation) 15 0.07 2009
29 A % B #F & (machine translation research) 15 0.03 1982
30 1% ¥} (corpus) 12 0.02 2000
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Figure 6. Keyword clustering of the papers with the title containing “machine translation” on Chinese and
foreign language and literature in CNKI
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It can be seen that, since the first literature in 1959, some traditional keywords (such as “back translation,”
“shared parameters,” “continuous differentiation features,” “enhanced learning of multilingual translation,”
“assessment of machine translation quality”, etc.) have continued to be hot research concerns. However,
discussions on the differences and cooperation between machine translation and human translation have also
been persisting, as the keywords like “human translation” and “post-translation editing” arise.

EL T3

More importantly, with the development of technology and the deepening of technical application, some
emerging keywords representing the characteristics of the times have emerged in recent years, such as “neural
machine translation,” “artificial intelligence,” “post-translation editing, “statistical machine translation,”
“corpus,” etc. The list in Figure 7 also reflects that the keywords with more prominent citation bursts in different
periods are “neural machine translation,” “post-translation editing,” “statistical machine translation,” “machine
translation,” “quality assessment of machine translation,” “computational linguistics,” “attention mechanisms,”
“deep learning,” etc. In terms of the duration of citation bursts, in 2021, the research in this field will continue to
be the main focus, with popular key terms like “neural machine translation,” “neural networks,” “artificial
intelligence,” “artificial intelligence,” and “post-translation editing,” among others. The keywords “statistical
machine translation,” “deep learning,” and “neural network” fully reflect the trend of machine translation
development. “Statistical machine translation” refers to the corpus-based statistical machine translation that
automatically constructs machine translation models by word alignment, phrase alignment, and sentence
alignment in parallel texts. “Deep Learning,” proposed by Hinton et al. in 2006, is multi-level nonlinear
processing. It provides more accurate results and efficient performance in processing problems than traditional
linear processing. “Simulated neural network™ is to enable the machine to have the ability to automatically learn
abstract expressions and thus achieve the best results in machine translation. The neural machine translation
based on deep learning simulates how the human brain learns and processes information, thus replacing many
types of traditional machine translations.

<, EEINT3

Keywords Year Strength Begin End 1959 - 2021
EYLEEENE 1959 17.342017 2021
YiaEEh=E 1959 16.952018 2021
EEET 1959 10.23 1959 1983
- 3VE=I DS By 1959 9.711959 1983
Bk 1959 9.451959 1981
EEEE 1959 9.32017 2021
E=— 1959 9.221960 1981
EESS 1959 9.21 1959 1981
WEREPEE 1959 9.17 1959 1986
B 1959 8.97 1960 1981
BEAIER 1959 8.751959 1984
EFeFE3 1959 8.741959 1981
== 1959 8.021960 1981
ZitylEEEE 1959 7.942009 2017
IREFTEGE 1959 7.381959 1986
HsmEhEESs 1959 7.241982 1999
RIE-EE-AEEE 1959 6.791959 1986
XiaiEs 1959 6.241959 1997
ATERE 1959 6.052017 2021
IR -S| R8N 1959 5.981959 1997
HiEEEhETS 1959 5.791982 1998
S REYLREEEFE 1959 5.581959 1986
AT#E= 1959 5.582018 2019
YEEEhEmEIFE 1959 5.371959 1995
AREE 1959 4892017 2021
EE 1959 4682018 2021
EIEEE 1959 4.412002 2004
E=E LS 1959 4.392017 2019
REFES 1959 4292017 2018

Figure 7. Keyword citation bursts of the papers with the title containing “machine translation” on Chinese and
foreign language and literature in CNKI

Table 2 reflects the information of the top 20 authors with the highest frequencyof citations. Among them, Xiong
Deyi and Renqing Daoji, who have been cited more frequently in recent years, are active in the research on
neural machine translation.
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Table 2. Top authors of the papers with the title containing “machine translation” on Chinese and foreign
language and literature in CNKI

Ranking Names of the authors Frequency Year of the first appearance
1 4 IE #(Yu Zhengtao) 128 1959
2 7 & #(Gao Shengxiang) 127 1959
3 %1% B (Zhu Junguo) 126 1959
4 % 7% (Feng Chong) 64 1959
5 # % —(Cui Rongyi) 60 1959
6 2= &, W (Li Feiyu) 57 1959
7 Z= B (Li Hongzheng) 57 1959
8 Z9) #(Li Xinyu) 57 1959
9 # 1% /£ (Yang Fu’an) 57 1959
10 £ 4L (Mao Cunli) 56 1959
11 J# 5 18 (Man Chibo) 56 1959
12 # ¢4 (Yang Feiyang) 56 1959
13 # I # (Zhao Yahui) 48 1959
14 4 3 (Zou Xiang) 46 1959
15 # 7 # (Huang He Yan) 45 1959
16 G 7 (Fung Zhiwei) 21 1978
17 & /5 % (Xiong Deyi) 10 2017
18 7K X (Zhang Zheng) 9 2003
19 x| # (Liu Qun) 7 1998
20 1= JK # /R % (Renqingdao’erji) 7 2018

4. Review of Representative Studies

After outlining the overall trend of machine translation, the following review will be conducted according to the
categories based on the perspectives of literature reviews on machine translation, studies on text-based features
of translation, comparative studies on human translation and machine translation, interdisciplinary studies on
machine translation and linguistics, and challenges and applications of machine translation.

4.1 Literature Reviews on Machine Translation

The studies reviewing the research on machine translation include Zhiwei Feng (2018), Hanji Li (2018),
Xiangling Wang (2019), Lulu Gao and Wen Zhao (2020). Zhiwei Feng (2018) demonstrated the close
connection between machine translation and human translation. At the same time, analyzing the prevailing
situation, the study concluded that although machine translation predates artificial intelligence, both are
immature and still in the development stage. Hanji Li (2018) and Xiangling Wang (2019) provided an overview
of the relevant research trends with the visualization tool of CiteSpace. Hanji Li (2018) discussed the papers
related to “machine translation” published in CSSCI and Chinese core journals in CNKI during the period of
2007-2016, reported the hot areas and keywords of machine translation research in China and proposed that the
linguistic community and the computer science community should cooperate to improve machine translation.
Reviewing 12 core foreign language journals included in CNKI, Xiangling Wang (2019) compared the history of
machine translation research explored by domestic translation scholars in the past 60 years, and agreed with the
operation model of “machine translation + machine-assisted tools + post-translation editing,” pointing out that
the cooperation and exchange among scholars, as well as those between scholars and industry, should be further
strengthened. It also suggested that it should be crucial to integrate the training of translation technology into
traditional translation curricula. Lulu Gao and Wen Zhao (2020) outlined the technical characteristics,
development trends, advantages and limitations of machine translation at various stages, and the opportunities
and challenges facing its development. At the same time, the study pointed out that given the statistics related to
machine translation, for literary and philosophical texts with less corpus, a combination of machine translation
and human translation can be chosen.

Regarding corpus construction, Zhiwei Feng (2020) proposed that parallel corpora are the basis of the methods
for statistical machine translation as well as neural machine translation. He emphasized the importance of
large-scale and authentic corpus and pointed out that the lack of linguistic data resources is a challenge for neural
machine translation at present. For corpus-based machine translation, Jie Zhu (2019) compared the results of two
approaches, rule-based and corpus-based, and concluded that a rule-based approach is a rationalist approach with
rigid grammatical rules, low quality and high labor cost; a corpus-based approach is an empiricist approach with
high accuracy and easy understanding.
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As to the research on statistical machine translation and neural machine translation, Yunlu He et al. (2019)
proposed the principles of rule-based machine translation, statistical machine translation and neural machine
translation, and analyzed the advantages and disadvantages of machine translation. Jinsong Su et al. (2020)
investigated machine translation from discourse and introduced the existing research on neural machine
translation from three aspects: context modeling (single encoder, multiple encoder, and multiple decoders),model
training, and model analysis. They finally analyzed the main difficulties currently faced by neural machine
translation and claimed that future work should focus more on building massively parallel data, designing more
reasonable automatic evaluation indexes for translations, and conducting research on simplifying the neural
machine translation models of discourse.

Regarding research-based teaching, Ying Qin (2018) discussed the quality assessment of machine translation
based on neural networks and the impact on translation teaching. She proposed that in the teaching of translation,
the division of labor between human and machine should be clarified, and traditional teaching methods should be
improved with the introduction of post-translation editing courses.

4.2 Studies on Machine Translation Based on Text Types

The applicability of machine translation to diverse types of texts is also the focus of related research because text
types and features directly affect the quality of machine translation. Considering the machine translation of legal
texts, Falian Zhang (2020) found that there are some issues with language comprehension and logic judgment in
the machine translation of legal texts by comparing the translation capabilities of four machine translators,
namely Google, Bing, Oulu, and Tencent Translate. He proposed that machine translation still requires human
translators with professional knowledge for post-translation editing and reviewing.

On the machine translation of medical texts, Bin Tang and Shuo Chen (2020) compared the performance of
medical texts in seven online machine translation software (Baidu, Sogou, Google, Bing, Jinshan, Youdao, and
Tencent) through data processing and quantitative analysis. They found differences in the seven machine
translations, and none of them could fully achieve translations that met medical standards. This study also
suggested that combining human post-translation editing should be a critical way to ensure the quality of medical
text translation at present and in the future.

On the machine translation of subtitles, using TED talks as the research materials, Weiqing Xiao and Jiahui Gao
(2020) used the FAR model (functional equivalence, acceptability, reading experience) to compare the quality of
English to Chinese subtitles automatically generated by “Wangyi jianwai” of NetEase (% % L. #}) with those of
NetEase Open Class subtitles. This study reported a significant difference between the two, with machine
translation subtitles having more mistakes in semantic segmentation and selection. According to it, we should
concentrate on advancing translation technology and semantic segmentation in this area of translation while
cultivating corresponding post-translation editing skills.

4.3 Comparative Studies on Human Translation and Machine Translation

Machine translation has unique advantages. Jun Yang (2018) proposed two crucial technologies in the revolution
of machine translation: neural machine translation and speech recognition technology. Humans and machine
have distinctive characteristics and uses, and they can be divided but cooperate. Machine translation has great
market prospects in the face of daily communication that does not require exceptionally high quality. Wenhong
Huang (2018) proposed that machine translation has three main functions nowadays: query function, speed-up
function, and reference function, and the application methods are mainly direct translation (low cost and high
efficiency), auxiliary translation (human translation as the main body), and modular translation (translatorsand
translation software form good interaction).

On the other hand, machine translation has inherent defects, the most important of which is that it cannot have
human intelligence to understand human language. Starting from the subjectivity of translators, Wei Chen (2020)
discussed the essential difference between machine translation and human translation and emphasized that even
if the technology of “deep neural network™ is advanced, it still lacks the skills of a human brain — the social
attributes of human beings.

Quality assessment of machine translation is the core of research. Qing Wang and Xiao Ma (2020) analyzed the
linguistic problems (lexical polysemy, differences in syntactic structures, word separation, logic of meaning,
context) and the quality assessment in machine translation. They tried to propose a set of quality assessment
methods covering techniques such as statistics, cosine similarity, text sentiment analysis, etc., respectively, from
macroscopic fidelity and accuracy (vocabulary, sentence, semantics, pragmatics) and microscopic perspectives
(word frequency, word collocation, average sentence length, syntactic analysis, text similarity, subject matter,
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text sentiment, and tendency) to examine the translation quality.This study discussed three aspects of assessing
translation quality: linguistic knowledge as a parameter, computer technology as an aid, and translation fidelity
as a criterion; various instruments are discussed in exploring assessment methods: mutual information methods
to calculate relevance (with formulas and cases), word frequency statistics, Stanford Parser tool(for syntactic
analysis), cosine similarity and implicit Dirichlet distribution models to analyze text similarity and keyword
matching at the semantic level. Similar studies are also available, such as Han Na (2018), which selected general
texts, tourism texts, science and technology texts as the test data and compared Google and Youdao translation
systems with human translation to analyze the differences at the lexical, syntactic, and discourse levels. It also
discussed METEOR evaluation criteria based on machine translation, stating that error correction, which is done
by humans, provides a corpus for training machines, which helps to optimize the technology of machine
translation.

The tug-of-war between humans and machines revolves around the two main topics of whether humans will be
replaced by machines and how humans and machines can work together. The prevailing view of current research
is that machinetranslation cannot wholly replace human translation. Research on the future relationship between
machine translation and human translation can be found inJiangbo Tian (2018), Shi-Zhen Song (2019), Ying-Yu
Pang (2019), Gulipina-Jiadi (2020), Li Li (2020), Chaowei Zhu (2018), etc. Chaowei Zhu (2018) argued that
machine translation is unlikely to replace humans, especially since machine translation will never be competent
in areas such as literary translation. The study cited characteristics of literary works such as imagery, emotion,
fiction, metaphor, and polysemy, all of which are difficulties that machine translation has to overcome. In
addition, the study suggested that in the context of quickly evolving web technology, machine-assisted
translation systems, such as Trados, can be used to achieve human-machine cooperation and fully develop
well-rounded translators. In terms of translation education and teaching, the study advised that the
“whole-person education” of translation should be strengthened, dealing with the relationship between
translation ability and humanistic literacy, the relationship between a specialist and a generalist, and the
relationship between national standards and talents’ qualities. Since there is no substitute, the best solution is
cooperation. Shi-Zhen Song (2019), Benjin Zou (2018), and Rong Li (2019) have provided insights on solutions,
such as realizing the combination of technology and humans; implementing human-machine cooperation models
for translating different texts, including machine-led (e.g., processing texts such as WeChat and email),
human-guided (e.g., processing literary and artistic texts), and human-machine cooperation (e.g., dealing with
news and technology texts).

The study of specific models of human-machine cooperation is the key to the implementation of the vision, with
discussions such as those by Xiangling Wang, Tingting Wang (2019), and Mei-Lin Yuan (2019). Xiangling
Wang and Tingting Wang (2019) conducted an empirical study comparing human translation with machine
translation integrated with post-translation editing (human-machine combination). 31 MTI students were
recruited for the study to compare the speed, quality, and attitude of translating scientific and technical texts
from English to Chinese and the MQM (Multidimensional Quality Metric) method was used to measure the
effectiveness of the translation. The findings of this study demonstrate that when human post-editing is used,
machine translation is superior to human translation. The ability of the translators, their attitude (positive or
negative) toward post-editing, and the caliber of the machine translation all affect the quality of the translation.
The best results can be achieved when a translator approaches post-editing with a positive mindset. This study
recommended introducing post-editing in translation teaching and cultivating students’ post-editing ability to
make them more competitive in the translation market.

The most crucial role of human translators in the human-machine cooperation model is in the post-translation
editing session of machine translation. Other major studies on machine post-translation editing include Huijun
Ren et al. (2020), Huifen Zhu et al. (2020), Yuwan Yang (2020), Yating Lian (2020), Xinjie Cai, and Bing Wen
(2021). Yuyuan Yang (2020), Yating Lian (2020), Xinjie Cai, Bing Wen (2021) et al. summarized the types of
errors in machine translation and their distribution. These studies demonstrated that fully automated, high-quality
machine translation is still not achieved, and the introduction of post-translation editing after machine translation
is crucial. Huijian Ren et al. (2020) explored the phenomenon of “translation with emotion, a machine without
coldness.” They exemplified the importance ofpost-translation editing in improving the quality of translations
and conveying human distinctions. Based on Newmark’s translation theory, Huifen Zhu et al. (2020) discussed
the post-translation editing rules of translators at the levels of text, referentiality, coherence, and naturalness
while reviewing many types of mistranslation in machine translation.

4.4 Interdisciplinary Studies on Machine Translation and Linguistics

The development of linguistic research is essential for machine translation breakthroughs. Huijun Zhao and
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Guobin Lin (2020) explored the linguistic path of machine translation intelligence, pointing out that the current
machine translation lacks the guidance of linguistic principles and entirely relies on mathematical model
algorithms. The study further proposed that the fully intelligent machine translation needs sufficient corpus and
scientific learning methods, i.e., solutions in the direction of linguistic studies.

In terms of specific linguistic theory application, Xi Wang and Yang Chen (2019)examined machine-translated
texts from a functional linguistic perspective. The study compared the translations supplied by Google Translate,
Baidu Translate, and the official translations. It focused on evaluating the translations in terms of formal
equivalence, meaning equivalence, and functional equivalence in systematic functional linguistics. According to
this study, humaneness is one of the apparent factors why machine translation cannot replace human translation.
As a result, it is crucial in specific translation research and teaching to focus on using Al research and machine
translation to aid in translation research and education as well as to help students build their skills in evaluating,
deciphering, editing, and amending machine-translation output.

In terms of translation processing of specific language difficulties, several studies also explored lexical,
semantic, and syntactic perspectives. First,at the lexical and semantic level, Chi Yang and Xianze Yang (2020)
combined linguistics and computer science research to discuss the processing of words. For example,
polysemous words can be adequately treatedin different specialized contexts, and a machine translation system
can be used to build a dictionary ofsynonyms. Also, for polysemous words, Shuying Zhu (2019) examined the
mistranslation brought on by multiple meanings in Chinese-English online machine translation, and five
sentences with varying treatments in “Google Translate” and “Youdao Translation” were analyzed with the aid
of NLPIR-ICTCLAS, a tool developed by the Chinese Academy of Sciences. The study concluded that the error
in translation is due to machine translation’s inability to effectively segment words and the misjudgment of the
original text as ungrammatical; as a result, it suggested enlarging the corpus and enhancing the treatment of
polysemous words as a fix.

Second, at the syntactic level, long sentences have always been a focus of translation research. Jing An (2018)
proposed a method of English long sentence segmentation based on dependent syntactic analysis and sequence
annotation, which showed that machine translation based on long sentence segmentation could achieve better
results.

The processing of chunks is also an important topic at the syntactic level. Fumao Hu and Keliang Zhang (2018)
studied bilingual chunk correspondence for machine translation. They proposed a theoretical model for chunk
composition analysis (i.e., triangular graphs with constructions, chunks, and words) and an analysis of chunk
characteristics within the framework of constructional grammar. In addition, the study presented a theoretical
basis and empirical support for the establishment of an English-Chinese construction database of business letters,
which explored a new way to improve the translation accuracy of machine translation.

The subject-verb-object structure is a core category in syntactic structure. Using 50 English news articles as the
corpus, Yuan Chen (2020b) analyzed the lexicaland syntactic errors produced by machine translation in the
subject-verb-object structure, concluding that grammatical rules must be added to the machine translation
system’s foundation in order to improve the quality.

Chinese is a topic-prominent language, and arguments of verbs can be omitted when the context is clear, thus
also posing difficulties for linguistic analysis and cross-linguistic translation. Taking Google online translation as
an example, Le Chang and Jun Gao (2020) summarized two types of subject mistranslation in Chinese-English
machine translation, i.e., linguistic mistranslation and pragmatic mistranslation. They proposed post-translation
editing strategies of complementary subject translation and subject adjustment.

Special and complex sentences have cross-linguistic characteristics and are naturally an important topic in
linguistic research. The differences in the use of English-Chinese passive sentences are significant. Yiwei Ji
(2019) took the translations of Google Translate and Youdao as an example to evaluate the quality of machine
translations of Chinese passive sentences and found that Youdao is better than Google in terms of translation
quality, thus illustrating the importance of building a sufficient text database to improve the translation. Relative
clauseshave also traditionally been the focus of linguistic research. Taking Google machine translation as an
example, Wenzhao He and Defeng Li (2019) used a combination of quantitative analysis and qualitative research
to evaluate Chinese translations of English relative clauses. They discovered significant differences between
machine-translated relative clausesand human-translated relative clauses. According to this study, features in
forms are strongly correlated with the quality of translation.
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4.5 Studies on Challenges and Applications of Machine Translation

The role of machine translation in cross-cultural communication is also a selected topic in previous studies. Luo
Huifang and Caiqi Ren (2018) discussed localization and machine translation technologies as significant
development drivers. This paper argued for the advancement of Al and the integration of machine translation
with human translation, stressing the importance of machine translation and localization in enhancing the
nation’s cultural reputation while connecting with foreign audiences. Chunfang Zhou (2019) examined the issue
of avoiding or depending too heavily on machine translation, which causes people to overlook the cultural
components of “intercultural” conversation. The study emphasized that culture and thought are human attributes
that cannot be substituted by machines. Hence machine translation cannot resolve every issue with cross-cultural
communication.

Machine translation shows a continuing upward trend, and ethical issues will become increasingly prominent in
translation practice. Wen Ren (2019) examined the changes that machine translation activities bring to the field
of translation today and proposed that machine translation challenges traditional translation ethics, covering
these main aspects: the principle of importance (translated vs. original), the principle of responsibility (who is
responsible for the translation), the principle of loyalty (interpersonal, client, translator), the principle of fairness
and justice (the interests of the translator), the principle of harmonious ethical relations (stakeholders), the
potential risks of other non-ethical behavior (linguistic diversity and creative expression). The study offered
solutions to unlock related issues, advocating the adherence to traditional ethical norms of translation (e.g.,
fidelity, loyalty, etc.) and the optimization of ethical statutes of creative responsibility as guidelines for machine
translation activities in the technological age.

5. Concluding Remarks

The current research on machine translation reflects the trend towards human-machine cooperation and language
services. The advantage of machines lies in their speed, cost, and uniformity, while the disadvantage lies in their
inability to think like humans. In the face of these technological trends and advancements, what the study and
teaching of languages can do is to provide language services in the context of “collaborations between humans
and machine and use of machines for humans,” mainly through the following initiatives:

First, it is crucial to strengthen interdisciplinary research in linguistics, literature, and culturein the service of
machine translation.

In terms of the overall research status, according to the distribution of the keywords of the current relevant
journal papers, as shown in Figure 2,in the studies involving the keywords of “neural machine translation,”
“machine translation system,” “machine translation research,” “human translation,” “statistical machine
translation,” “post-translation editorial” and other related keywords, all must return to the study of human
cognition and expression of emotions in language, and all must be built on the basis of the large-scale corpus. It
follows naturally that linguistic research is essential. The overall trends of the published results, as shown in
Figures 3-5, indicate that the scholarly community is still relatively underrepresented in language research and
that more needs to be done to promote interdisciplinary study between language research and other disciplines.

EEINT3

In terms of the difficulties in breakthroughs, the discussion in Part 4 shows that most of the errors found in
machine translation in current research are traditional topics of linguistic analysis, and some are areas where
linguistic research needs to be expanded, such as missing subjects, confusion between singular and plural,
misuse of articles, tense errors, lexical ambiguity, misuse of passive voice, misuse of relative clauses, implied
meaning, etc. Therefore, topics that have not yet been systematically investigated need to be targeted toward
cross-linguistic differences, human cognition, cultural characteristics, etc. All of these require close
interdisciplinary cooperation between linguists and computer scientists to realize the combination of literature
andscience.

Secondly, the training of localized foreign language services should be strengthened to enhance students’ ability
to use technology and renovate it. As seen in the discussion in Part 4, there have already been some studies on
translation education under the guidelines of human-computer cooperation, such as Ying Qin (2018), Hanji Li
(2018), Chaowei Zhu (2018), Xi Wang, Yang Chen (2019), Xiangling Wang (2019), Xiangling Wang, Tingting
Wang (2019), etc. However, in response to the need of the new era, more focused and organized studies are
required for the educational reform of translation as well as the development of language services. Under the
premise of consolidating the fundamental language abilities, and literary and cultural skills, the technical course
contents need to be increased, and teachers and students need to be guided to have the consciousness of language
service, the quality of technical learning, and the demand of market.
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The advancement of machine translation is certain to make strides as a result of groundbreaking developments in
artificial intelligence. The daily lives, jobs, and thoughts of individuals are being transformed by the
technological revolution. Everyone working in the field of language study and translation is truly a part of the
revolutionary wave that is propelling human civilization forward. Moving forward or retreating are our only
options.
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Note 1. Related links: https://research.googleblog.com/2016/09/a-neural-network-for-machine.html, Quoc V. Le
& Mike Schuster.

Note 2. Related links: https://research.googleblog.com/2016/11/zero-shot-translation-with-googles.html, Mike
Schuster, Melvin Johnson & Nikhil Thorat.
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