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Abstract 
Computer Assisted Language Learning (CALL) has been a burgeoning industry in China, one case in point being 
the extensive employment of Automated Writing Evaluation (AWE) systems in college English writing 
instruction to reduce teachers’ workload. Nonetheless, what warrants a special mention is that most teachers 
include automatic scores in the formative evaluation of relevant courses with scant attention to the scoring 
efficacy of these systems (Bai & Wang, 2018; Wang & Zhang, 2020). To have a clearer picture of the scoring 
validity of two commercially available Chinese AWE systems (Pigai and iWrite), the present study sampled 486 
timed CET-4 (College English Test Band-4) essays produced by second-year non-English majors from 8 intact 
classes. Data comprising the maximum score difference, agreement rate, Pearson’s correlation coefficient and 
Cohen’s Kappa were collected to showcase human-machine and machine-machine congruence. Quantitative 
linguistic features of the sample essays, including accuracy, lexical and syntactic complexity, and discourse 
features, were also gleaned to investigate the differences (or similarities) in construct representation valued by 
both systems and human raters. Results show that (1) Pigai and iWrite largely agreed with each other but 
differed a lot from human raters in essay scoring; (2) high-human-score essays were prone to be assigned low 
machine scores; (3) machines relied heavily on the quantifiable features, which, however, had limited impacts on 
human raters.  

Keywords: Chinese AWE systems, scoring validity, quantitative features, underlying causes, implications  

1. Introduction 
Writing proficiency constitutes a crucial component among EFL learning outcomes, but the evaluation task is 
notoriously taxing. Time and energy constraints make it impossible for even the most industrious and 
conscientious teachers to provide frequent writing assessments to a large writing class in the Chinese EFL teaching 
settings, which often leads to reduction in students’ writing drills and their inadequate access to timely and detailed 
feedback (both quantitative and qualitative) which may very well facilitate learners’ L2 development (Ziegler & 
Mackey, 2017). Moreover, as is indicated by Zhang (2013), human essay raters are subject to several errors and 
biases, such as severity/leniency, scale shrinkage, inconsistency, halo effect, stereotyping, perception difference 
and rater drift. These delicate issues have been partially eschewed by the application of Automated Writing 
Evaluation (AWE) systems which, including Criterion, MY Access! and WriteToLearnTM to name just a few, 
emerged in the wake of the Automated Essay Scoring (AES) engines like PEGTM (Project Essay Grader), IEA 
(Intelligent Essay Assessor), IntelliMetric, e-rater (Electronic Essay Rater). The extensive application of these 
systems into writing assessment has contributed to an increase in students’ drill opportunities and in provision of 
timely scores and detailed feedback on content, organization, vocabulary and grammar (Dikli, 2006; Lee et al., 
2009; Choi, 2014; Stevenson & Phakiti, 2014; Ranalli, 2018; Sarré et al., 2019). Therefore, AWE systems not only 
serve as scoring engines but also as Computer Assisted Language Learning (CALL) tools for users (Chen & 
Cheng, 2008; Grimes & Warschauer, 2008).  

Research and development of Chinese AWE systems fares much later, compared with that of their foreign 
counterparts (especially the American ones) which date back to the 1960s. In the past decade, however, 
commercially available Chinese AWE systems such as Bingo English, iWrite and Pigai have been developed and 
adopted in EFL writing instruction across the country. These systems, as touted by their vendors, are characterized 
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by higher reliability and greater timeliness in providing scaffolding explanations and suggestions to activate 
learners’ interlanguage knowledge. But some teachers’ entire reliance on these systems to rate students’ written 
products and the indiscriminate inclusion of the automated scores in the formative assessment may give rise to a 
fairness problem when there is still a cloudy picture of the effectiveness and authenticity of the machine scores 
(Bai & Wang, 2018; Wang & Zhang, 2020). The potential jeopardy of such practice may involve the elimination of 
the evaluative influence of teachers (Cheville, 2004) and the emergence of negative backwash effect. For instance, 
in order to get higher scores students tend to ‘trick’ the systems by intentionally catering to the assessment criteria 
of the machine, which may be irrelevant to the writing constructs (Powers et al., 2002).  

To our knowledge, along with the wide integration of these systems into Chinese EFL writing instruction, only a 
handful of independent researchers and few developers or vendors in China have systematically released 
information about the AWE systems’ scoring efficacy with respect to the comparability of these systems with 
human raters and the differences between human and machine scoring in essay evaluation. These questions are 
worth asking in view of the usefulness of machine scores. To bridge these gaps and to enrich the research field in 
Chinese AWE systems, this study takes a quantitative approach to address the scoring validity of Pigai and iWrite, 
two most successfully commercialized systems in China with a larger user base (with more than 600,000 users 
having subscribed iWrite and over 700 million essays rated by Pigai, as of December, 2020) and greater influence 
in English writing evaluation (with writing contests held by the vendors of both systems each semester). We take as 
a point of departure the extant literature in terms of the validity framework and the scoring validity of the AWE 
systems in China.  

2. Literature Review 
This section addresses the research framework that has been widely employed to validate the scoring 
performance of AWE systems, the research agenda with regard to Chinese AWE systems, the research gap and 
the endeavor of the present study.  

2.1 Framework of AWE or AES Systems’ Scoring Validity  

Validity of measurement tools is part and parcel of language testing and psycho-metrics (Yang et al., 2002), 
which refers to the degree to which measuring tools or methods can accurately measure the measured things, or 
the accuracy and usefulness of these tools or methods (Zhang, 2017). Messick (1989) regarded the collection of 
abundant evidence as a guarantee for validity verification, and Weir (2005) incorporated scoring validity in the 
social cognitive framework for test validity. The enterprise for the validity of AWE or AES systems is mainly 
grounded in Kane’s (2006) validity framework in which four dimensions are addressed: scoring, generalization, 
extrapolation and implication. By generalization, a relationship is set up between the observed machine scores 
and the scores to be expected from administering all possible similar essay tasks. In other words, it looks at the 
representativeness of the machine scores in comparison to scores from other possible essay tasks. Extrapolation 
validation examines the relationship between scores to be expected from administering all possible similar essay 
tasks and the scores from other measures in the domain of writing (i.e., various writing fields, such as academic 
writing, practical English writing, business English writing, and other fields related to the writing ability). 
Implication dimension tackles the relationship between the measure of writing ability from the assessment and 
subsequent interpretation for decision-making and prediction, so it plays a decisive role in language learning 
policies and strategies and a predictive role in language teaching practice, including syllabus formulation, 
teaching policy implementation and the like (Elliot & Williamson, 2013; Zhang, 2017). 

The aforementioned three dimensions are important fields of inquiry in the validity study of AWE or AES 
systems. But the present study exclusively explores the scoring dimension, which addresses the relationship 
between the observed performance on the essay and the observed essay scores (the quality of the machine scores) 
(Elliot & Williamson, 2013). The enterprise for the scoring validity has been revolving around two directions: 
construct representation and score association. The former addresses the systems’ effectiveness in measuring the 
constructs valued by human scorers, i.e., whether human raters and automated systems put a premium on 
identical or similar essay features (e.g., lexical and syntactic complexity, organization, etc.). This inquiry is 
thought to provide insights into how systems might be expected to approach human raters. For example, Deane 
(2013) reported that AES systems measured the essays’ text organization, language and writing mechanics but 
provided inadequate evidence about the strength of argumentation or rhetorical effectiveness highly stressed in 
the scoring rubric for human scorers. 

Score association concerns the consistency between automated and human scores. Exact agreement and 
exact-plus-adjacent agreement (EPAA) rates have gone mainstream as arguments for the scoring validity. For 
instance, the exact agreement rates of e-rater, IntelliMetric and Criterion ranged from 40% to 80% (Powers et al., 
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2002; Vantage Learning, 2002; Shermis et al., 2008). The results of EPAA rates turn out to be more positive. 
Consider IntelliMetric. The figures in the studies generally stood at above 90% (e.g., Vantage Learning, 2002; 
Rudner et al., 2006) despite Powers et al.’s (2002) reporting on a rate of 65%. However, the use of agreement 
rate to indicate the correspondence between the machine and human scores has its limitations due to sensitivity 
to rating scales and the total number of research samples (Yang et al., 2002). To address this issue, diverse 
statistics (e.g., Pearson’s correlation coefficient and Cohen’s Kappa) are usually added to the statistical matrix. 
Take IntelliMetric for example anew: Rudner et al. (2006) got a correlation coefficient up to .80, while Wang and 
Brown (2008) found no correlation between AES and human scoring (r = .11, p > .05); Cohen’s Kappa, which 
adjusts for chance agreement, differed at levels from .27 to .77 (e.g., Powers et al., 2002; Ramineni, 2013).  

We based the present study on the scoring validity framework following Kane’s (2006) representation of validity 
argument. In what follows, research relevant to the inquiry of Chinese AWE systems is reviewed. 

2.2 Research on the Scoring Validity of Chinese English AWE Systems 

With e-learning being highly commended in China (especially since the onset of the COVID-19 pandemic), 
AWE systems are having their heyday and are being more widely employed in Chinese EFL teaching settings. 
But the line of research on Chinese AWE systems remains a vast territory to be further exploited, whose effort, 
so far, has mainly revolved around the state of the art (Liang & Wen, 2007; Chen & Ge, 2008), the development 
of localized AWE systems (Li, 2009; Liang, 2011), and the effectiveness of applying these systems into writing 
instruction (Gu & Wang, 2012; Shi, 2012; Bai & Hu, 2017; Bai & Wang, 2019).  

Compared to the American counterparts, the Chinese AWE systems are largely shrouded in mystery in terms of 
their scoring mechanism and efficacy, despite their extensive employment in writing assessment. So far scant 
attention has been given to the scoring validity of these systems, and only a handful of studies have dealt with 
this area, involving both construct representation and score association. The investigated systems include Write 
On (Wang, 2012), Bingo English (Gao et al., 2020), Pigai (He, 2013; Wang, 2016; Zhang, 2017; Bai & Wang, 
2018; Xu, 2018), and iWrite (Li & Tian, 2018; Qian et al., 2020).  

Wang (2012) investigated the scoring validity of Write On, an AWE system exclusively designed for the course 
New Horizon College English. This study sampled 200 essays and obtained a high human-machine correlation (r 
= .62) and a higher discrimination of the machine scores (i.e., the ability to distinguish high- and low-proficiency 
writers) than human scores. Besides, human raters and machine agreed more with each other in low-quality 
essays and the system tended to regard some off-topic essays with greater length as high-quality ones. 
Furthermore, the study indicated that the system focused more on content and language use and less on 
organization. But the conclusion was just drawn from the general comments made by the system and the 
linguistic features of the sample essays were not investigated. Gao et al. (2020) evaluated the scoring 
effectiveness of Bingo English, revealing low human-machine agreement (exact agreement rate = 13.10%, EPAA 
rate = 35.52%) and moderate correlation (Pearson’s r = .519). This study also examined the correlation of human 
and machine scores with the indicators of the essays’ linguistic features in terms of complexity, accuracy, fluency, 
content and organization, and found that machine scores could partially reflect the essays’ quality. It must be 
pointed out, however, that the number of sample essays is too small (84 essays only) and that correlation analysis 
is not robust enough in corroborating the explanatory effect of the quantitative features on human and machine 
scores.  

Most studies are related to Pigai but have produced mixed results. He (2013) obtained a higher human-Pigai 
correlation (r = .69) but found that the machine scores were significantly higher than human scores. This study 
further pointed out the ability of Pigai to diagnose some micro-structural errors (e.g., spelling and conventional 
grammatical errors) and its inability to evaluate macro-structural aspects stressed by human raters (e.g., the 
internal logic of the essay and relevance of the content). Wang (2016) inquired the scoring validity of Pigai from 
the perspectives of person separability, consistency and classification agreement (i.e., the percentage of essays 
whose machine-human score differences were within 3 points). The results showed that Pigai got more stable 
classification agreements (.86−.92) than human raters (.82−.96). Contrary to Wang (2012), Wang (2016) found a 
lower discrimination of machine scores, but it was concluded that the scoring validity of Pigai was so adequate 
as to satisfy the needs of English classroom writing tasks in spite of its relatively lower correlation coefficient (r 
= .53−.63) than the American systems. Zhang (2017) used the essays produced by 56 non-English majors as the 
research samples and found that Pigai highly agreed with two human raters in three rating tasks, with exact 
agreement rates ranging from 62.50% to 83.93%, EPAA rates from 98.21% to 100%, and correlation coefficients 
from .48 to .74. In contrast, Bai and Wang (2018) conducted a more detailed study, revealing Pigai’s fallibility to 
evaluate CET (College English Test) compositions due to its heavy reliance on the quantitative linguistic features. 
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But this study only analyzed a very small number of quantitative features and provided no criterion of feature 
selection. Xu (2018) sampled 70 CET-4 essays (College English Test Band-4, a high-stakes test in mainland 
China, which usually demands test-takers to finish writing an argumentative essay of no less than 120 words 
within half an hour), and indicated Pigai’s correct judgement of essay quality and partial representation of CET-4 
writing constructs. However, the research design of this study is not without flaws. First, this study conducted a 
comparison between Criterion and Pigai scores to infer the scoring performance of the latter, disregarding the 
two systems’ differences in scoring criteria and thus presumably compromising the comparability of both types 
of scores. Second, it is immensely untenable for this study to make inferences about the construct representation 
of Pigai just from its qualitative feedback. Third, the number of samples is actually thin for a solid conclusion to 
be drawn, feeding the suspicion of Pigai’s high inter-rater reliability and its ability to represent the CET-4 
construct.  

Two studies have investigated the scoring validity of iWrite, whose results are equally divergent. Li and Tian 
(2018) reported on high agreement and correlation between human scores and iWrite scores of 645 essays and 
concluded that iWrite was almost comparable to human raters (e.g., with the EPAA rate up to 97.98%). But this 
study was conducted by the developer and detailed information about the scoring performance of iWrite remains 
skeptical. Contrarily, Qian et al. (2020) showed unsatisfactory results of human-iWrite agreement, with the exact 
agreement between human and iWrite scores of total essays about 9%, EPAA rate 34%, Pearson’s r .037 (p > .05), 
and Weighted Kappa -.02. The research design of this study is also problematic. First and foremost, both iWrite 
and human raters adopted a 15-point rating scale but their rating criteria were largely divergent and incomparable. 
Human raters employed an analytic scoring rubric based on the “ESL Composition Profile” (Jacobs et al., 1981), 
one that is different from iWrite’s scoring rubric. It is therefore natural to obtain low agreement between both 
types of ratings. Additionally, we believe it is problematic for this study to have adopted five fixed scores from 
each score level—2 points, 5 points, 8 points, 11 points and 14 points, namely, when two scorers assigned one 
essay 13 points and 15 points respectively both scores were then counted as 14 points. This practice might 
definitely inflate the inter-rater agreement.  

2.3 Research Gap and the Endeavor of the Present Study  

Taken together, extant research on the scoring validity of Chinese AWE systems has the following deficiencies. 
First, many studies are lack of comprehensiveness due to their exclusive emphasis on the association with human 
scores. Differences in the constructs valued by the machine and human raters have been given insufficient focus. 
Second, the studies centering on the construct representation drew general conclusions without statistical 
evidence and did not analyze the quantitative features of the texts in a deeper level. Third, some studies found a 
high machine-human agreement in scoring low-quality essays but failed to provide more evidence and 
explanations. Whether such a result can be applicable to both Pigai and iWrite demands further validation in this 
study. Fourth, studies touching upon horizontal comparison of different AWE systems are few and far between. 
Validity-related studies often involved only one system (Pigai mostly) and few examined two or more systems 
simultaneously, and so the results were incomparable most of the time, as the sample essays were from different 
writing populations. The machine-machine comparison is essential for finding the commonness or difference 
between AWE systems and for obtaining a clearer picture of their scoring performance. Although 
machine-machine comparison has not been widely explored in the literature, investigation into this aspect can 
shed light on the comparability of different AWE systems and contribute to identifying the common qualities or 
problems of these systems because the results from two systems with the same writing samples are more 
persuasive to showcase the machine-human difference. The horizontal data are equally helpful to infer the 
scoring mechanism of Chinese AWE systems due to limited information in this regard. So, we extend the scoring 
validity framework and also explore machine-machine differences or similarities in construct representation and 
score association. What should also be noted is that the corpus of most AWE systems in China (such as Pigai and 
iWrite) is constantly updated, and in response, its scoring validity might have changed accordingly. Therefore, 
more empirical studies are needed to follow up the changes. 

In view of the shortcomings in the above-mentioned studies, the present study intends to unveil the scoring 
validity (construct representation and score association) of two Chinese AWE systems by extending the extant 
framework (i.e., involving both machine-human and machine-machine comparisons), calculating detailed 
statistics and gleaning more comprehensive quantitative linguistic features of each essay at the levels of accuracy, 
lexical and syntactic complexity, and discourse. 
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3. Methodology  
3.1 Research Questions 

Based on the review of previous work in the field, the following research questions were formulated: 

(1) Are human, Pigai and iWrite scores congruent with one another?  

(2) Are there essays inconsistently graded by human-Pigai, human-iWrite and Pigai-iWrite pairs? If any, what 
type do they belong to: low-, medium- or high-human-score essays? 

(3) What are the machine-human and machine-machine differences or similarities in terms of construct 
representation? 

3.2 Two Commercially Available Chinese AWE Systems: Pigai and iWrite 

As mentioned previously, Pigai and iWrite are two most widely-adopted AWE systems customized for Chinese 
EFL learners. The former is a product of Juku, a search engine providing bilingual sentence examples. Pigai 
(meaning ‘correction’ in Chinese) bases its online service on cloud computing for automatically evaluating English 
compositions. It estimates the distance between the submitted compositions and the learner corpora, and generates 
essay scores and automatic feedback simultaneously.  

iWrite is jointly developed by Foreign Language Teaching and Research Press of China and National Research 
Center of Foreign Language Education, Beijing Foreign Studies University. It is devised on the basis of in-depth 
research on L2 writing, corpus, natural language processing, machine learning, etc. As its vendor claims, iWrite 
evaluates essays in four dimensions: language, content, text structure and mechanics (spelling, capitalization, 
punctuation, etc.), and also pays attention to in-depth teacher-student interaction in the teaching and learning 
process.  

3.3 Participants and Materials  

Four hundred and eighty-six second-year non-English majors from a certain university in Southwest China 
participated in this study. The participants majored in Civil Engineering, Accounting, Marketing and Human 
Resources and took the compulsory course College English IV. This university offers no special English writing 
programs to students and the English writing skills and strategies are integrated into College English courses 
which last for four semesters. Due to time and energy constraints, English teachers often require students to write 
on Pigai platform.  

In the present study, all the participants produced one timed argumentative CET-4 essay via the Pigai interface, 
explaining whether it is advisable to work in a state-owned business or in a joint venture. The essays were 
downloaded from Pigai platform and randomly numbered from 1 to 486, forming a small-scale learner corpus 
with a total of 67, 554 words.  

3.4 The Rating Rubric and Procedures  

We recruited two human raters to evaluate the samples. Prior to the beginning of this study, both raters had had 
over five years’ teaching experience and had been awarded as excellent CET-4 essays raters several times. Both 
human raters and the two AWE systems adopted the CET-4 15-point holistic rating rubric, with the essays 
segmented into 5 score bands: Band 1 (1 to 3 points), Band 2 (4 to 6 points), Band 3 (7 to 9 points), Band 4 (10 to 
12 points) and Band 5 (13 to15 points). This scoring rubric requires raters to conduct a comprehensive evaluation 
from both the content (e.g., clarity of expressing ideas and relevance to the topic) and language (e.g., accuracy, 
fluency and complexity in English).  

To guarantee scoring accuracy and fairness, a pilot study was conducted in which 20 essays randomly selected 
from the corpus were rated by two human raters. Results show that the inter-rater reliability was acceptable (r 
= .87, p = .000). The remaining essays were divided into two halves which were evaluated independently by two 
human raters who negotiated and resolved the discrepancy when the score difference of one single essay 
exceeded 3 points. We calculated the averages of the independent scores assigned by the two raters, which were 
counted as the human scores. Based on both raters’ rating experience and recommendations, we divided up the 
data set into low (those in Band 1 and 2), medium (those in Band 3 and 4) and high-quality essays (those in Band 
5). The number and percentage of essays in each score band are listed in Table 1.  
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Table 1. The number and percentage of essays in each score band 

Category Band 1 Band 2 Band 3 Band 4 Band 5 Total 

Percentage 10.70% 16.46% 30.45% 26.13% 16.26% 100% 
Number 52 80 148 127 79 486 

 

All the essays were then submitted to iWrite platform for obtaining iWrite scores. Human, Pigai and iWrite scores 
were input into the same excel sheet. Then, SPSS 20.0 was run to compare human-machine and machine-machine 
scores by calculating the maximum score difference, EPAA rate, the Pearson’s r and Cohen’s Kappa, with the 
latter three frequently used as evidence for the scoring validity of AWE or AES systems (e.g., Powers et al., 2002; 
Vantage Learning, 2002; Rudner et al., 2006; Weigle, 2010). Moreover, in the existent literature, the maximum 
score difference has been used less frequently, but it is supposed to reflect the difference between raters more 
directly (Bai & Wang, 2018) and the CET-4 scoring clearly requires the raters to control score differences.  

Specifically, the maximum score difference refers to the maximum absolute value of the human-machine score 
difference. The EPAA rate refers to the ratio of the number of essays whose absolute value of man-machine score 
difference is smaller than 3 to the total number of essays. The standard for EPAA is mainly based on the CET-4 
scoring rubrics (previously presented). Cohen’s Kappa is a more robust measure as it corrects chance agreement 
(Ramineni, 2013). According to Bai and Wang (2018), the maximum score difference is negatively correlated 
with the scoring validity, whereas the other three show the other way around. In addition, descriptive statistics of 
human and machine scores were provided by SPSS 20.0 with the significance level set at 0.05.  

In order to conduct an in-depth investigation into human-machine and machine-machine similarities and 
differences with regard to construct representation, the indices of linguistic features were gleaned manually and 
automatically. Statistically, all the indices were treated as independent variables and human, Pigai and iWrite 
scores as dependent variables to run multiple regression analyses for the establishment of corresponding scoring 
models for different rating methods. 

3.5 Selection of Linguistic Indices 

To unveil the construct representation of both systems, quantitative linguistic features of each text were collected, 
which fall under four categories: lexical and syntactic complexity, discourse and accuracy.  

All errors of the essays were coded and counted by drawing on the classifications of Gui and Yang’s (2003), Chan 
(2010) and Yoon and Polio (2017). For simplifying the coding process, we classified all the errors into four broad 
categories: mechanics, lexical, syntactic and discourse errors. Both authors coded and counted the errors in the 
same randomly selected 20 essays. The consistency of error coding was 94.6%, an acceptable inter-coder 
reliability. Then each author coded the errors of 233 essays independently. When any uncertainty emerged, both 
authors reached a consensus through negotiation and clarified the way to address some common problems.  

Vocabprofilers (Heatley et al., 2002) was applied to analyze word frequency. Coh-Metrix (McNamara et al., 2014) 
and L2 Lexical Complexity Analyzer (Lu & Ai, 2015) were employed to assess word information, lexical diversity 
and sophistication of each sample essay. Syntactic indices relevant to syntactic diversity and complexity were 
computed by L2 Syntactic Complexity Analyzer (Lu, 2012). Coh-Metrix was also tapped to analyze discourse 
indices, including cohesion, semantic features, situation model and readability.  

The information of the error types and all selected indices was set out in the Appendix.  
4. Results 
4.1 Response to Question 1: Human-Machine and Machine-Machine Congruence  

A one-way between-groups analysis of variance was conducted to explore the mean score difference among 
human, Pigai and iWrite scores. As shown in Table 2, there was a statistical significance at the p < .05 level for the 
three groups: F = 9.288, p = .000. Post-hoc comparisons adopting the Turkey HSD test (see Table 3) indicated that 
the human mean score (M = 8.770, SD = 1.950) was significantly different from Pigai mean score (M = 7.923, SD 
= 1.803) and iWrite mean score (M = 8.049, SD = 1.724) with the human-Pigai and human-iWrite mean differences 
being 0.847 and 0.721 respectively. However, there existed no significant difference between Pigai and iWrite 
mean scores with a difference of only 0.126.  
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Table 2. Descriptive statistics for human, Pigai and iWrite scores 

 N Mean SD Minimum Maximum F Sig. 

Human 486 8.770 1.950 6 15   
Pigai 486 7.923 1.803 4 13 9.288 .000 
iWrite 486 8.049 1.724 5 12   

 

Table 3. Between-group comparisons among human, Pigai and iWrite mean scores (Turkey HSD) 

(I) Group (J) Group Mean score 
difference (I-J) 

Std. 
Error 

Sig. 95% Confidence interval 

Lower bound Upper bound 

Human Pigai .847* 0.211 .000 0.35 1.34 
iWrite .721* 0.237 .002 0.22 1.21 

Pigai human -.847* 0.211 .000 -1.34 -0.35 
iWrite -0.126 0.104 .822 -0.62 0.37 

iWrite human -.721* 0.237 .002 -1.21 -0.22 
Pigai 0.126 0.104 .822 -0.37 0.62 

Note. *. The mean difference is significant at the .05 level. 

 

Table 4 reveals a significantly positive relationship between Pigai scores and iWrite scores (rPigai-iWrite = .731, p 
< .01, Pigai-iWrite Kappa coefficient = .691, p < .01), whereas no significant correlations were found between 
human and machine scores (rhuman-Pigai = .158, p > .05, Human-Pigai Kappa coefficient = .103, p > .05; rhuman-iWrite 

= .122, p > .05; Human-iWrite Kappa coefficient = .118, p > .05).  

 

Table 4. Correlations among human, Pigai and iWrite scores 

 N Pearson’s correlation coefficient Cohen’s Kappa 

r Sig. value Sig. 

Human-Pigai 486 .158 .053 .103 .067 
Human-iWrite 486 .122 .136 .118 .756 
Pigai-iWrite 486 .731 .000 .691 .000 

 

Table 5 indicates the maximum score differences between human scores and machine scores were alarmingly high, 
9 points and 7 points for human-Pigai and human-iWrite pairs respectively. What deserves due attention is that all 
the essays were scored on a 15-point scale, so a large discrepancy was found between human raters and the two 
systems. By contrast, the maximum score difference between machine scores was comparatively small, with only 
3.4 points.  

 

Table 5. Maximum score difference between different pairs 

Pairs  Human-Pigai Human-iWrite Pigai-iWrite 

Maximum score difference  9 7 3.4 

 

The EPAA rates, displayed in Table 6, between human scores and Pigai and iWrite scores were quite close, 74.1% 
and 77.2% respectively. Human raters agreed perfectly with Pigai 7.1% of the time, and with iWrite 2% of the time. 
Two systems agreed with each other most of the time (EPAA rate = 97.5%) and only assigned 12 discrepant scores.  

 

Table 6. Between-group agreement rates for human, Pigai and iWrite scores 

 Human-Pigai Human-iWrite Pigai-iWrite 

Exact agreement rate 7.1% (n=35) 2% (n=10) 0.8% (n=4) 
0<score difference<=1 36% (n=175) 31.3% (n=152) 57.4% (n=279) 
1<score difference<=2 22.6% (n=110) 28% (n=136) 31.3% (n=152) 
2<score difference<3 8.2% (n=40) 15.8% (n=77) 8.0% (n=39) 
EPAA rate 74.1% (n=360) 77.2% (n=375) 97.5% (n=474) 
Score difference>=3 25.9% (n=126) 22.8% (n=111) 2.5% (n=12) 
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4.2 Response to Question 2: The Inconsistently-Graded Essay Type by Human and AWE Systems 

As revealed in Table 7, the essays with high human scores (Band 5) tended to be assigned significantly lower 
scores by both AWE systems with the human-machine mean score difference exceeding 4 points; furthermore, 
human and machine scores agreed the least for this group with EPAA rates less than 40%. Human and machine 
scores highly agreed with each other for M (Band 3 and 4) and L (Band 1 and 2) group essays. One-way ANOVA 
analysis showed that there were significant differences among the means of the three groups’ score differences (p 
= .000). The post hoc Turkey’s test shows no significant difference between the mean score differences of essays in 
L and M groups for all three pairs (i.e., human-Pigai, human-iWrite and Pigai-iWrite), no significant difference 
between the mean score differences for Pigai-iWrite pair, but a significant one for the other two pairs in group H 
essays (p < .01). 

 

Table 7. Agreement and mean score difference among low-, medium- and high-score essays 

 L (n = 132) M (n = 275) H (n = 79) 

Human-Pigai EPAA 92.85% 81.37% 37.5% 
Human-Pigai mean score difference 1.43a 1.88a 4.11b 
Human-iWrite EPAA 91.8% 80.3% 31.25% 
Human-iWrite mean score difference 1.5a 2a 4.06b 
Pigai-iWrite EPAA 97.3% 96.7% 100% 
Pigai-iWrite mean score difference 0.92a 1.06a 1.41a 

Note. One-way ANOVA was used to compare the absolute values of the mean score differences of essays in low-, medium- and high-quality 
groups, and Turkey method was used to carry out multiple comparisons afterwards. The same superscript letters (e.g., a, b, c) on the mean 
demonstrate no significant difference between groups, while the different letter indicates a significant difference with other groups (p < .01). 

 

Table 8 displays the percentages of essays with discrepant human-machine scores at different quality levels. It also 
reveals that high-human-score essays might be prone to be assigned low scores by both AWE systems whose 
discrepancy levels reached 68.4%, much higher than those for essays in the other two groups. From Table 7 and 
Table 8, a conclusion could be drawn that the essays considered to be of high quality by human raters would be 
largely considered to be of poor quality by AWE systems.  

 

Table 8. Percentages of essays with discrepant human-machine scores  

 L (n = 132) M (n = 275) H (n = 79) 

Human-Pigai 13.6% (n = 18) 29.5% (n = 81) 68.4% (n = 54) 
Human-iWrite 8.3% (n = 11) 28.0% (n = 77) 62.0% (n = 49) 

 

4.3 Response to Question 3: Impacts of Quantitative Features on Human and Machine Scores 

A stepwise regression analysis was run to figure out the relationship between the dependent variable (human 
scores) and the independent variables (error, syntactic, lexical and discourse indices). Among the 9 obtained 
regression models, the ninth with the best goodness of fit was chosen as the scoring model of human scores. Table 
9 shows that nine indices entered this model, with all of them significantly contributing to the prediction (p < .05) 
and no co-linearity problem among them. Nine indices accounted for 48.1% of the variance (Adjusted R2 = .481, F 
(9, 139) = 16.243, p = .000). The regression formulation is: Human scores = 
-31.930+0.103×WRDFAMc+0.054×CNCADC-0.129×Syntactic-0.017×WRDADJ-0.022×WRDADV-4.479×W
RDFRQa-3.054×LV+0.033×CNCTempx+0.086×SLEXTYPES. 
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Table 9. Multiple linear regression of human scores: Important statistics (n = 486) 

Variables R R2 Adjusted R2 F Beta t Sig.  Tolerance VIF 

Human scores .716 .513 .481 16.243 
(9, 139) 

     

Constant     -31.930 -3.776 .000   
WRDFAMc     .103 6.337 .000 .662 1.511 
CNCADC     .054 4.764 .000 .950 1.052 
Syntactic     -.129 -3.891 .000 .856 1.168 
WRDADJ     -.017 -4.385 .000 .786 1.272 
WRDADV     -.022 -4.498 .000 .858 1.166 
WRDFRQa     -4.479 -3.076 .003 .665 1.504 
LV     -3.054 -3.003 .003 .822 1.216 
CNCTempx     .033 2.530 .013 .915 1.093 
SLEXTYPES     .086 2.204 .029 .892 1.121 

 

In a similar vein, 15 models for Pigai scores were obtained, and the 12th was selected as the scoring model. Table 
10 shows that 12 indices entered this model, with all of them significantly contributing to the prediction (p < .05) 
and no co-linearity problem among them. All indices predicted 73.3% of the score variance (Adjusted R2=.733, 
F(12,136) = 30.225, p = .000). The regression formulation is: Pigai scores = -0.757+0.257×MLC-5.142×ERROR 
rate+1.264×CTTR-0.017×WRDPRO-0.190×Mechanical+0.799×C/S-3.893×SMCAUSlsa+0.433×WRDHYPn-8.
822×K2 (%)+0.931×WRDHYPv-1.930×LV+3.652×VS1. 

 

Table 10. Multiple linear regression of Pigai scores: Important statistics (n = 486) 

Variables R R2 Adjusted R2 F Beta t Sig. Tolerance VIF 

Pigai scores .869 .755 .733 30.225 
(12, 136) 

     

Constant     -.757 -.486 .628   
MLC     .257 4.566 .000 .548 1.826 
ERROR rate     -5.142 -2.119 .036 .472 2.119 
CTTR     1.264 5.999 .000 .680 1.471 
WRDPRO     -.017 -8.074 .000 .461 2.168 
Mechanical     -.190 -5.984 .000 .444 2.251 
C/S     .799 3.888 .000 .773 1.294 
SMCAUSlsa     -3.893 -2.136 .034 .931 1.074 
WRDHYPn     .433 3.214 .002 .876 1.142 
K2(%)     -8.822 -3.137 .002 .648 1.544 
WRDHYPv     .931 2.498 .014 .941 1.063 
LV     -1.930 -2.534 .012 .648 1.543 
VS1     3.652 2.436 .016 .891 1.122 

 

10 models for iWrite scores were obtained, and the 10th was selected as the scoring model. Table 10 shows that 10 
indices entered this model, with all of them significantly contributing to the prediction (p < .05) and no co-linearity 
problem among them. All indices explained 77.6% of the variance (Adjusted R2 = .776, F(10,138) = 52.228, p 
= .000).The regression formulation is: iWrite scores = 
9.790-0.01×WRDPRO-0.157×Mechanical-8.515×K2(%)+0.103×MLC+1.315×LSAPP1+0.023×WRDPRP1s-0.0
07×CNCALL-0.058×VP-1.927×LSAPP1d+0.15×WORDTYPES. 
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Table 11. Multiple linear regression of iWrite scores: Important statistics (n = 486) 

Variables R R2 Adjusted R2 F Beta t Sig. Tolerance VIF 

iWrite scores .889 .791 .776 52.258 
(10, 138) 

     

Constant     9.790 12.833 .000   
WRDPRO     -.010 -4.462 .000 .270 3.708 
Mechanical     -.157 -7.840 .000 .845 1.184 
K2 (%)     -8.515 -3.209 .002 .551 1.815 
MLC     .103 1.885 .061 .441 2.267 
LSAPP1     1.351 2.939 .004 .531 1.884 
WRDPRP1s     .023 3.433 .001 .887 1.128 
CNCALL     -.007 -2.413 .017 .483 2.069 
VP     -.058 -3.128 .002 .268 3.738 
LSAPP1d     -1.927 -2.262 .025 .937 1.068 
WORDTYPES     .015 2.032 .044 .506 1.977 

 
5. Discussion 
5.1 Agreement among Human, Pigai and iWrite Scores 

To summarize, Pigai and iWrite agreed more with each other than with human raters in rating the 486 essays. This 
is firstly evidenced by the high Pigai-iWrite EPAA rate of 97.5% and the human-machine EPAA rates lower than 
80%. Burstein et al. (2004) pointed out that AES systems could be seen as reliable measurement tools only when 
the human-machine EPAA figures could reach the baseline of 75%−80%. In this sense, only iWrite just met the 
basic requirement despite the high machine-machine agreement. It should be noted that the EPAA rate might be 
misleading due to its sensitivity to size of research samples (Yang et al., 2002), but how the sample size would 
exert an influence on the research results remains to be examined. In terms of Pearson’s r and Cohen’s Kappa, 
scores assigned by both systems agreed much (r = .731, p = .000; Kappa coefficient = .691, p = .000), whereas 
machine scores were not significantly correlated with human scores (p > .05) with Pearson’s r (.158 for Pigai 
and .122 for iWrite) far under the threshold of 0.7 level required in this line of research (Ramineni & Williamson, 
2013), and the Kappa coefficients were equally unsatisfactory (.103 for Pigai and .118 for iWrite). Last, the 
Pigai-iWrite maximum score difference was much lower than human-machine ones. From these data, a tentative 
inference can be made here that the scoring mechanisms of Pigai and iWrite might follow some similar patterns, 
especially with regard to their scoring methods and the valued writing constructs, while both systems are 
different from human raters in these aspects. These machine-machine and human-machine similarities and 
differences will be discussed in the third section of the discussion part.  

In terms of human-machine comparison, EPAA rates between human and systems like PEG, e-rater, IntelliMetric 
or Criterion were reported to be much higher than those found in the present study. For example, e-rater’s EPAA 
rates averaged 90% or above (Valenti et al., 2003) and the exact agreement rates ranged from 48% to 58% (Wang & 
Brown, 2008), and even approached 80% (Shermis et al., 2008). Divergent rating scales might very well account 
for such a discrepancy between the results obtained by the present study and those by previous studies (Ramineni 
& Williamson, 2013). To be sure, human-machine score agreement based on a 3-point rating scale is bound to be 
higher than that based on a 10-point one. When a human rater assigns an essay 2 points, the system may assign 1 
point and 3 points. Both scores are within one-point discrepancy with the human score, and thus they are 
adjacently agreeing with the human score, which may inflate the agreement rate. Previous studies mostly 
employed a 4-point or 6-point scale, likely to elevate human-machine agreement rates. Shermis and Hamner (2012) 
also expounded that the EPAA rate of 100% could be obtained for a 3-point rating scale, 99%, 55% and 49% for 
6-point, 12-point and 30-point rating scales. In this sense, the adoption of a 15-point scale in the present study may 
partially account for the relatively low human-machine agreement rate. But this explanation still needs to be 
validated in future research. 

Equally, a cornucopia of studies reported on quite high human-machine correlation coefficients which mostly 
surpassed or approached the baseline level (Burstein & Chodorow, 1999; Shermis et al., 2002; Vantage Learning, 
2003; Weigle, 2010; Ramineni, 2013). Again, the rating scales serve as a possible factor for the research results, as 
Shermis and Hamner (2013) implied a coefficient about 0.75 for a 4-point scale, 0.72 for a 12-point scale and 0.61 
for a 30-point scale.  

5.2 AWE Systems’ Proneness to Assign Low Scores to High-human-Score Essays 

Another finding is that both systems agree more with human raters when evaluating the low- and medium-quality 
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essays (according to human judgment) with the EPAA rates exceeding 80%, but less with human raters when 
assessing the high-quality essays with the agreement rates lower than 40%. Several studies reported on the 
unreliability of AES systems to assess high-quality essays. Burstein et al. (1998) investigated the agreement 
between human scorers and e-rater (with the sample essays scored on a 6-point scale) and found that the greatest 
discrepancy lay in band 5 and 6 essays. Li et al. (2014) also discerned an analogous flaw in Criterion. Somewhat 
differently, Ge and Chen (2009) pointed out the objectivity of low machine scores and the inappropriateness of the 
moderate and high machine scores (high scores in particular), but provided no tangible proofs or detailed 
explanations to straighten out the fallibility of the systems in evaluating essays. 

The research findings of the present study were a perfect echo of what was revealed by Bai and Wang (2018), 
which pointed out Pigai’s taking the high-human-score essays as low-quality ones. Pigai and iWrite can, as 
pointed out by Bai and Wang (2018), accurately score the essays with low human scores, presumably and in large 
measure, owing to the poor language quality of this type of essay. Machines are in a good position to assign 
objective scores based on the superficial quantifiable features or language errors (Bai & Wang, 2018). Likewise, 
when evaluating low-quality essays, human scorers would still put emphasis on the quantifiable features, although 
these features may have nothing to do with what makes a good essay (Condon, 2013), since an excellent essay may 
be characterized by the diction, the clear-cut structure, the originality of ideas, the reasonable demonstration of an 
argument or the mixture of all these features (Bai, 2011). Chances are that due to low English proficiency some 
students involved in this study tended to select high-frequency vocabulary or common expressions and sentence 
patterns in their essays to reduce errors. Despite lack of sophisticated words and sentences, their essays may be 
well-organized, original in ideas, abundant in rhetorical use, etc., and so will be favored by human raters. However, 
this speculation remains to be addressed by complementary qualitative evidence with regard to all these aspects 
not resolved in the present study. 

5.3 Differing Impacts of Quantitative Linguistic Features on Human and Machine Scoring  

The results demonstrate that the two systems might have valued different writing constructs, since different 
variables remained in the regression equations for human and machine scores and explained 48.1%, 73.3% and 
77.6% of the human, Pigai and iWrite scores respectively. This study produced mixed results with Bai and Wang 
(2018) which showed that the quantitative features entering the regression equations accounted for over 65% of the 
machine score variance but less than 25% of the human score variance. The reason for such a difference may lie in 
the fact that Bai and Wang (2018) selected far fewer quantitative features. We assume that more quantitative 
features are likely to inflate the explanatory power. But on the whole, both studies found greater impacts of the 
quantitative features on machine scores than on human scores, and showed the heavy reliance of Pigai and iWrite 
on counting the quantifiable linguistic items. However, it was also found that different variables entered the 
regression models of Pigai and iWrite, suggesting both systems might look at different aspects when scoring 
essays despite the similar statistical results. This difference may result from the establishing process of both 
systems in which the developers may have selected different quantitative linguistic features to train the scoring 
models. But since there is no literature reporting on the process of both systems, we cannot have a clear picture of 
the developers’ selection of linguistic features.  

The divergence in the scoring equations of the human and machine scores could, in large measure, show that the 
human scorers and the systems put emphasis on different features of the essays, i.e., different construct 
representations. For example, mechanical error entered the scoring models of both systems, while syntactic error 
only remained in the human scoring equation. The former includes spelling, word building, capitalization and 
punctuation errors, all of which can be easily identified by the systems (Wan, 2005; Jiang et al., 2011; Yang, 2013) 
or even by any word processing software, so it comes as no surprise that the AWE systems can also do a good job. 
The fundamental problem is the mechanical way of the systems to identify and judge errors (Shi, 2012; Yang, 
2013). To put it another way, it is hard for the systems to judge more sophisticated syntactic errors. For instance, 
when treating sentence fragments like ‘Even find it difficult in grabbing the ball’, human scorers can easily find 
that the subject of the sentence is missing in this sentence, while machine is likely to take the adverb ‘even’ for the 
subject.  

This difference in the quantitative features’ predictive powers on human and machine scoring can be explained by 
the divergence in the human-machine scoring processes. In human scoring, although formal factors such as essay 
length, lexical richness, syntactic complexity and discourse coherence will affect the score, the specific scoring is a 
very complicated cognitive process. Wolfe’s (1997) think-aloud study showed that teachers first read articles and 
formed text schemata in line with their own background, viewpoints, writing knowledge, etc. These schemata were 
not a copy of the original text, but were integrated with teachers’ own understanding and judgement. During the 
reading process, teachers would monitor the content and characteristics of an essay. Finishing reading, they would 
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re-examine the text schemata in compliance with the scoring criteria to determine the extent to which the specific 
scoring criteria were consistent and finally scored the essay. As far as the specific scoring process is concerned, 
Wolfe (2005) found that experienced teachers generally adopted a top-down cognitive model, i.e., to judge the 
essay as a whole. For example, for the tense problems, instead of pointing out the errors one by one, they would 
assign the score after reading the whole essay. But novice teachers would often make judgments before reading the 
essay, and then adjusted their judgment during the reading process. The reason why such a difference existed was 
mainly that seasoned teachers had established a complex information processing network, which enabled them to 
store a large amount of information in the reading process and finally allowed them to carry out a comprehensive 
processing. But the novices often did not have such an ability. In short, experienced teachers would make a 
comprehensive evaluation of the essay, and novices tended to pay too much attention to the details.  

Contrarily, an essay is just an accumulation of words for the machine. Essay evaluation resembles a simple 
stimulus-response process, and the machine can only respond to various stimuli already set in the program 
(Ericsson, 2006), which is completely different from the construction process of text schemata in human 
evaluation. In addition, like novice teachers, the systems focus only on details, such as the number of conjunctions, 
the proportion of complex words, the average length of sentences, etc., quantify all indicators of essay quality, and 
then assign a score according to the weights of different aspects. This is a bottom-up approach, which is entirely 
opposite to the judging process of experienced teachers. Therefore, it is not difficult to explain why quantitative 
linguistic features with sufficient explanatory power in machine scoring have little effect in human scoring. 

6. Conclusion 

This study evaluated the scoring validity of two commercially available Chinese AWE systems by sampling 486 
timed essays produced by second-year non-English majors, and the research findings show a barely satisfactory 
scoring performance of the systems. Based on these findings, we provided in-depth explanations for the underlying 
causes.  

It is important to show clearly several limitations of the present study. First, this study did not deeply analyze the 
language and content of the essays most prone to be inconsistently evaluated by human raters and AWE systems. 
Second, we adopted a quantitative approach and did not address the content of the essays, and so the picture of 
the writing constructs could be partially explained. In the future, researchers in this field can employ a mixed 
research methodology (both qualitative and quantitative) and address the scoring validity more comprehensively. 
Despite these limitations, it is worth affirming that this study has played a warning role for the improvement of 
Chinese AWE systems, the integration of AWE systems into L2 English writing instruction, and the integration of 
machine scores into students’ final scores in the Chinese teaching settings. It is our belief that this field needs to 
draw the attention of more independent researchers and users. 
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Appendix A 
Quantitative Essay Features at Four Levels 

I. Accuracy Level 

Sub-categories Specific items Tool (s) used 

Mechanics Capitalization, punctuation, misspelling Manual checking and 
classification Lexical Word class, plural forms, word choice, articles, lexical collocation, gender and case of 

pronouns, etc.  
Syntactic Word order, fragments, run-ons, missing parts, redundancy, subordinate clause, 

subject-predicate agreement, tense and voice, non-finite verbs, etc.  
Discourse Connectives, reference, etc.  
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II. Lexical Complexity 

Sub-categories Specific items Tool (s) used 

Word Types & tokens WORDTYPES, SWORDTYPES, LEXTYPES, SLEXTYPES, WORDTOKENS, 
SWORDTOKENS, LEXTOKENS, SLEXTOKENS 

L2 Lexical 
Complexity 
Analyzer Lexical sophistication Lexical sophistication-I; Lexical sophistication-I; Verb sophistication-I; Verb 

sophistication-II; Corrected VS1 
Lexical variation 
(NDW) 

Number of different words; NDW (first 50 words); NDW(expected random 50); NDW 
(expected sequence 50) 

Lexical variation 
(TTR) 

Type/token ratio; Mean segmental TTR; Corrected TTR; Root TTR; Biogarithmic TTR; 
Uber index 

Lexical variation 
(Verb diversity) 

Verb variation; Squared VV1; Corrected VV1 

Lexical variation 
(Lexical word diversity) 

Lexical word variation; verb variation-II; noun variation; adjective variation; adverb 
variation; modifier variation 

WRDNOUN Noun incidence   Coh-Metrix 3.0 
 WRDVERB Verb incidence 

WRDADJ Adjective incidence 
WRDADV Adverb incidence 
WRDPRO Pronoun incidence 
WRDPRP1s First person singular pronoun incidence 
WRDPRP1p First person plural pronoun incidence 
WRDPRP2  Second person pronoun incidence 
WRDPRP3s Third person singular pronoun incidence 
WRDPRP3p Third person plural pronoun incidence 
WRDFRQc CELEX word frequency for content words, mean 
WRDFRQa CELEX Log frequency for all words, mean 
WRDFRQmc CELEX Log minimum frequency for content words, mean 
WRDAOAc  Age of acquisition for content words, mean 
WRDFAMc Familiarity for content words, mean 
WRDCNCc Concreteness for content words, mean 
WRDIMGc Imagability for content words, mean 
WRDMEAc Meaningfulness, Colorado norms, content words, mean 
WRDPOLc Polysemy for content words, mean 
WRDHYPn Hypernymy for nouns, mean 
WRDHYPv Hypernymy for verbs, mean 
WRDHYPnv Hypernymy for nouns and verbs, mean 
SMCAUSv Causal verb incidence 
SMCAUSvp Causal verbs and causal particles incidence 
SMINTEp  Intentional verbs incidence 
SMCAUSr Ratio of casual particles to causal verbs 
SMINTEr Ratio of intentional particles to intentional verbs 
SMCAUSlsa LSA verb overlap 
SMCAUSwn WordNet verb overlap 
SMTEMP  Temporal cohesion, tense and aspect repetition, mean 

 

III. Syntactic Complexity 

Sub-categories Specific items Tool (s) used 

Syntactic structures Word count; sentence; verb phrase; clause; T-unit; dependent clause; 
complex T-unit;  
Coordinate phrase; complex nominal 

L2 Syntactic Complexity 
Analyzer 

Syntactic complexity 
indices  

Mean length of sentence; mean length of T-unit; mean length of clause; 
clause per sentence; verb phrase per T-unit; clause per T-unit; dependent 
clause per clause; dependent clause per T-unit; T-unit per sentence; complex 
T-unit ratio; coordinate phrase per T-unit; coordinate phrase per clause; 
complex nominal per T-unit; complex nominal per clause 
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IV. Discourse Indices 

Sub-categories Specific items Tool (s) used 

CRFNO1 Noun overlap, adjacent sentences, binary, mean Coh-Metrix 3.0 
 CRFAO1 Argument overlap, adjacent sentences, binary, mean 

CRFSO1 Stem overlap, adjacent sentences, binary, mean 

CRFNOa Noun overlap, all sentences, binary, mean 

CRFAOa Argument overlap, all sentences, binary, mean 

CRFSOa Stem overlap, all sentences, binary, mean 

CRFCWO1 Content word overlap, adjacent sentences, proportional, mean 

CRFCWO1d Content word overlap, adjacent sentences, proportional, standard deviation 

CRFCWOa Content word overlap, all sentences, proportional, mean 

CRFCWOad Content word overlap, all sentences, proportional, standard deviation 

LSASS1 LSA overlap, adjacent sentences, mean 

LSASS1d LSA overlap, adjacent sentences, standard deviation 

LSASSp LSA overlap, all sentences in paragraph, mean 

LSASSpd LSA overlap, all sentences in paragraph, standard deviation 

LSAPP1 LSA overlap, adjacent paragraphs, mean 

LSAPP1d LSA overlap, adjacent paragraphs, standard deviation 

LSAGN LSA given/new, sentences, mean 

LSAGNd LSA given/new, sentences, standard deviation 

CNCAll All connectives incidence 

CNCCaus Causal connectives incidence 

CNCLogic Logical connectives incidence 

CNCADC Adversative and contrastive connectives incidence 

CNCTemp Temporal connectives incidence 

CNCTempx Expanded temporal connectives incidence 

CNCAdd Additive connectives incidence 

CNCPos Positive connectives incidence 

CNCNeg Negative connectives incidence 

RDFRE Flesch Reading Ease 

RDFKGL Flesch-Kincaid Grade level 

RDL2 Coh-Metrix L2 Readability 
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