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Abstract 

The study evaluated the effectiveness of Bingo English, one of the representative automated essay scoring (AES) 
systems in China. 84 essays in an English test held in a Chinese university were collected as the research 
materials. All the essays were scored by both two trained and experienced human raters and Bingo English, and 
the linguistic features of them were also quantified in terms of complexity, accuracy, fluency (CAF), content 
quality, and organization. After examining the agreement between human scores and automated scores and the 
correlation of human and automated scores with the indicators of the essays’ linguistic features, it was found that 
Bingo English scores could only reflect the essays’ quality in a general way, and the use of it should be treated 
with caution. 
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1. Introduction 

With the development in education, the assessment of writing proficiency which is one of the essential 
components of communication has changed dramatically. In terms of the tasks involved in the assessment, the 
multiple-choice task was replaced by the constructed-response task which is more valid in examining students’ 
language use (Qian, Zhao, & Cheng, 2020). The scoring way also witnessed some changes with the advances in 
computer science. Researchers expert in multiple areas such as second language acquisition (SLA), language 
assessment, and computational linguistics have been making efforts to develop an automated essay scoring (AES) 
system (Xi, 2010) to compensate the demerits of traditional human scoring which is costly, low-efficient and 
relatively low-consistent (Attali & Burstein, 2006; Dikli, 2006). Some AES systems can not only offer a holistic 
score but also present feedback on linguistic quality, in which case, the use of AES has gained great popularity in 
educational settings. Many large-scale high-stakes tests of English language have involved AES in scoring. For 
instance, e-rater, which is developed by Educational Testing Service (ETS) to score and evaluate student essays, 
has been employed for tests like Graduate Record Examination (GRE). To be specific, in the Analytical Writing 
section of GRE, each essay is scored both by at least one experienced human rater and e-rater. The final score 
will be the average of the scores from the human rater and e-rater if these two scores are highly consistent. If not, 
a second human score will be required, and the final score will be equal to the average of the human scores. AES 
is also used for complementing human scoring in the Test of English as a Foreign Language (TOEFL), in which 
essays are scored by human raters in terms of content quality and meaning as well as e-rater in terms of other 
linguistic features related to writing proficiency. Apart from the professional scoring applications like e-rater 
frequently used in high-stakes assessment, there are some other online applications that are designed to be 
publicly accessed and require no specific training to use (Lewis Sevcikova, 2018). These online scoring 
applications including iWrite, a commercial online program in China, are often used in low-stakes tests or just 
classroom tests in which the automated scores are directly reported as the assessment results. However, even 
though AES systems have many advantages in assessing student writing proficiency, different voices about their 
effectiveness and validity never stopped. In addition, since many AES systems lack transparency in terms of how 
they award the scores, which makes it even harder to investigate the validity issues, exploring the scoring criteria 
held by AES systems as a part of validation work is of vital importance. 

2. Literature Review 

In validating AES, some researchers presented crucial considerations with regard to the validity of AES scores, 
aiming to provide directions for future validation research. For example, Xi (2010) raised a series of validity 
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questions that were focused on potential construct underrepresentation and misrepresentation caused by the use 
of AES systems, the consistency between AES score features and theoretical expectation, the consistency among 
AES scores across different measurement contexts and other test or non-test indicators, and the impact of AES 
scores on test-preparation, language teaching and learning, and score-based decisions. Deane (2013) also 
discussed over the issue of construct underrepresentation by comparing the construct of writing skills with the 
construct measured by AES systems, concluding that AES systems merely focused on a limited construct which 
ignored the social and cognitive dimensions of writing skills. Moreover, Raczynski and Cohen (2018) shared 
some considerations on the calibration and test of AES systems. 

Apart from putting forward theory-driven considerations for AES systems, some experts in language testing and 
assessment also conducted a systematical and critical review of the past studies. To be specific, Chapelle and 
Chung (2010) conducted an elaborate review of automated scoring. They first explained how AES systems for 
language assessment had become a unique research discipline and then appraised several major automated essay 
and speech scoring systems by examining the measured construct and human-machine scoring agreement. They 
also demonstrated the evaluation of an AES system within an interpretive argument and eventually pointed out 
that the research on validating AES systems and language processing could benefit each other in a significant 
way. Lewis Sevcikova (2018) also summarized the merits and demerits of both AES systems and human scoring 
based on a thorough literature review, suggesting that although online scoring applications could not replace 
human proofreaders, incorporating more technology into assessments was potential to improve the efficiency of 
instructors’ teaching and testing and save them more chances to interact with students face to face. In addition, 
Yang, Buckendahl, Juszkiewicz and Bhola (2002) summarized three operational approaches in their review: (1) 
to demonstrate correlations or agreements between automated and human scores, (2) to investigate the 
relationship between automated scores and other indicators of students’ language proficiency and (3) to explore 
the scoring process and mental models employed by AES systems. Their critical review not only confirmed the 
methodological advantages of previous studies but also shed light on future empirical studies. 

In terms of the empirical research, many researchers validated AES systems using an argument-based approach. 
For instance, Chapelle, Cotos and Lee (2015) validated two AES systems frequently used in diagnostic 
assessment, Criterion and Intelligent Academic Discourse Evaluator (IADE), demonstrating how the inferences 
identified in the interpretive argument framework outlined by Clauser, Kane and Swanson (2002) could be used 
to develop specific validity arguments for different AES systems. In addition, Enright and Quinlan (2010) 
justified an essay scoring process that used both human raters and e-rater within the validity argument developed 
for the TOFEL test by Chapelle, Enright, and Jamieson (2010). In the end, they stressed the importance of 
studying the relationship between human scores, automated scores, and other non-test indicators of writing 
proficiency, indicating that rater agreement was not the only source of evidence for validating human and 
automated scoring. Williamson, Xi and Breyer (2012) also discussed five inferences related to automated scoring 
with emphasis on different dimensions in validation research. Following their research, Weigle (2013) pointed 
out some considerations for the use of AES systems and then validated e-rater using an argument-based 
approach with the supportive data collected from another research (Weigle, 2011).  

Some empirical research did not follow an argument-based approach, but they were still focused on different 
areas within a validation framework. For example, in collecting more criterion-related validity evidence, Weigle 
(2011) compared the e-rater scores of TOEFL ibt writing tasks with other non-test indicators like student 
self-assessment and non-test writing scores, finding that there always existed a moderate consistency. Ramineni, 
Trapani, Williamson, Davey and Bridgeman (2012a) also investigated the ability of both human and AES scores 
to predict the scores of GRE Verbal section and found that they had the equal power to predict. The similar 
results occurred in the studies of Attali (2007) and Ramineni et al. (2012b) as well, in which the human and 
automated scores were compared with scores of other sections in TOEFL. In addition to the studies of agreement 
between the automated score and other indicators of writing proficiency, there were also studies of correlation 
between the automated score and the estimated true score, which was the average of the scores given by a group 
of different raters to an essay. The common finding of such studies was that the correlation between automated 
and human scores was nearly the same as inter-rater correlation (Attali, 2007; Attali & Burstein, 2006; Cohen, 
Levi, & Ben-Simon, 2018). Apart from such analysis of correlation, researchers also tried to create a proper 
feature weights for the AES model, aiming to optimize the measurement properties and improve the reliability of 
AES scores (Attali, 2015; Bridgeman & Ramineni, 2017). Moreover, there were many other case studies except 
for the study of e-rater, such as My Access (Hoang & Kunnan, 2016), WritetoLearn (Liu & Kunnan, 2016), 
iWrite (Qian et al., 2020), IntelliMetric (Rudner, Garcia, & Welch, 2006), and the AES system used on the 
platform of massive open online courses (MOOCs) (Reilly, Stanford, Williams, & Corliss, 2014). Some 
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ingenious examinations of the validity of AES scores were also not rare. For instance, in the study of Powers, 
Burstein, Chodorow, Fowles, and Kukich (2002), writers of different backgrounds were encouraged to “trick” 
the e-rater by eliciting a score that was obviously higher or lower than the deserved one. The finding indicated 
that e-rater, and perhaps other AES systems, might fail to offer an accurate assessment result without the human 
proofreading.  

Through on our literature review, some research gaps were detected. First, although many research found a high 
human-machine score agreement or positive correlation (Attali & Burstein, 2006; Dikli, 2006; Foltz, Streeter, 
Lochbaum, & Landauer, 2013; Rudner, Garcia, & Welch, 2006; Shermis, Burstein, Higgins, & Zechner, 2010; 
Shermis & Hamner, 2013), it was not the same in the study of Liu and Kunnan (2016), and human-machine 
score agreement should not be used as the sole validity criterion because it is an indicator of reliability rather 
than a perfect validation approach (Bennett & Zhang, 2016; Qian et al., 2020). Therefore, it is still necessary to 
investigate the human-machine score agreement and find other criterion-related validity evidence for AES 
systems. Second, even though many studies suggested that AES systems could not evaluate the higher-order 
aspects of writing proficiency because they could not read and understand like human raters (Attali, 2015; Attali 
& Burstein, 2006; Attali, Lewis, & Steier, 2012; Weigle, 2011; Zhang, 2013), there is a need for more empirical 
evidence. Third, most of the AES systems that researchers attended to were developed by institutions in America 
and unavailable in China, a country with a huge amount of EFL (English as a Foreign Language) learners. The 
need for higher efficiency in assessing students’ writing skills has promoted a series of AES tools in China, 
among which Bingo English is one of the most popular systems in classroom writing assessment and the 
assessment of writing assignments. However, there are merely few studies concerned with the validation of 
China’s flourishing AES systems, namely the studies of He (2013) in validating Pigai and Qian et al. (2020) in 
validating iWrite. Such studies are vitally important and indispensable in that they not only present educators the 
suggestions about the application of those AES systems, but also lay a foundation for the future improvement of 
those systems and the development of new applications. In order to bridge these research gaps, the current 
research tried to evaluate Bingo English, not just by relying on human-machine score agreement but also 
calculating the correlation between automated scores and the indices related to language learners’ writing ability 
as defined by complexity, accuracy, and fluency (CAF), which have been widely used in quantifying writing 
proficiency of EFL learners. In addition, the research also paid attention to the role of the AES system in scoring 
content and organization to provide implications for language teaching, learning and assessment. Two research 
questions were addressed: 

1) How is the agreement between scores produced by human raters and Bingo English? 

2) How do scores produced by human raters and Bingo English correlate to the writing ability as defined by 
complexity, accuracy, fluency (CAF), content quality and organization? 

About Bingo English 

Developed by a team of American artificial intelligence experts together with the senior professors including 
Huilan Ying and Yongzhen Shao from the School of International Studies at Zhejiang University, Bingo English 
is a pioneering English composition grading system in China. The project started in 2004, and it was designed to 
help college students improve their English skills. Since it was developed, it has received a lot of attention and 
praise from the majority of teachers and students in universities. Bingo English has been on trial at Zhejiang 
University since 2007, and has gone through a small-scale trial to a large-scale operation with more than 4,000 
people. According to the feedback of the teachers, the accuracy rate of its rating reached more than 95%, and it 
even exceeded the human rating in some aspects. Since then, the tool was gradually promoted to other high 
schools, colleges, and universities in Hangzhou city and even across the country. Today, there are nearly 1,000 
colleges and universities in 39 provinces of China using Bingo English. 

To ensure its high accuracy (up to 95%), the system is tested by leading English testing specialists every year. As 
displayed on the writing feedback webpage, Bingo English not only provides instant scores but also gives its 
users personalized feedback on vocabulary, grammar, style of writing, content and other aspects. Instant scores 
and feedback would be given as students revise their compositions, thus improving students’ writing ability as 
well as independent learning ability. With improved readability, instructors can provide guidance from a macro 
level, which greatly improves instructor’s work efficiency. In addition, the system would re-adjust the scores 
after the whole class summit their compositions so that instructors could have a clear picture of the ranking. 
Moreover, the administrator function enables instructors to create their own writing tasks, set word limits and 
deadlines, check students’ progress, detect plagiarism and download their scores for further analysis. 
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3. Method 

3.1 Materials and Participants 

The research materials were 84 students’ writings in an online English exam. The students were all non-English 
major freshmen and from two parallel classes of a college English course taught by the same instructor. The 
exam was held after two months of the start of the term to test what students had learnt during this period. For 
the writing section in the exam, there was an independent writing task with the topic of being a campus guide. 
Students finished the exam and handed in their paper online in different classrooms, using the computers 
provided by the college. The whole exam lasted for two hours. Students were supervised during the exam and 
not allowed to use any tools like the electronic dictionary. They were informed that their scores of the exam 
would take up at least 10% of the final grade of the course. 

3.2 Data Collection 

Two trained and experienced raters scored all the writings based on the 15-point holistic scoring scale of CET-4 
(College English Test Band 4) writing section (See Appendix A), which is a national English test for college 
students, and the automated scores produced by Bingo English were also obtained. According to the scoring 
criteria of CET-4 writing section, there were five levels of students’ writing quality including 2-point level, 
5-point level, 8-point level, 11-point level, and 14-point level, with each score level containing a range of three 
scores (e.g., 2-point level contains a range from 1 point to 3 points). Before the independent formal scoring, the 
two raters had a discussion over the scoring criteria and then conducted a pilot scoring of 20 randomly selected 
essays. After reaching a high agreement (r = .888, p < .01), the raters independently scored the rest of the essays, 
and the average was the final score of each essay. In addition to human and automated scores, students’ writing 
ability was also measured by linguistic features including CAF, content quality, and organization.  

Complexity is composed of lexical and syntactic complexity. They were analysed by Coh-Metrix 3.0 (Graesser 
et al., 2004). The effectiveness of the indicators provided by Coh-Metrix in catching the textual characteristics 
has been confirmed in many published studies (McNamara et al., 2010). For syntactic complexity, we first 
selected all the indicators concerned with syntactic complexity according to the description of each indicator and 
then conducted a factor analysis using SPSS 17.0 to pick up the most related ones. Finally, three factors 
including seven indicators were obtained (See Table 1). For lexical complexity, the measure of textual lexical 
diversity (MTLD), which is “the mean length of word strings that maintain a criterion level of lexical variation” 
(McCarthy & Jarvis, 2010, p. 381) was used as the indicator because it is most insusceptible to the text length 
(McCarthy & Jarvis, 2010). 

 

Table 1. Indicators of syntactic complexity 

Factor Abbreviation Full name  
Sentence level MSL Mean sentence length 
 SS Syntactic simplicity  
 SSS (adjacent) 

SSS (all) 
Syntactic structure similarity (adjacent) 
Syntactic structure similarity (all) 

Phrasal level NPD 
VPD 

Noun phrase density 
Verb phrase density 

Clausal level LE Left embeddedness 

 

Accuracy was measured manually with the reference to the error types defined by Bardovi-Harling and Bofman 
(1989) and applied by Neumann (2014). Apart from the two primary types of error including the morphological 
error and the syntactic error defined in the previous study, the raters also identified other improper use of 
language such as the collocation error between an adjective and a noun (e.g., too much things). The human 
coders first had a pilot coding of 20 randomly selected essays, and after they reached a high agreement (r = .927, 
p < .01), they independently coded the rest of the essays. The raw incidence of errors may not be a proper 
indicator since it is quite possibly affected by the writing length, which purports that more words may contribute 
to more errors. In order to mitigate the influence of the writing length, we employed an error ratio (error 
number/total word number × 10) used in the study of Plakans et al. (2016). 

Fluency was measured by the total number of words, as used in many other studies. As for content quality, with 
reference to the ‘key points approach’ adopted by Frost et al. (2011), the human raters first arrived at an 
agreement on the criteria of key points by analysing the writing instruction and reading through a random sample 
of essays. Since the students were required to introduce the campus environment in their essays, sentences used 
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to give instructions and building directions were counted as key points. Out of the same considerations as in 
measuring accuracy, a key-point ratio was adopted (key-point number/total sentence number). There was also a 
pilot coding of 20 essays, and after the human raters came to a high agreement (r = .941, p < .01), they started 
their formal coding independently. Through such an approach, both the degree of content richness and 
topic-relatedness could be measured.  

Organization including coherence and cohesion was measured by the indicators provided by Coh-Metrix as well, 
and the most representative indicators were selected by a factor analysis using SPSS 17.0. Eventually, three 
factors containing 11 indicators from different dimensions were extracted (See Table 2). 

 

Table 2. Indicators of organization  

Factor Abbreviation Full name  
Referential cohesion and coherence NO (adjacent) Noun overlap (adjacent) 
 SO (adjacent) Stem overlap (adjacent)  
 NO (all) 

SO (all) 
LSA (adjacent) 

Noun overlap (all) 
Stem overlap (all) 
Latent Semantic Analysis (adjacent) 

Referential cohesion AO (adjacent) 
CWO (adjacent) 
AO (all) 
CWO (all) 

Argument overlap (adjacent) 
Content word overlap (adjacent) 
Argument overlap (all) 
Content word overlap (all) 

Causal relationship DC 
CC 

Deep cohesion 
Causal connectives 

 

3.3 Data Analysis 

For the first research question, we first conducted an paired samples t-test to detect the difference between 
human and automated scores, and then an analysis of agreement using exact agreement percentage, adjacent 
agreement percentage, and Pearson’s r to test the extent to which human and automated scores correlated (Attali 
& Burstein, 2006; Hoang & Kunnan, 2016; Qian et al., 2020). Scores were rounded for the calculation of exact 
and adjacent agreement percentage, since human raters only gave integral scores while Bingo English produced 
scores with one decimal place. For the second research question, analysis of correlation was done twice to detect 
how human and automated scores correlate with CAF, content quality, and organization, which are the linguistic 
features indicating writing proficiency. To be specific, the indicators of linguistic features were first correlated 
with human scores, and then automated scores. By comparing the correlation coefficients, we could go deeper to 
the nature of AES systems. 

4. Results 

For the first research question, Table 3 shows that human scores are higher than Bingo English scores in mean, 
minimum and maximum, and the result of the paired samples t-test suggests that such difference is statistically 
significant (p < .01, d = 1.299). This indicates that human raters tend to give higher scores than Bingo English. In 
addition, as Table 4 demonstrates, the exact agreement and adjacent agreement between human scores and Bingo 
English scores are quite low, with 13.10% and 34.52% respectively, and the correlation coefficient is .519, which 
is a sign of a moderate correlation. 

 

Table 3. Descriptive statistics of human and Bingo English scores (N = 84) 

 Mean Standard Deviation Minimum Maximum 
Human scores 10.64 1.17 5.00 12.50 
Bingo English scores 9.14 1.14 4.40 12.20 

 

Table 4. Agreement of human scores with Bingo English scores (N = 84) 

Indicator Value 
Exact agreement (%) 13.10 
Adjacent agreement (%) 34.52 
Pearson’s r .519 
Sig. (two-tailed) .000 

Note. Exact agreement: the proportion of times human scores exactly matched Bingo English scores; adjacent agreement: the proportion of 
times human scores were within one point of Bingo English scores. 
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Table 5 shows the results of the second research questions, and because neither human scores nor Bingo English 
scores were found to be correlated with the indicators of organization, these data are not presented in the table. 
According to the statistical outcomes, human scores are weakly correlated with the indicators of accuracy, 
fluency, and content quality, while Bingo English scores are weakly correlated with only one indicator of 
syntactic complexity (LE) and moderately correlated with the indicator of fluency. In addition, there is an 
unexpected result that human scores are negatively correlated with the error ratio, which is the indicator of 
accuracy, and there is also a trend approaching negative correlation between Bingo English scores and the error 
ratio (r = -.234). 

 

Table 5. Correlation of human and Bingo English scores with the linguistic features (N = 84) 

 Human scores Bingo English scores 

 r Sig (two-tailed) r Sig (two-tailed) 

Complexity     
MTLD .154 .161 .223 .042 
MSL -.027 .809 -.024 .825 
SS .227 .038 .147 .181 
SSS (adjacent) .064 .563 .056 .613 
SSS (all) .011 .924 .072 .516 
NPD .022 .843 -.104 .346 
VPD .008 .945 .053 .633 
LE .248 .023 .298* .006 
Accuracy     
Error ratio -.358* .001 -.234 .032 
Fluency     
Word number .436* .000 .500* .000 
Content quality     
Key-point ratio .417* .000 .173 .115 

Note. *| r | > .25 and p < .05. 

 

5. Discussion 

5.1 Agreement of Human Scores with Bingo English Scores 

The outcomes of exact and adjacent agreement revealed that human scores and Bingo English scores were not 
always consistent. This corroborated with the study of iWrite (Qian et al., 2020), in which the exact agreement 
was 9% and the adjacent agreement was 34%, but conflicted with the studies of My Access (Hoang & Kunnan, 
2016) in which the adjacent agreement amounted to 69.5% and e-rater (Enright & Quinlan, 2010; Powers, 
Escoffery, & Duchnowski, 2015), in which the exact agreement was 57% and 70% for each study, and the 
adjacent agreement was 98% and 99%, respectively. However, the correlation coefficient in the current study 
suggested that human scores were moderately correlated with Bingo English scores, which was consistent with 
the studies of My Access and e-rater, but inconsistent with the study of iWrite, which claimed that no correlation 
was found between human and iWrite scores (r = .037). In addition, both the current study of Bingo English and 
the study of iWrite found that human scores were higher than AES scores, and this was in contrast with the study 
of My Access, which indicated that automated scores were higher than human scores.  

The comparison among different AES systems could possibly reveal not only the differences between AES 
systems in China and those primarily developed in America, but also the differences between AES systems used 
in low-stakes tests and those used in high-stakes tests. For one thing, the AES systems in China (Bingo English 
and iWrite) always used in a low-stakes context, might not produce the scores very close to human scores as the 
AES systems developed abroad and usually used in a high-stakes context did (My Access and e-rater), and 
practically, the scores produced by China’s AES systems were lower than human raters. This was perhaps due to 
the different point systems. In this study and the study of iWrite, the essays were scored based on a 15-point 
scale, which is common in China, while the scale used in the studies of My Access and e-rater was either a 
6-point or a 5-point scale. As was suggested by Ramineni and Williamson (2013), using a scale with few points 
included could lead to higher adjacent agreement, and this might even influence the result of Pearson’s r 
according to the findings of Shermis and Hamner (2013). For another, as the AES systems used in America, 
Bingo English also produced scores that were correlated with human scores, but iWrite, which was another 
China’s AES system did not show this feature. These findings suggested that Bingo English might be more 
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reliable than iWrite, and more efforts should be made to optimize AES systems in China to make it more reliable 
as the professional human scorers.  

From the perspective of Bingo English, even though it did not produce the scores that shared a high exact or 
adjacent agreement with human scores, it was, by and large, able to judge the essay quality since the scores 
provided were correlated with the scores produced by professional raters. As for the significant difference 
between the two scores, one possible reason was that Bingo English scored essays based on a full-range scale 
with .1 point as an interval, unlike the human raters who scored with one point as an interval, and therefore it 
might score the essays in a stricter way. Another reason might lie in their different scoring procedures. With 
reference to a holistic scale, human raters tended to give reward scores based on an overall impression rather 
than deducting points in terms of the number of errors. In contrast, an essay was simply a bag of words for a 
machine, and they merely shared a stimuli-response relationship, which means the machine could only respond 
to the stimuli already built in the program. Therefore, with more attention paid to the global writing quality, the 
human raters might give higher scores than Bingo English.  

5.2 Correlation of Human and Bingo English Scores with the Linguistic Features 

As for complexity, only a weak correlation was found between Bingo English scores and one of the indicators of 
syntactic complexity, left embeddedness (LE), and no correlation was found between human scores and the 
indicators of linguistic complexity. One possible reason was that the complexity of essays did not show a 
significant difference among students. Since all participants were non-English major students in their first year 
of university, and the exam just happened two months after their entrance, their ability to use complex words and 
sentences might not differ very much. Another explanation was that linguistic complexity might not be the core 
of the scoring criteria both for human raters and Bingo English. 

Unexpectedly, human scores were found to be negatively correlated with the error number, even though it was 
only a weak correlation. Also, Bingo English scores tended to have a negative correlation with the error number. 
On the one hand, this once again indicated that human scoring might be a top-down process, which means the 
essay was scored as a whole, so the details of an essay such as the incidences of errors might not contribute too 
much to the holistic score, instead, the number of error types might make a bigger difference. On the other hand, 
the result suggested that Bingo English was probably not very effective in recognizing linguistic errors, or 
linguistic accuracy was not a focus in its scoring criteria. 

Both the human scores and Bingo English scores were correlated with the indicator of writing fluency, word 
counts. This result has also been found in many other studies. For example, Attali (2007) reported that both 
human scores and e-rater scores were moderately correlated with the word number with the correlation 
coefficient as .57 and .61, respectively. Also, Hoang and Kunnan (2016) suggested that the essay length was a 
strong predictor for both human scores and My Access scores by calculating a linear regression. In addition, in 
the study of Powers et al. (2015), a strong correlation (r = .87) was found between the word number and the 
scores provided by the certified human raters. All these results suggested the essay length was a correlate of 
writing quality which might be able to reflect fluent production and development, and most AES systems 
including Bingo English could capture this linguistic feature as a scoring criterion. 

In terms of organization, neither human scores nor Bingo English scores were found to be correlated with the 
indicators of cohesion and coherence, and for content quality, it was only found to be weakly correlated with 
human scores. The results corroborated with the claim that AES systems were unable to evaluate the writing 
quality from the perspectives of content and organization because it could not truly understand the essay and 
evaluate the novelty or innovativeness of some ideas. However, in the current study, human scores were not 
correlated with organization, either, which conflicted the finding in the study of Powers et al. (2015) that there 
was a moderate correlation (r = .61) between the organization scores provided by e-rater and the scores given by 
the certified raters. The possible reason was that the introductory writing task employed in the current study 
might not so well discriminate students’ organizational skills as the argumentative writing task did, which was 
used in the study of Powers et al., and therefore unlike the result in their study, the correlation between 
organization indicators and holistic scores was not shown in this study. 

6. Conclusion 

The findings of the study suggest that Bingo English as a teaching assistant tool can generally help instructors 
differentiate essays across different levels of quality, since the scores it provided in the study were basically 
correlated with the scores provided by the trained human raters. However, it is not proper to use Bingo English 
score as the only criterion to evaluate students’ essays, for it was only correlated with the indicators of few 
linguistic features with higher-order aspects including content quality and organizational skills completely 
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excluded. Therefore, with the complementation of human scoring, instructors can use Bingo English to evaluate 
students’ essay assignments or use it in some low-stakes tests, but employing it in high-stakes tests will be 
greatly risky. Also, the findings indicate that developers of AES systems in China should make constant efforts to 
refine the scoring model and make the systems more reliable and valid. 

Several limitations should be acknowledged in this study. First, the writing genre of the essays collected in this 
study was single, thus the same results cannot be ensured when Bingo English is used to score other genres of 
writing such as narrative and argumentative writings. Therefore, future studies should collect essays of different 
genres as the research material and continue to validate the AES system. Second, the participants in this study 
were too homogeneous, and future studies ought to find people with a wider range in English proficiency as 
participants to test whether the same results would occur when Bingo English is used to score their essays. Third, 
the number of human raters was relatively small. Although both of the raters in this study were trained and 
experienced in scoring essays in a large-scale standardized test, their own understanding of the scoring criteria 
may still differ very much. According to Powers et al. (2015), there is an apparent difference in the correlation 
between the scores given by different human raters and the machine scores; therefore, in order to mitigate this 
issue, future studies should include a greater number of professional human raters to obtain more reliable human 
scores. 
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Appendix A  

The Scoring Criteria of CET-4 Writing Section (Translated Version by the Researchers) 

Level (points) Description 

13−15  Relevant; contents well developed without ambiguity; grammar, spelling, and punctuation almost free from errors. 
10−12 Relevant; contents well organized; few errors in grammar, spelling, and punctuation, which do not interfere with 

comprehension. 
7−9 Basically relevant; contents barely organized but not clear enough; frequent errors in grammar, spelling, and punctuation, 

some of which are serious errors that interfere with comprehension. 
4−6 Basically relevant; contents not clear and badly organized; many serious errors in grammar, spelling and punctuation that 

interfere with comprehension.  
1−3 Contents not clear and badly organized; fragmented sentences that abound with serious errors which interfere with 

comprehension.  

 

Copyrights 

Copyright for this article is retained by the author, with first publication rights granted to the journal. 

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 
license (http://creativecommons.org/licenses/by/4.0/). 


