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Abstract 

The aim of this paper is to solve a free boundary problem arising in pricing American put options. It is known that 
the free boundary (optimal exercise boundary) satisfies a “nonstandard” Volterra integral equation. This Volterra 
integral equation is resolved by a high-order collocation method based on graded meshes. With the computed free 
boundary, a Black-Scholes equation for pricing the American put options is solved by a moving mesh method. 
Numerical examples are provided to confirm the efficiency of the approach. 
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1. Introduction 

Assume that S is the underlying asset price, t  is the time, and ),( tSVV   is the put option value. Let r denote 

the risk-free interest rate, the volatility of the underlying asset price, and q the continuous dividend yield. Then 

V satisfies the following free boundary problem (see e.g., in Hull (2007), Jiang (2005) for the derivation) 
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where )(tS f
 is the optimal exercise boundary (free boundary), T is the expiry time K is the strike price, and 

),( TSV is called payoff function. It has several difficulties to solve the above free boundary value problem. Being 

coupled with the unknown solutionV , the free boundary satisfies condition (3) which is a highly nonlinear equation. 
So it is indeed not an easy task to get a highly accurate resolution to the free boundary. Moreover since numerical 
methods cannot be applied directly to the unbounded domain, a feasible artificial boundary(or artificial boundary 
condition) needs to be set up. In addition the non-smoothness of V , which belongs to 1H , affects the accuracy of a 
numerical method. Therefore a kind of selfadaptive methods is required to improve the accuracy of solving 
theBlack-Scholes equation. Among the vast of literatures on the numerical solution of the above free boundary value 
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problems, Han and Wu (2003) derive an artificial boundary condition for the heat equation arising from the 
transformation of the Black-Scholes equation in an American call option. Wong and Zhao (2008) derive artificial 
boundary conditions for a CEV model with Black-Scholes model as a special case. Tangman et al. (2008) provide a 
survey to the numerical methods for pricing American options and develop a new finite difference method to deal 
with the singularity existing at the strike price in the payoff function which deceases the accuracy of the solution. 
Fusai et al. (2007) investigate quadrature method for solving the free boundary problem.  

Cox (1979) (compare with Jiang (2005) and Robinstein (1991)) proves that the free boundary satisfies a 
“nonstandard” Volterra integral equation which is very hard to solve (see in Brunner (2004)). The “nonstandard” 
Volterra integral equation is given by 
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In this paper, we resolve the free boundary by solving the “nonstandard” Volterra integral equation (7). A high-order 
collocation method is developed to solve the “nonstandard” Volterra integral equation. Moreover the solution of the 
“nonstandard” Volterra integral equation is singular. Therefore the graded meshes, which is introduced by Brunner 
(1985) (see also in Brunner (2004)), are used in the collocation methods. Since the solutionV is not globally smooth, 
a moving mesh method is the best choice to solve the Black-Scholes equation.  

In the history, a few of works, cf. Huang et al. (1996), Ju (1998), Detemple and Tian (2002) have studied the 
implementations of the integral equations methods for pricing the American put options. However their approaches 
for solving the integral equations are based on low-order approximations and the numerical quadratures are used to 
evaluate the EEP (Early Exercise Premium) representation of the option price (see e.g., in Detemple (2002)). While 
to our knowledge, in order to get highly accurate numerical solutions of the underlying PDEs, it is rather necessary 
to resolve the free boundary with high accuracy. 

In the next section the high-order collocation methods are described to solve the “nonstandard” Volterra integral 
equations that the free boundary function satisfies; In Section 3, the moving mesh method is introduced to solve the 
Black-Scholes equations; In Section 4 a variety of numerical examples are carried out to confirm the efficiency of 
the method; In the final section conclusions are given. 

2. Collocation methods for “nonstandard” Volterra integral equations 

Now we solve the “nonstandard” Volterra integral equation (7). To do that we transform the equation into the 

following form by replacing t with tT  , and then using )()(
~

tTStS ff   and the fact that )()(1 xNxN   
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The asymptotic properties of the solutions to the above “nonstandard” Volterra integral equation (7) (or the 
equivalent form (8) are studied e.g., in Cox et al. (1979), Robinstein (1991), Jiang (2005)). We summarize the 
results into the following theorem. 

Theorem 2.1 If 10  t , then the solution to (8) has the following asymptotic results. 
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It is seen from the theorem that the derivatives of 
~

fS  are singular at the origin. Thus the use of uniform meshes 

cannot give an optimal accuracy in the numerical solution of equation (8). Therefore the graded meshes, which is 

developed in Brunner (1985) (cf. Brunner (2004)), with mesh points satisfying 2)(
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in finding the numerical solution of equation (8) (or (7)). Now we describe the high-order collocation methods for 
equation (8) (or (7)). To do that we rewrite equation (8) into a more feasible form using the transformation 
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where 
3P  is the set of polynomials of degree 3. The high-order collocation method is defined by: Find 1
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such that 
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holds exactly at the collocating points 
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3. Moving mesh method for Black-Scholes equations 

In this section we solve the Black-Scholes equation (1) with conditions (2),(4),(5). From the derivation of the 
“nonstandard” Volterra integral equation that the free boundary (optimal exercise boundary) satisfies (cf. Jiang 
(2005)), we can easily verify that the solution of (7) satisfies condition (3) and (6). This fact will also be confirmed 
by the numerical tests in the next section. 
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with 
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),0,max( 0
0~

jj SKV   ,00

~
n

n

SKV   0
~


n

NV                                          (27) 

for ,1,...,1  Nj  ,...,1,0n  . 

4. Numerical examples 

In the tests, we take the artificial boundary as the form (22), i.e., 

)).(()()()(
~

1100 tSKtlatlatR f   

Let N  and L  be the number of spatial and time mesh elements, respectively. The following graded mesh for   

is used, .)( 2

N

j
j   

Using (24) the corresponding spatial mesh at nt  level is 

)).()(()()(S
~

2
~

nfnnf
n
j tStR

N

j
tS   

The free boundary )(
~

nf tS  is computed from Section 2 — (20). Thus our algorithm contains two parts — (15) and 

(20) for computing )(
~

tS f ; (26) and (27) for computing ),(
~

tSV . The solutions to the original problems (1)–(6) are 

given by 

),()(
~

tTStS ff   ).,(),(
~

tTSVtSV   

Example 4.1 Consider the free boundary value problem for pricing American put options (1)–(6) with 

001.0r , 01.0q , 2.0 , 100K , 10T , 

 (the case qr  ). 

It is shown by Kim (1990) that 

,
1

)(S
~




K

f
 where .

2)5.0()5.0(
2

2222








qrqr                     (28) 

Therefore in this example, 260090.3)(S
~

f . The parameters in (22) are taken as 

,1500 a  ,9001 a  .0r  

The results of the tests are obtained with 200L  and .400N  

Table 1 shows the tendency to the limit value 260090.3)(S
~

f . The solution of this example is drawn in Fig. 1. 

In Fig. 2, the free boundary (optimal exercise boundary) is demonstrated. In Fig. 3,the asymptotic structure of )(S
~

tf  

as 0t  is tested: It shows that the numerical )(S
~

tf  satisfies the asymptotic result (11). The test is well consistent 

with the existing analytical results. 

In the subsequence, we do the tests for cases qr   and qr   in a similar manner. 

Example 4.2 Consider the free boundary value problem for pricing American put options (1)–(6) with 

01.0r , 01.0q , 2.0 , 100K , 10T , 

(the case qr  ). 

Using formula (28), we calculate .794919.26)(S
~

f The parameters in (22) are taken as 

,1010 a ,5001 a  .5r  

The results of the tests are obtained with 200L  and .400N  

Table 2 shows the tendency to the limit value .794919.26)(S
~

f The solution of this example is drawn in Fig. 4. 

In Fig. 5, the free boundary (optimal exercise boundary) is demonstrated. In Fig. 6,the asymptotic structure of )(S
~

tf  
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as 0t  is tested: It confirms that the numerical )(S
~

tf  satisfies the asymptotic result (10).  

Example 4.3 Consider the free boundary value problem for pricing American put options (1)–(6) with 

1.0r , 01.0q , 2.0 , 100K , 10T , 

 (the case qr  ). 

Using formula (28), we calculate .109165.82)(S
~

f  The parameters in (22) are taken as 

,1010 a ,3001 a .5r  

The results of the tests are obtained with 200L  and .400N  

Table 3 shows the tendency to the limit value .109165.82)(S
~

f  The solution of this example is drawn in Fig. 7. 

In Fig. 8, the free boundary (optimal exercise boundary) is demonstrated. In Fig. 9, the asymptotic structure of 

)(S
~

tf  as 0t  is tested: It verifies that the numerical )(S
~

tf  satisfies the asymptotic result (9).  

5. Conclusions 

In this paper we have developed a high-order collocation method based upon the graded meshes for solving a 
“nonstandard” Volterra integral equation for the free boundary (optimal exercise boundary) arising in pricing 
American put options. With the computed free boundary, we also set up a time-dependent artificial boundary so that 
the Black-Scholes equation for pricing the American put options can be computed on the bounded domain. The 
moving mesh methods, with the moving meshes generated by the graded meshes on the computational space, are 
used to solve the Black-Scholes equations. Although the theoretical convergence results are not provided in this 
paper, several numerical examples are performed to verify the efficiency of the approach, and it is expected that the 
approach could be extended to solve more complex free boundary value problems arising in either physics or 
finance. 
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Table 1. Testing the limit of )(S
~

tf  when t  for Example 4.1 

   t   750 760  770 780   790 800 

)(S
~

tf  3.260222  3.260028 3.20017 3.260119 3.2599984  3.259923 

 

Table 2. Testing the limit of )(S
~

tf  when t  for Example 4.2 

   t   450 460  470 480   490 500 

)(S
~

tf  26.795730  26.795084 26.794588  26.794266 26.794059  26.793956 

 

Table 3. Testing the limit of )(S
~

tf  when t  for Example 4.2 

   t   750 760  770 780   790 800 

)(S
~

tf  
3.260222 3.260028 3.20017 3.260119 3.2599984 3.259923 

 

 

 

 

 

 

 

Figure 1. Computational values of underlying assets (2D drawing) for Example 4.1. 

 

 

 

 

 

 

 

Figure 2. Optimal exercise boundary for Example 4.1. 

 

 

 

 

 

 

Figure 3. Figures for Example 4.1: Line with marker 
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Figure 4. Computational values of underlying assets (2D drawing) for Example 4.2. 

 

 

 

 

 

 

 

 

Figure 5. Optimal exercise boundary for Example 4.2. 

 

 

 

 

 

 

 

 

Figure 6. Figures for Example 4.2: Line with marker 
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Figure 7. Computational values of underlying assets (2D drawing) for Example 4.3. 
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Figure 8. Optimal exercise boundary for Example 4.3. 

 

 

 

 

 

 

 

 

 

Figure 9. Figures for Example 4.3: Line with marker 
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