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Abstract 
In this paper we compare the effects of two accounting rules, the mark-to-market and the historical cost regimes, on 
the dynamics of direct, balance sheet contagion in financial networks. This is done using a flow-network 
representation of a financial system and of the propagation of losses that crosses it as a consequence of a negative 
shock. We show that, for any network and any shock, the flow of losses generated with the mark-to-market rule is 
larger than the one generated by accounting at historical cost. This implies that a financial network is more exposed 
to default contagion, both in terms of scope and threshold of contagion, under the marking-to-market accounting 
regime, than with the historical cost regime. 
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1. Introduction 
Since the start of the current subprime mortgage crisis, the mark-to-market accounting rule (known also as fair value 
rule) has come under scrutiny for its alleged role in exacerbating the magnitude and diffusion of financial distress. 
As is known, such a rule requires that the marketable assets held by a company, that are not classified as 
‘held-to-maturity’, have to be accounted for at market value.(Note 1) Some economists studied the effects on 
financial contagion of this accounting practice before the subprime crises put it under scrutiny. Shin et al. (2005) 
highlighted the detrimental interaction between this accounting rule and the loss of value of illiquid assets due to fire 
sales. When liquidity shortages and/or capital requirements force some agents to sell illiquid assets, the market value 
of such assets diminishes. This loss of value is borne by all agents who hold those assets, losses which are accounted 
for in the marked-to-market headings of their balance sheets. These ‘marking-to-market’- losses can generate further 
contagion in as much as they induce further fire sales (possibly also due to the liquidation of defaulting agents) and 
further reductions of the market value of illiquid assets. The transmission of losses due to the marking-to-market of 
assets is also studied by Allen and Carletti (2008). These authors show that, with mark-to-market accounting and 
when the price of illiquid assets depends on market liquidity, a liquidity shortage can generate contagion between a 
banking sector and an insurance sector. In that paper, as well as in Shin et al. (2005), the channel of contagion is the 
marking-to-market of price variations of common or correlated assets. In the present paper we analyze the effects of 
marking-to-market on a different channel of contagion, namely the direct balance-sheet transmission of losses. In 
networks of financially interconnected agents, where someone's assets are someone else's liabilities, the 
marking-to-market of such assets creates the grounds for a domino effect of debt deflation that occurs even in the 
absence of defaults. When a financial operator suffers a loss of value of some of its assets, this loss diminishes the 
market value of its outstanding debt. Then the holders of such debt, in as much as they mark it to market, suffer a 
loss that, in turn, worsens their own balance sheets and shrinks the market value of their own outstanding debt. In 
turn, this loss is borne by the subscribers of such debt, and so forth and so on along the chains of financial 
obligations that constitutes the fabric of the system, diffusing and amplifying the initial negative shock. 
To shed some light on this form of contagion, we use the graph-theoretic representation of financial networks put 
forward by Eboli (2010b), where a financial system is modeled as a flow-network, and contagion is modeled as a 
flow of losses that crosses such a network. Building on this framework, we model the propagation of losses, 
generated by an exogenous shock, under the historical cost and the mark-to-market accounting rules. We show that, 
for any network and any shock that perturbates it, the flow of losses caused by a shock is larger with the 
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marking-to-market rule than with the historical cost rule. As a consequence, we establish that financial networks are 
more exposed to direct default contagion with the mark-to-market regime than with the historical cost regime, both 
in terms of contagion scope (the number of defaults) and of contagion threshold, i.e., the value of the smallest shock 
that is large enough to cause default contagion. 
The paper is organized as follows: Section two presents the flow network representation of a financial system while 
section three presents the two different propagations of losses — with mark-to-market rule and historical cost rule, 
respectively — which are induced, in such a network, by an exogenous shock. In section four, these two 
propagations are compared with respect to the volume of the losses diffused across the network and, consequently, 
with respect to the propensity of a network towards systemic risk. Conclusions are drawn in section five. 
2. The financial flow network 
Let N be a financial system composed of a set of operators � = {���| i = 1,...,n}, such as banks and other 
intermediaries, which are directly or indirectly connected to one another by financial obligations, namely bonds, and 
let ���� R� be the face value of the bond, if any, issued by agent i and held by agent j. Each of such operators is 
characterized by its own balance sheet: 	� 
 �� � � 
 �� 
 ��, where: i) �	�  � R� is the value of the external 
assets owned by the i-th operator. Such assets are liabilities — shares, bonds and bank loans — of final users of 
funds, which are not financial operators; ii) �� � � ����   is the sum of the internal assets — which are bonds issued 
by other agents in � — held by agent i; iii) �� � � ����  is the internal debt of agent i, i.e., the sum of the liabilities 
issued by agent i and held by other agents in �; iv) �� is the external debt of agent i, i.e., the amount of debt claims 
against i held in the form of bonds and deposits by final claimants, such as households, who do not belong to �; and 
finally v) � is the value of the equity of the i-th agent, which is set residually by the budget identity � � 	� 
�� � �� � ��. In what follows we assume that there is no cross-holding of shares among the financial intermediaries: 
all the shares issued by the members of � are held by households. 
As in Eboli (2010), we represent the above financial system as a multisource flow network, i.e., a directed, weighted 
and connected graph, with some sources and two sinks. (Note 2) Let �� � � ��� �� �� �� �� �� be a financial flow 
network where: 
1). � = {����� � ���} is the set of n nodes that represent the above defined financial intermediaries. 

2). � �  �!� " ��#� " ��$� " ��%& is a set of directed links, where i) �!� ' ��( is a set of ordered pairs of nodes in 
�, i.e., a set of directed links {)��} representing the liabilities ���, where )��  starts from node ��� and ends in 
node ���, and )�� � � ��! only if ��� * �+; ii) �#� �{)�,} is a set of directed links, with start nodes in A and end 
nodes in �, that connect the external assets to their owners, where )�, � ��# only if 	�, > 0; iii) �$ � �)�-} is a set 
of n directed links, with start nodes in � and end node T; and iv) �%� �{)�.} is a set of n directed links, with start 
nodes in � and end node H. 
3). A ={	,�/� � ���0}, is the set of source nodes, i.e., nodes with no incoming links, that represent the external 
assets held by the members of �. 
4). T is a sink, i.e., a terminal node with no outgoing links. This node represents the shareholders who own the 
equity of the agents in �. 
5). H is a sink node representing the households who hold debt claims, in the form of deposits and bonds, against the 
agents in �. 
6). �: � 1 23 is a map, called capacity function, that associates i) to each )�� the value of the corresponding 
liability ���, ii) to each )�, the value of the corresponding asset 	�,, iii) to each )�- the equity, ��, of its start node ���, and iv) to each )�. the external debt, ���, of its start node ���. 
A flow in a generic network is a function g: � 1 23 such that: i) for all the links in the network, the scalar 
associated to a link does not exceed its capacity (capacity constraints); and ii) for all the nodes in the network which 
are neither a source node nor a terminal node, the divergence — i.e., the difference between the total flow arriving at 
a node and the total flow departing from such a node — is null (flow conservation property). A flow that complies 
with these two requirements is said to be legitimate, i.e., it exists. 
A flow of value crosses a financial flow network N, a flow that starts from the external assets (the sources of value) 
and ends into the households portfolios (the sink nodes), through the intermediation of the financial operators. If all 
agents in � are solvent, this value flow is such that all links are filled to capacity (i.e., the value flow coincides with 
the capacity function �). However, since we are interested in measuring direct financial contagion under different 
accounting regimes, we do not study the properties of such a value flow and rather focus on the flows of losses that 
cross a financial network N when it is perturbated by a negative exogenous shock. 
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3. Direct contagion with historical cost and mark-to-market accounting rules 
We now proceed to model the domino effect among the agents in �, caused by a set of initial defaults, as a flow of 
financial losses that crosses N. This flow is generated by a negative shock, i.e., an exogenous loss of value of some 
of the external exposures�	,. Let 4, � � 5+��6 be a parameter that measures the fraction of the value of the asset 	, which is lost, and let [4,6, /� � �#, be the vector composed of such parameters. An exogenous shock is an 
assignment of value to this vector, where at least one of its elements is strictly positive. If 4, > 0, then source node 	, sends to its children nodes — its direct descendants in � — a financial loss equal to 4,	,. In other words, a 
shock is a flow of losses that goes from the nodes in A into the nodes in �. The way such a shock propagates among 
the nodes in � depends on the accounting rules adopted by the financial intermediaries. Eboli (2010b) analyses in 
details the properties of a propagation function defined over a network N — i.e., the function that associates to an 
exogenous shock the values taken on by the flows of losses on each of the links in N — with historical cost 
accounting. For our present purposes, we use two slightly modified versions of the model in Eboli (2010b). In the 
first version presented below, the one with historical cost accounting, we introduce bankruptcy costs for the sake of 
realism, (Note 3) such costs include the administrative costs of liquidation and the loss of value arising from the 
liquidation of firm-specific assets. In the second version, the mark-to-market one, we further modify the model 
assuming that all the internal assets held by the agents in � are marked at current market prices. 
3.1 Contagion with historical cost accounting 
Let N be a financial flow network and let us assume that the external assets 	�� of an intermediary in N are 
accounted at market value, while his other balance sheet headings ���, ���, ���, are accounted at their historical cost. 
As a shock occurs, some nodes in � suffer a loss. This loss is first offset by the equity of the nodes and borne by 
their shareholders. These losses exit from the flow of losses that circulates among the agents in � and go directly 
into the sink T. For each node in �, we have an absorption function that measures the share of net worth lost by a 
node 

 �&��������7� 8�& � 9:; <8�� � �= 

where�8�� is the total loss borne by the i-th node, received from source nodes and/or from other nodes in �. If a node ��� receives a positive flow of losses, it sends to the sink T an amount of its own equity equal to 7����, 7�� � [0,1]. 
If the losses suffered by i-th intermediary are larger than its net worth, 8�� * ��, then this node is insolvent and 
sends the loss which is not absorbed by its equity, 8��> ��, augmented by its bankruptcy costs ?��, to its creditors. 
For each node in �, let 

 @&���������4� 8�& � A +� �B�8� C � �D8� 
�?� � ��� 
��� ������B�8� E �FG 

be the historical cost loss function. If the i-th operator is solvent, 4��is null, while 4�� �  �+��6 if the operator 
defaults. In the latter case, the assets of the insolvent node are liquidated at current market prices and its creditors get 
a pro rata refund. Households receive a loss equal to 4����� (if ��� > 0), that ends into the sink H, while a node ��� 
which is a creditor of node ��� — i.e., a children node  ��� � � �H ���& �� � �����I�)��� � � ��� of node ���— receives 
from the latter a loss equal to 4���J. The loss borne by a financial intermediary in � is the sum of the losses, if any, 
received from its external and internal exposures, i.e., form the source nodes and from its parent nodes K ���& ��������I�)��� � � ���: 8� �� �L�M4,	�, 
 ���N OP&4���J 
When a shock perturbates the network, the subsequent flow of losses that crosses the network is governed by the 
above defined absorption and loss-given-default functions, which assign a positive real value to each link in N given 
the value taken on by the shock vector [4/]. 

Definition 1:  Let B: � 1 Q3 be a map such that: B )�,& � 4,	�,� B )�J& � 4���J� B )�.& � 4���� B )�-& � 7��, 
and call this function a historical cost propagation in a network N. 
This propagation function satisfies the capacity constraints (Note 4) while, for B to be a legitimate flow in N, we 
need to ensure that it complies with the flow conservation property. (Note 5) More precisely, B is an augmenting 
flow and N is a network with gains, (Note 6) because the default of a node increases its inflow of losses of an amount 
equal to the incurred bankruptcy costs. The administrative costs of liquidation are extra costs that, in principle, can 
render the losses borne by an agent larger that the total of its liabilities. In such a case it is unclear who and how 
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should pay for such costs. As far as we are here concerned, if 8� 
 ?� * � 
 �� 
 ��, then the inflow of node i is 
larger than its largest possible outflow and its divergence is strictly positive, violating the flow conservation 
property. To avoid this formal problem, we assume that, even in the worst scenario, each agent in � owns some 
residual assets (say properties) and that the value of such assets is sufficient to cover administrative bankruptcy 
costs: 
Assumption 1: 8� 
 ?� R � 
 �� 
 �� ; for all i � �. 
The interdependence of financial obligations that arises in a network N, can create problems of non-uniqueness of a 
propagation. Eboli (2010 b) demonstrates that such indeterminacy is confined to closed strongly connected 
components of defaulting agents, which are subsets S of N such that: i) for each pair of nodes (i,j) in S, there exists a 
directed path going from i to j and a directed path going for j to i (S is a strongly connected component of N), ii) no 
node in S has debts towards nodes in N\S, and iii) all nodes in S default. In order to ensure the uniqueness of f, it is 
sufficient to assume the following: 
Assumption 2: The financial flow network N entails no closed strongly connected components. 
This assumption is fairly mild, it implies that for each strongly connected component S in N, if any, there is at least 
one node in S that has a financial obligation towards a node in �\S or towards the households in H. Under 
assumptions 1 and 2, the above defined historical cost propagation B in a network N exists and is unique. 
3.2 Contagion with marking-to-market accounting 
Let us now consider the marking-to-market accounting regime, i.e., we assume that both the internal and the 
external assets of an intermediary in �, �� and 	�, are accounted at market value, while its liabilities,����and���, are 
accounted for at their historical cost. (Note 7) The market value of a bond embeds its expected loss-given-default. 
The marking-to-market of a bond, in the balance sheets of its holders, turns such an expected loss into an accounted 
loss. When the value of the external assets of some agents in � drops, so does the market value of the debt issued by 
those agents. In compliance with the mark-to-market accounting rule, the holders of such debt claims register this 
loss in their own balance sheets. As the market value of the internal assets of such debt-holders diminishes, so does 
the market value of the debt that they issued; this, in turn, inflicts a loss of (internal) assets value to their creditors, 
and so on and so forth along the chains of obligations in N. It is the case to remark that this transmission of losses 
does not require the actual default of any of the involved agents, it unfolds through the simple weakening of their 
balance sheets. 
To represent this form of contagion, we model the pricing of a defaultable bond as a function of the value of the 
assets owned by the issuer of such a bond, as it is customary in the structural models of debt pricing based on 
Merton (1974). (Note 8) For our purposes, all we need is a basic property of such models: the value of a defaultable 
bond is an increasing, concave and bounded function of the expected value of the issuer's assets. (Note 9) 
Let��S� � 	� 
 �� be the random variable that measures the market value of the assets owned by agent i, let T S�& 
be the probability density function of �S� and assume, as customary, that the mean and variance of T S�& are finite. 
We assume that the market sets the prices with risk-neutral (arbitrage free) probabilities. Under these condition, 
asset prices are martingales: the current market value of the assets, S�, is equal to their expected value: SU� �V S�T S�&�S�WX ; and the market price Y� of a bond issued by agent i is equal to its own expected value:  

�Y� S�& � ��� 
 �� Z S�T S�&�S� � ?��� 
 �� Z T S�&�S� 
[\]^\
X

[\]^\
X

��� 
 �� Z T S�&�S�
W

[\]^\
 

where, for convenience, we set the face value of the bond as equal to unity (hence Y� is the price of one unit of the 
debt issued by agent i). It can be checked by inspection that Y� S�& is increasing and concave in the expected value 
of its argument, S�, and bounded above by unity. If node i suffers a loss, due to an external shock, its current asset 
value S� diminishes, the probability of default of that node increases, the bonds that it issued become more risky 
and lose some of their market value. Let S�X be the initial value (before the shock) of the assets of agent i, and let 8_� � S�X � S� be the loss suffered by node i under the mark-to-market regime. As node i receives a loss, then also 
the children nodes of node i receive a loss which is equal to i) the price devaluation of i's debt, as long as agent i is 
solvent, or ii) to the loss-given-default, if agent i defaults. Thus we define, for each node in �, the following 
mark-to-market loss function:  

 `&���������4a�b8_�c � AY�bS�Xc � Y�bS�X � 8_�c� �B�8_� C � �D8_� 
�?� � ��� 
��� ������B��8d� E �F G 
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Then the loss borne by a financial intermediary in � is: 8_� �� �L�M4,	�, 
 ���N OP&4aJ�J� 
As above, we define the flows of losses that a node in � sends to its shareholders as the mark-to-market 
absorption function: 

 e&����������7_�b8_�c � 9:;f8_�� � �g 

Definition 2:   Let B_: L�R3 be a map such that: B_ )�,& � 4,	�,� B_ )�J& � 4a���J� B_ )�.& � 4a���� B )�-& � 7_��, and 
call this function a mark-to-market propagation in a network N. 

As above, we assume that 8_� 
 ?� R � 
 �� 
 ��, for all i � �, and that N embeds no closed strongly connected 
component. Under these two assumptions, B_ is a legitimate and uniquely defined flow in N. We can now proceed 
to a comparison of the different systemic implications, in terms of direct contagion, of the two accounting regimes. 
4. Historical cost versus marking-to-market 
Our main finding is that the flow of losses that crosses a network N, as a consequence of a shock 	, under the 
mark-to-market accounting regime is larger than (or, under a restrictive condition, equal to) the flow of losses 
generated by the same shock under the historical cost regime. This results stems from the fact that, with historical 
cost accounting, only the insolvent nodes send losses to their children nodes, while with marking-to-market all 
nodes that bear a loss, both solvent and insolvent, transmit losses to all their descendant nodes. 
The value of a flow in a network is equal to the total flow that goes from the sources to the sinks. For our purposes, 
we define a stricter condition of inequality between two flows, comparing not just the value of the overall flow that 
crosses a network but rather the flows carried by each link in �. 
Definition 3: Let h and i be two flows in N. h�is link-wise larger than or equal to i if the value taken on by h on each link in N is larger than or equal to the one taken on by i; moreover, h is said to be strictly link-wise 
larger than i if the strict inequality holds for at least one link in N. 

Moreover, let # j& � �	,�4, * +� be the set of source nodes activated by the shock �, and let 
 be the risk orbit 
of j, i.e., the set of nodes��� � � such that there exists a directed path (Note 10) in N that starts from 	, � # j&  
and ends in ��. Note that, with mark-to-market accounting, all nodes in 
 receive a strictly positive loss. 

Theorem 1: Let N be a financial flow network; let j � 54,6 be an external shock to N; let B j&�and B_ j&�be, 
respectively, the historical cost and the mark-to-market propagations induced by j; and let 
 be the risk orbit of j. 
Then: i) B_ j& is link-wise larger than or equal to B j&, and ii) B_ j& is link-wise equal to B j& iff B j& is 
such that all nodes in 
 default. 
Proof: The value taken on by a propagation induced by a shock j in a network N, is characterized computationally 
through the iterated application of the absorption and loss functions defined above. (Note 11) We establish the first 
part of above proposition by showing that at each stage of the computation of a propagation, node by node, the 
values taken on by 7_� 8_�& and 4a� 8_�& are, respectively, larger than or equal to the values taken on by 7� 8�& and 4� 8�&. 
i) Let �� � � receive a positive loss, from the source nodes in # j& and/or from its parent nodes in �. Let us first 
suppose that 8� � 8_�, i.e., the loss received by node i is the same under both accounting regimes. In this case: 1) 7_� 8_�& �� 7� 8�&, and 2) if 8_� C �, then 4a� 8_�& * �4� 8�&; if 8_� E �� then 4a� 8_�& � �4� 8�&. Thus, for a given loss 
suffered by node i, the outflow of losses transmitted by this node to its descendants is the same under the two 
accounting regimes if the node defaults; conversely, such an outflow is larger with mark-to-market than with 
historical cost accounting if node i remains solvent. Let us now remove the assumption that 8� � 8_� and recall that 8� � � 4,	�,, 
 �J4J�kl , and 8_� � � 4,	�,, 
 �J4aJ�kl . Then, by the definitions of 4J  and 4a j, 8� � 8_�  and 7� 8�& � 7_� 8_�& if, for all parent nodes �J � m ��& of node i, 8J E J. Conversely, if + C 8J C J for at least 
one node �J � m ��&, then 8_� * 8� and 7_� 8_�& * 7� 8�&. In sum,  8_� E 8� — where the equality holds if and 
only if no solvent node in m ��& receives a loss — hence 7_� 8_�& E 7� 8�&. In other words, the positive outflow of 
a node is the same under the two accounting regimes if the node defaults or bears no losses at all, otherwise 4a� 8_�& * �4� 8�&. By the same token, the positive inflow of a node in � is the same, under the two regimes, if none 
of its solvent parent nodes suffers a loss, otherwise 8_� * 8�  and, as a consequence, 7_� 8_�& * 7� 8�&. This 
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reasoning applies to all nodes in �, hence B_ j& and B j& are such that 7_� 8_�& E 7� 8�& and 4a� 8_�& E 4� 8�& 
for any  �� j& pair. 

ii) The if part of the statement follows from the definitions of 7�� 7_�� 4� and 4a�. To establish the only if part, 
suppose that a node ��� � n is solvent and bears a positive loss. Then the children nodes of �� receive no loss 
from �� with historical cost accounting, while they receive a strictly positive loss with mark-to-market accounting. 
In other words, if ��� � n is solvent and bears a loss, the links in �)�J�J � H ��&� carry no flow with historical 
cost rule while they carry a strictly positive flow with marking-to-market.  
The fact that the propagation function is larger with marking-to-market than with historical cost rule, has important 
implications for the robustness of a network: with marking-to-market, a network is more exposed to default 
contagion, which is defined as follows. Let 54,6 be a shock vector and let D be the set of agents in � who default 
as a consequence of this shock with historical cost accounting: o � ��� � ! p � 4,	�,, 
 �J4J�kl E ��, while, 
with marking-to-market, od � ��� � ! p � 4,	�,, 
 �J4aJ�kl E ��. Let oq be the set of agents that bear an initial 
shock large enough to cause their default, i.e., oq � ��� � ! p � 4,	�,, E ��, and let  oqq � o r oq (with 
marking-to-market: odqq � od r oq) be the set of defaulting agents who would be solvent if they had not received 
losses from their debtors in �: oss � t�� � o pp � 4,	�,, C � u, odss � t�� � od pp � 4,	�,, C � u. There is no 
default contagion if the set oqq (odss, with mark-to-market) is empty. We call primary the defaults in oq (odq) and 
secondary the ones in oqq odss&. To compare the effects of the two accounting regimes, we look at two measures of 
the vulnerability of a network N with respect to default contagion: the scope and the thresholds of contagion.  
The scope of the default contagion generated by a shock is the set of defaults induced by such a shock. It is 
straightforward to see that, because of the link-wise inequality between the propagations B_ j& and B j&, the 
nodes that default with historical cost accounting, also default under mark-to-market accounting, while the converse 
is not always true: 

Corollary 1: Let N be a financial flow network and let j�be an external shock to N. Let o �� j& and od �� j& be 
the sets of defaulting nodes induced in N by B j& and B_ j&, respectively. Then o �� j& �' od �� j&. 

Proof : It follows from theorem 1. Since 4J 8J& R 4aJ 8_J&, 8� R 8_� for all � � !, hence ��� � ! p 8� E �� '��� � ! p 8_� E ��.  
A second measure of the exposure of a network N to systemic risk is the threshold of contagion, (Note 12) which is 
the minimum value that a shock must reach in order to induce secondary defaults, where the value of a shock � is 
the sum of the flow out of the source nodes: v j& � �� 4,	,,�w x& . 

Definition 4: The first threshold of contagion of a financial flow network N is the value of the smallest shock that is 
large enough to cause secondary defaults. Correspondingly, the final threshold of contagion of a network is the 
value of the smallest shock that is capable of inducing the failure of all nodes in the network. 
Formally, let yq � �j�8� E ���Bz{�|z0��� � oqq� be the set of shocks which are large enough to cause default 
contagion in N with historical cost accounting. Let jq be a smallest element of yq� then v jq& is the first 
threshold of N with historical cost rule. Let yqq � �j�8� E ��Bz{�	))��� � oqq� be the set of shocks which are 
large enough to cause the default of all nodes in � with historical cost accounting. Let jqq be a smallest element of yqq, hence v jqq& is the final threshold of N with historical cost accounting. Correspondingly, let yaq � �j�8_� E��Bz{�|z0��� � odqq�  and yqq � �j�8_ E ��Bz{�	))��� � odqq�� be the sets analogous to yq� and yqq  with 
mark-to-market accounting, and let j}q and j}qq be their minimal elements, respectively. 
Corollary 2: Under a marking-to-market regime, both the first and the final thresholds of contagion of a network N 
are smaller than, or equal to, the same thresholds under a historical cost regime: v j}q& R v jq& and v j}qq& Rv jqq&. 

Proof: Since B_ jq& is link-wise larger than or equal to B jq&, then jq � ya�, i.e., since jq is sufficiently large to 
cause secondary defaults with historical cost rule, then it is a fortiori sufficient to induce contagion with 
marking-to-market. Hence, by the definitions of yaq and j}q, we have that v j}q& R v jq&. This relation is a weak 
inequality (rather than an equality) because B_ jq& is link-wise larger than or equal to B jq&, hence j}q is not 
necessarily in yqF The same reasoning applies to the final thresholds: jqq � yaqq, while j}qqis not necessarily in yqq.  
Finally, the residual capitalization of all solvent nodes in the risk orbit 
, is larger with the historical cost 
propagation than with the mark-to-market propagation, unless all nodes in 
 default. 
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Corollary 3: Let N be a financial flow network, let j be an external shock to � and let �~�be the residual equity 
of node �� � � posterior to the propagation with the historical cost accounting regime�B j&, and let ��~ be the 
residual equity of node �� � � posterior to the propagation with the marking-to-market regime�B_ j&. Then �~ * ��~ for all solvent nodes in the risk orbit 
 of j. 
Proof: The proof is trivial and is omitted. 
In sum, the marking-to-market of assets, compared to the historical cost regime, exacerbates the systemic effects of 
external shocks, increasing the vulnerability of financial networks like �. 
5. Conclusions 
The rationale for the adoption of the fair value accounting regime is the enhancement of market transparency. 
According to the Securities and Exchange Commission (2008), marking-to-market provides "the most transparent 
financial reporting of an investment, thereby facilitating better investment decision-making and more efficient 
capital allocation". But while, on one hand, this accounting regime improves the information available to market 
participants, on the other hand it has undesirable systemic implications in times of financial turbulence. When the 
markets for illiquid assets are affected by liquidity pricing, the marking-to-market of such assets becomes a vehicle 
of financial contagion, as argued by the above cited works by Shin et al. (2005) and Allen and Carletti (2007). In 
this paper we analyzed another source of systemic effects of marking-to-market: the strengthening of the direct 
balance sheet contagion that unfolds, among financial intermediaries, through their cross-holding of debt. With 
marking-to-market, the transmission of losses from debt-issuers to debt-holders does not require the occurrence of 
defaults, for this accounting rule turns the expected losses, embedded in market prices, into accounted losses. 
Conversely, with accounting at historical cost, the transmission of losses from an agent towards his creditors occurs 
only in case of default. Because of this simple difference, the flow of losses that crosses a financial network, induced 
by an exogenous negative shock, is larger with marking-to-market than with historical cost accounting. As a 
consequence, a financial network is more exposed to systemic risk with mark-to-market than with historical cost 
accounting. We showed that the propagation of losses generated by an exogenous shock with the marking-to-market 
rule, compared to the historical cost regime, has the following disadvantages: i) induces a larger set of defaults, ii) 
sets smaller thresholds of default contagion (i.e., renders a financial network vulnerable to smaller shocks), and iii) 
leaves a smaller residual equity to the surviving agents. 
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Notes 
Note 1. See Plantin-Sapra-Shin (2008) for an evaluation of the pros and cons of marking-to-market vs historical cost 
in presence of i) liquidity pricing of illiquid assets, and ii) short-termism of managerial incentive schemes. As the 
authors put it: "The historical cost regime relies on past transaction prices, and so accounting values are insensitive 
to more recent price signals. This lack of sensitivity to price signals induces inefficient sales because the 
measurement regime does not reflect the appreciated value of the measured assets. Marking-to-market overcomes 
this price insensitivity by extracting the information conveyed by market prices, but it also distorts the information 
for illiquid assets [...]." [Shin et al. (2008), page 438]. See also Freixas-Tsomocos (2006), who study the 
implications of fair vs. book value accounting practice for the banking sector efficiency in providing intertemporal 
wealth transfer. 
Note 2. See Ahuya et al. (1993) for a comprehensive treatment of flow networks. 
Note 3. In absence of bankruptcy costs, the below defined price function of a bond would display an implausible 
jump in case of default of the issuer. 
Note 4. Since 4�  and 7�  are all smaller than or equal to unity. 
Note 5 Existence and uniqueness of a propagation function in a financial flow network are discussed in details in 
Eboli (2010b). 
Note 6. See, inter alia, Jensen and Bhaumik (1977) and Dirikxs and Rao (1974) for applications of augmenting 
flows in network with gains. Formally, we should add to N extra source nodes, one for each node in �, that get 
activated in case of default and release a loss equal to the bankruptcy costs. This technicality is here redundant and 
is omitted. 
Note 7. This amounts to assume that all liabilities are held to maturity, i.e., no agent in � undertakes a buy-back of 
its own bonds. 
Note 8. A large literature on debt pricing has developed, starting with the work by Merton (1974) who introduced 
the use of option pricing models for assessing the value of a defaultable bond, pointing out its equivalence with a 
portfolio composed of an amount of cash equal to the face value of the bond and a short position on a put option on 
the assets of the issuer, with strike price equal to the face value of the bond. Successively, several authors have 
extended the model by Merton in various directions. Such models, known as structural models, assess default 
probabilities, hence bonds prices, by modeling the stochastic processes that drive the value of the assets of the 
issuers. Conversely, a more recent class of models, known as reduced from models, take such default probabilities 
as exogenously determined, rather than deriving them from asset values. 
Note 9. See, inter alia, Brealey and Myers (2002), sections 22-2 and 23-3 
Note 10. A directed path (also known as a walk) in a directed graph is an alternating sequence of nodes and links, 
where each node is connected to the successive node in the sequence by a directed link.  
Note 11. See Eboli (2010a,b) for two algorithms, designed to compute a propagation in a flow network N, based on 
the iterated application of such absorption and loss functions. 
Note 12. Eboli (2010b) characterizes and compares first and final thresholds of default contagion of differently 
shaped networks, such as complete, incomplete, star-shaped and chain-shaped networks. 


