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Abstract 

In this paper, a Markov regime-switching model with time-varying transition probabilities is developed to 

identify asset price bubbles in the S&P 500 index. The model nests two different methodologies; a 

state-dependent regime-switching model and a Markov regime-switching model. Three bubble regimes are 

identified; dormant, explosive, and collapsing. Time-varying transition probabilities are specified for each of the 

nine possible transitions in the Markov regime-switching model. Estimation of the model is done using 

conditional maximum likelihood with the Hamilton filter. Results show that transition probabilities depend 

significantly on trading volume and relative size of the bubble. Overall, the model works well in detecting 

multiple bubbles in the S&P 500 between January 1888 and May 2010. Explosive bubbles tend to immediately 

precede recession periods, while collapsing bubbles tend to coincide with recession periods. 

Keywords: asset price bubble, Markov regime-switching, recession, S&P 500 index, time-varying transition 

probability 

1. Introduction  

Observed movements in the S&P 500 index can be difficult to explain by fundamental factors. The deviation of 

asset prices from their fundamental values have often been attributed to the presence of rational bubbles. A 

rational bubble is a large and persistent deviation of the market price of an asset from its fundamental value 

resulting from rational speculative behavior. Figure 1 shows the monthly S&P 500 price index from January 

1888 to May 2010 together with NBER recession dates over the same period. Stock market booms and busts are 

often seemingly linked to the business cycle. This is apparent in the period prior to the Great Depression in 

which the index shows steady growth up to 1922, then evolves into explosive growth from 1923 to 1929 and 

later collapses from 1929 to 1933. Similar patterns are observed in latter periods such as the late 1990’s and early 

2000’s associated with the internet bubble and the Great Recession.  In each of these cases, the stock price 

collapse coincided with a recession. The sequence of dormant, explosive and collapsing bubbles is not always 

consistent nor is it always associated with the business cycle. For example, periods of dormant bubbles appear to 

be followed immediately by a collapse in 1900-1902, 1905-1907 and 1978-1981. Similarly, a collapse can be 

followed by an apparently explosive bubble as in 1962, 1974, 2003 and 2009. Finally, an explosive bubble can 

be followed by a dormant bubble as in 1990-1994 and 2004-2006. 

Two strands of literature, often characterized as the indirect approach and direct approach, exist on empirically 

detecting the presence of asset price bubbles. The indirect approach was initiated by Diba and Grossman (1987, 

1988) and recently revitalized by Phillips, Wu and Yu (2011) and Phillips, Shi and Yu (2015a, 2015b). In this 

approach, bubbles are detected through the time series properties of prices and dividends, specifically by 

showing that prices have explosive autoregressive roots and demonstrating that prices and dividends are not 

cointegrated. In the direct approach, an explicit model is specified for the latent periodically collapsing bubble 

process and the parameters of the process are estimated by maximum likelihood or Bayesian methods. Within the 

direct approach, two sub-strands of the literature exist. The first approach follows Evans (1991) in which the 

bubble regime transition probabilities are governed by state variables such as the size of the bubble and trading 

volume. This line of research has been developed in a series of papers by van Norden and Schaller (1993, 2002), 

van Norden and Vigfusson (1998), Brooks and Katsaris (2005) and Anderson, Brooks and Katsaris (2010). In the 

second approach, bubble regime transitions are completely exogenous and are governed by a multiple state 
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Markov process. Papers which employ this approach include Fulop and Yu (2017), Shi and Song (2014), and 

Balke and Wohar (2009).   

 

 

Figure 1. S&P 500 stock price index and NBER recession periods between January 1888 and May 2010 

  

In this paper, we follow the direct approach and estimate an explicit model for a periodically collapsing bubble 

in the S&P 500 index. Our contribution is that we combine the state-dependent approach with the Markov 

switching approach. We estimate a very general three-regime bubble process with dormant, explosive and 

collapsing states in which the regimes follow a Markov switching process with state-dependent transition 

probabilities. By combining the Markov and state-dependent models, the effect of a state variable can depend on 

the current bubble regime. For example, we find that when the bubble is in the dormant regime, the probability 

of exiting the regime increases with the relative size of the bubble. In contrast, when the bubble is in the 

explosive regime, the probability of leaving the explosive regime is independent of all the state variables. 

Moreover, when the bubble is in the collapsing regime, the probability of reverting to an explosive regime 

increases with the relative bubble size. These complex probabilities can explain why we do not always observe a 

sequential transition from dormant to explosive to collapsing regimes of bubbles in the S&P 500 index. Results 

show that the three-regime Markov switching speculative bubble model is able to identify most of the historical 

bubble phenomena, such as ‘The Great Depression,’ ‘Black Monday,’ ‘Friday the 13th,’ the Kennedy slide (flash 

crash) and the ‘Internet Bubble.’  

2. A Three-Regime Markov Switching Rational Speculative Bubble Model 

In this section, the three-regime model by Brooks and Katsaris (hereafter called BK model) is adapted to a 

Markov regime-switching model. To model the bubble behavior, we begin with the present value model 

𝑃𝑡 = (1 + 𝑅)−1𝐸𝑡(𝑃𝑡+1 + 𝐷𝑡+1)                            (1) 

where 𝑃𝑡 is the asset price at time t, R is a constant rate of discount, 𝐷𝑡+1 is the dividend payment at time t+1.  

By imposing the transversality condition, a particular solution to (1) is 

𝑃𝑡
𝑓

≡ ∑ (1 + 𝑅)−𝑘𝐸𝑡𝐷𝑡+𝑘
∞
𝑘=1                             (2) 

where 𝑃𝑡
𝑓
 denotes the fundamental price of an asset. The solution to (1) may contain another component besides 

𝑃𝑡
𝑓
. Let 𝐵𝑡 = 𝑃𝑡 − 𝑃𝑡

𝑓
. If  

𝐵𝑡 = (1 + 𝑅)−1𝐸𝑡𝐵𝑡+1                              (3) 

then 𝑃𝑡 = 𝑃𝑡
𝑓

+𝐵𝑡  is also a solution to (1). The component 𝐵𝑡  is called a bubble. 

Having identified the form of the bubble, the three-regime model for the bubble process in period t+1 is then 

formulated. Define an indicator variable 𝑆𝑡 such that  

𝑆𝑡 = {

1,   if 𝐵𝑡  is dormant
 2,   if 𝐵𝑡  is explosive

  3,   if 𝐵𝑡  is collapsing.
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If the dormant bubble regime occurs in period t+1, the bubble will grow at a constant mean rate of (1+R) such 

that 

𝐸𝑡(𝐵𝑡+1|𝑆𝑡+1 = 1) = (1 + 𝑅)𝐵𝑡  .                          (4) 

In this regime, the bubble does not collapse and thus investors have no expectations of large deviations in asset 

returns. Denote the probability of being in the dormant regime by 𝑛𝑡 which is state-dependent, and will also 

depend on the relative size of the bubble as well as the spread between fundamental returns and actual returns on 

the S&P 500 index. Later, we add a Markov chain structure in which the regime probabilities also depend upon 

the previous regime. We omit this for now to simplify notation. The probability of being in the non-dormant 

regime is given by 1 − 𝑛𝑡. In the non-dormant state, two underlying regimes are defined: the explosive regime 

that occurs with probability 𝑞𝑡 and the collapsing regime that occurs with probability 1 − 𝑞𝑡. We specify 𝑞𝑡 as 

a function of the relative bubble size and volume traded of the S&P 500 index. If the collapsing regime occurs 

𝐸𝑡(𝐵𝑡+1|𝑆𝑡+1 = 3) = 𝑔(𝑏𝑡) 𝑃𝑡 (1 − 𝑞𝑡⁄ ),                     (5) 

where 𝑔(𝑏𝑡) is a continuous and everywhere differentiable function with 𝑔(𝑏𝑡) > 0 and 0 < 𝜕𝑔(𝑏𝑡) 𝜕𝑏𝑡⁄ < 1 +

𝑅. 𝑏𝑡 is the relative bubble size defined by 𝑏𝑡 = 𝐵𝑡 𝑃𝑡⁄ . The restriction on 𝜕𝑔(𝑏𝑡) 𝜕𝑏𝑡⁄  ensures that the bubble in 

the collapsing regime grows slower than that under the dormant regime. One distinction between equation (5) 

and that specified in the BK model is the multiplication by 1 (1 − 𝑞𝑡)⁄ . As the probability of being in the 

explosive regime 𝑞𝑡 increases, the collapsing regime is less likely to occur with probability 1 − 𝑞𝑡. However, if 

the collapsing regime does occur, then the collapse from a higher price level will be more severe that the collapse 

from a lower price level. Thus, 1 (1 − 𝑞𝑡)⁄  acts as a scale factor on the size of the collapse. 

The expected size of the bubble under the explosive regime is given by 

𝐸𝑡(𝐵𝑡+1) = 𝑞𝑡𝐸𝑡(𝐵𝑡+1|𝑆𝑡+1 = 2) + (1 − 𝑞𝑡)𝐸𝑡(𝐵𝑡+1|𝑆𝑡+1 = 3).           (6) 

Substituting (3) and rearranging yields 

𝐸𝑡(𝐵𝑡+1|𝑆𝑡+1 = 2) = [(1 + 𝑅) 𝑞𝑡⁄ ]𝐵𝑡 − 1 𝑞𝑡⁄ [𝑔(𝑏𝑡)𝑃𝑡].               (7) 

Equation (7) shows that the expected bubble size in the explosive regime is a negative function of the probability 

𝑞𝑡 of being in that regime. This implies that as the probability of being in the explosive regime decreases, 

investors demand a higher return to compensate for the risk of a possible collapse in the asset price. Thus, in the 

explosive regime, the gross return (1 + 𝑅) 𝑞𝑡⁄  on the bubble exceeds the returns in the dormant and collapsing 

regimes. 

In this paper, it is assumed that, conditional on the regime in period t+1, growth of the bubble is deterministic. 

Therefore, the bubble process evolves according to 

𝐵𝑡+1 = {

(1 + 𝑅)𝐵𝑡 ,                                                                              with probability 𝑛𝑡  

[(1 + 𝑅) 𝑞𝑡⁄ ]𝐵𝑡 − 1 𝑞𝑡⁄ 𝑔(𝑏𝑡)𝑃𝑡 ,                       with probability (1 − 𝑛𝑡)𝑞𝑡

𝑔(𝑏𝑡) 𝑃𝑡 (1 − 𝑞𝑡)⁄ ,                                   with probability (1 − 𝑛𝑡)(1 − 𝑞𝑡).

         (8) 

The probabilities of being in the dormant and explosive regimes 𝑛𝑡 and 𝑞𝑡 are negative functions of the bubble 

size. As the bubble size continues to grow in the dormant regime, the probability of entering the explosive 

regime increases, hence 𝑛𝑡 gets smaller. Likewise, as the bubble size continues to grow in the explosive regime 

the probability of the bubble collapsing increases, hence 𝑞𝑡 gets smaller.  

To generalize the BK model, the probabilities 𝑛𝑡 and 𝑞𝑡 are specified to follow a first order Markov process. 

Specifically, the Markovian property requires that the current regime state indicator 𝑆𝑡+1  depends on its 

immediate past indicator 𝑆𝑡. As described above, in addition to the past state indicator, other conditioning 

driving variables 𝑋𝑡 are included in estimating the transition probabilities. Here, a probability matrix with a 

time-varying transition probability-generating function for each probability cell is specified. For the three-regime 

model, the time-varying transition probability function is written as 

𝑃[𝑆𝑡+1 = 𝑖|𝑆𝑡 = 𝑗, 𝑋𝑡] ≡ 𝑃𝑖𝑗𝑡                               (9) 

for 𝑖, 𝑗 = 1,2,3.                   

For the three-regimes, the probabilities can be written out as 

𝑃1𝑗𝑡 ≡ 𝑃[𝑆𝑡+1 = 1|𝑆𝑡 = 𝑗, 𝑋𝑡] = 𝑛𝑗𝑡 

𝑃2𝑗𝑡 ≡ 𝑃[𝑆𝑡+1 = 2|𝑆𝑡 = 𝑗, 𝑋𝑡] = (1 − 𝑛𝑗𝑡)𝑞𝑗𝑡                        (10) 

𝑃3𝑗𝑡 ≡ 𝑃[𝑆𝑡+1 = 3|𝑆𝑡 = 𝑗, 𝑋𝑡] = (1 − 𝑛𝑗𝑡)(1 − 𝑞𝑗𝑡) 
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with ∑ 𝑃𝑖𝑗𝑡
3
𝑖=1 = 1 as required. 

The state variables in 𝑋𝑡   include the spread between fundamental returns and actual returns of the S&P 500 

index 𝑆𝑡
𝑓,𝑎

, volume traded of the S&P 500 index 𝑉𝑡, and the relative bubble size of the S&P 500 index 𝑏𝑡. To 

constrain the probabilities between 0 and 1, as well as ensuring that their sum equals 1, simultaneously, the 

probit model specification of Ding (2012) is adopted. Specifically, we write 

𝑛𝑗𝑡 = Φ(𝛼𝑛,0,𝑗 + 𝛼𝑛,𝑏,𝑗𝑏𝑡 + 𝛼𝑛,𝑠,𝑗𝑆𝑡
𝑓,𝑎

) 

𝑞𝑗𝑡 = Φ(𝛼𝑞,0,𝑗 + 𝛼𝑞,𝑏,𝑗𝑏𝑡 + 𝛼𝑞,𝑣,𝑗𝑉𝑡)     for 𝑗 = 1,2,3. 

Φ() is the cumulative normal density function, 𝑆𝑡
𝑓,𝑎

 represents the spread of the absolute value of the average 

6-month actual returns and the absolute value of the average 6-month returns of the estimated fundamental 

values, and 𝑉𝑡 is the trade volume of the asset. The inclusion of the spread is to separate bubble returns from 

fundamental returns. This ensures that the higher (lower) the spread, the lower (higher) the probability of the 

bubble continuing to be in the dormant regime. To achieve this switch between regimes, the spread is introduced 

in the equation for the probability of being in a dormant regime. Doing so helps to identify the contribution of 

bubble returns in explaining average returns in period t+1.  

Abnormal trade volume in the equation for the probability of being in an explosive regime serves as a signal to a 

possible bubble collapse. Based on the above, abnormal trade volume is added to the return equations in both 

explosive and collapsing regimes of the model, contrary to the BK model which only introduces abnormal trade 

volume in the explosive regime. 

Trade volume (𝑉𝑡) is omitted from the probability of being in a dormant regime (𝑛𝑗𝑡) because trade volumes do 

not experience large volatilities in the dormant regime of a bubble. Volatility in trade volume is negligible. With 

this identification structure, the spread and trade volume enter the probability equations separately. 

The following signs are expected for the coefficient estimates of the probit models in equation (10). 

𝛼𝑛,𝑏,𝑗 < 0

𝛼𝑛,𝑠,𝑗 < 0
}   for 𝑗 = 1                              (10a) 

𝛼𝑞,𝑏,𝑗 < 0

𝛼𝑞,𝑣,𝑗 < 0
}   for 𝑗 = 2                              (10b) 

𝛼𝑛,𝑏,𝑗 > 0

𝛼𝑛,𝑠,𝑗 > 0
}   for 𝑗 ≠ 1                              (10c) 

𝛼𝑞,𝑏,𝑗 > 0

𝛼𝑞,𝑣,𝑗 > 0
}   for 𝑗 ≠ 2                              (10d) 

Expressions (10a) and (10b) ensure that the probability of the bubble remaining dormant (explosive) decreases 

when the bubble size and spread (volume) increase. Similarly, (10c) and (10d) ensure that the probability of the 

bubble transitioning into a dormant (explosive) regime increases when the bubble size and spread (volume) 

increase. 

3. Asset Returns 

The bubble process above is applied to modelling the expected gross returns on an asset in each regime. The 

expected gross returns on an asset is given by 

 𝐸𝑡(𝑟𝑡+1) = 𝐸𝑡[(𝑃𝑡+1 + 𝐷𝑡+1) 𝑃𝑡⁄ ]. (1) 

The expected gross returns in the dormant regime can be shown to be 

 𝐸𝑡(𝑟𝑡+1|𝑆𝑡+1 = 1) = 1 + 𝑅. (2) 

This implies that in the dormant regime, the expected returns to an asset are equivalent to the fundamental 

returns. In the explosive regime, the expected returns to an asset is obtained as 

 𝐸𝑡(𝑟𝑡+1|𝑆𝑡+1 = 2) = (1 + 𝑅) + (1 𝑞𝑗𝑡⁄ )[(1 − 𝑞𝑗𝑡)(1 + 𝑅)𝑏𝑡 − 𝑔(𝑏𝑡)]. (3) 

Equation (13) indicates that investors take into account the probability of collapse once the bubble size continues 

to grow in the explosive regime. Given that they do not know when the bubble is likely to collapse they adjust 

their expectations of next period’s gross returns by considering the probability of collapse. In the collapsing 

regime, the expected gross returns equation is given by 

 𝐸𝑡(𝑟𝑡+1|𝑆𝑡+1 = 3) = [(1 + 𝑅) + 𝑔(𝑏𝑡)] 1 (1 − 𝑞𝑗𝑡)⁄ − (1 + 𝑅)𝑏𝑡  . (4) 
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It is important to note that the expected bubble return is 1+R in the dormant regime, greater than 1+R in the 

explosive regime, and less than 1+R in the collapsing regime. This helps investors to correctly identify which 

regime they are in based on their realized returns.  

The expected returns equations above are highly non-linear, so to estimate them the approach of van Norden and 

Schaller (1999) is followed. Here, a first-order Taylor expansion is derived, around some arbitrary 𝑏0 and 𝑣0. 

This yields 

 𝑟𝑡+1 = {

𝛽1,0 + 𝜇𝑡+1
1                                                             if 𝑏t is dormant

𝛽2,0 + 𝛽2,𝑏𝑏𝑡 + 𝛽2,𝑣𝑣𝑡 + 𝜇𝑡+1
2                          if bt is explosive

𝛽3,0 + 𝛽3,𝑏𝑏𝑡 + 𝛽3,𝑣𝑣𝑡 + 𝜇𝑡+1
3                         if 𝑏t is collapsing,

 (5) 

where 𝑏𝑡 is the relative bubble size and 𝑣𝑡  is the abnormal share volume traded, and 1, 2, and 3 represent the 

dormant, explosive and collapsing regimes, respectively. Returns in the dormant regime are not affected by the 

bubble size and abnormal volume since they are equivalent to the fundamental returns. Thus, they can be treated 

as a constant with some unexpected deviations. However, the returns in both explosive and collapsing regimes 

are functions of the relative bubble size and abnormal share volume as explained in previous sections. Once 

investors have been able to correctly predict returns in the next period, they will know what regime they are 

likely to face. Large positive returns will imply a higher probability of being in an explosive regime. Likewise, 

significantly low returns will imply a higher probability of being in a collapsing regime. Lastly, steady returns 

will denote a higher probability of being in a dormant regime. Hence, instead of identifying the bubble regime 

directly, identification is done by inferencing from the returns equations. 

As argued by Brooks et al. (2005), results of the Taylor series expansion yield some testable implications with 

regard to the sign and magnitude of coefficient estimates from the three-regime model. These are required for the 

model to have explanatory power. 

 𝛽2,0 > 𝛽1,0 > 𝛽3,0  (15a) 

 𝛽2,𝑏 > 𝛽3,𝑏 (15b) 

 𝛽3,𝑏 < 0 (15c) 

 𝛽2,𝑣 > 0  (15d) 

 𝛽3,𝑣 < 0 (15e) 

Expression 15a is assumed to hold for the returns equations to yield the correct implications for the appropriate 

regime. On the other hand, 15b to 15e are required to hold based on the implications of the Taylor series 

expansion. Expression (15a) implies that the returns in the explosive regime exceed those in the dormant and 

collapsing regimes, with the collapsing regime generating the least returns, in the absence of abnormal share 

volume and relative bubble size. Expression (15b) argues that as the bubble size increases, the expected returns 

in the explosive regime exceed the expected returns in the collapsing regime. Expression (15c) states that as the 

bubble collapses, the expected return on the asset should decrease. In (15d), expected returns in the explosive 

regime must increase if abnormal volume is observed, which signals an increase in the probability of a bubble 

collapse. Expression (15e) argues that an increase in abnormal share volume traded in the collapsing regime 

leads to negative returns on the asset. 

It is important to note that the three-regime Markov switching model presented above is a generalization of the 

standard regime-switching BK model. By restricting the coefficients in the probabilities for the dormant and 

explosive regimes at time t+1 from varying with the regime existing at time t, as well as setting the coefficient of 

abnormal trading volume in the returns equation for the collapsing regime to zero, the Markov regime-switching 

model reduces to the BK model. The BK model can be tested against the more general Markov regime-switching 

model under the null hypothesis the following set of parameter restrictions  

𝛽3,𝑣 = 0 

𝛼𝑛,0,1 = 𝛼𝑛,0,2 = 𝛼𝑛,0,3 

𝛼𝑛,𝑏,1 = 𝛼𝑛,𝑏,2 = 𝛼𝑛,𝑏,3 

𝛼𝑛,𝑠,1 = 𝛼𝑛,𝑠,2 = 𝛼𝑛,𝑠,3 

𝛼𝑞,0,1 = 𝛼𝑞,0,2 = 𝛼𝑞,0,3 

𝛼𝑞,𝑏,1 = 𝛼𝑞,𝑏,2 = 𝛼𝑞,𝑏,3 

𝛼𝑞,𝑣,1 = 𝛼𝑞,𝑣,2 = 𝛼𝑞,𝑣,3 , 
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against the alternative hypothesis that at least one of these restrictions is violated. A likelihood ratio test is used. 

Under the assumption of disturbance normality, the above Markov regime-switching model is estimated by 

conditional maximum likelihood. The conditional log-likelihood function for 𝑟𝑡+1 is given by; 

 𝑙𝑛𝐿(𝑟𝑡+1|𝑟𝑡 , 𝜃, 𝑋𝑡) = ∑ 𝑙𝑛 [∑ ∑ 𝑓(𝑟𝑡+1|𝑆𝑡+1 = 𝑖, 𝑆𝑡 = 𝑗, 𝑟𝑡 , 𝜃, 𝑋𝑡)𝑃(𝑆𝑡+1 = 𝑖, 𝑆𝑡 = 𝑗|𝑟𝑡 , 𝜃, 𝑋𝑡)

3

𝑗=1

3

𝑖=1

]

𝑇

𝑡=1

 (6) 

where 𝜃 is the vector of model parameters (𝛼, 𝛽, 𝜎), 𝑋𝑡 is a vector of exogenous variables (𝑏𝑡 , 𝑣𝑡, 𝑆𝑡
𝑓,𝑎

) and f() 

is the standard normal probability density function for each of the returns in (15). The log-likelihood function 

(16) represents a weighted average of the log-likelihood function in each regime with the weights being the 

transition probabilities. The latent transition probabilities are obtained using the Hamilton (1989) filter. 

4. Data  

Data for the study comprises 1,469 monthly observations on the S&P 500 index from January 1888 to May 2010. 

Data on S&P 500 index is available in monthly frequency as provided on Robert Shiller’s website. It is worth 

noting here that, in cases where high frequency data such as weekly or daily data are available, they may not be 

ideal for the identification of an asset price bubble. A bubble phenomenon must be persistent, spanning a longer 

period. However, there are instances when asset prices undergo sharp price increases, which last for a few days 

or weeks. These events are characterized by a sudden ‘craze’ for a particular stock, especially during initial 

public offers (IPOs), with asset prices stabilizing after a few days or weeks. Such price increases represent fads 

and an attempt to identify bubbles using daily or weekly data will lead to a misclassification of such fads as 

bubbles. Therefore, the use of monthly data helps avoid this potential misclassification. 

S&P 500 price index and dividends are obtained from Robert Shiller’s website. Data on abnormal volume is 

provided by Brooks, C. [see Brooks and Katsaris (2005) for details on how abnormal volume is calculated] who 

obtained it from the New York Stock Exchange (NYSE). Monthly dividend and price series are converted into 

real variables using monthly U.S consumer price index. All variables are seasonally adjusted. To calculate the 

spread, fundamental prices are first calculated using (17) and subsequently used to obtain fundamental returns. 

Actual returns are also calculated and the difference between the two returns are obtained using 𝑆𝑡
𝑓,𝑎

= |𝑟𝑡
𝑎,6| −

|𝑟𝑡
𝑓,6

|, where 𝑟𝑡
𝑎,6 is the average 6-month actual returns and 𝑟𝑡

𝑓,6
 is the average 6-month returns of the estimated 

fundamental values. Figure 2 shows the bubble deviations of S&P 500 price index from January 1888 to May 

2010. As it turns out, the largest deviation was observed around the period of the Great Depression (1929-1933). 

For the period of the Great Recession (2007-2009), a negative deviation of the bubble size is observed. It is 

observed from Figure 2 that large deviations are associated with low asset prices. In general, the bubble 

deviation and the S&P 500 price index exhibit similar patterns over time. 

To estimate the three-regime model, fundamental values of the S&P 500 index are first determined. Under the 

assumption that the dividend process follows a random walk with drift, it can be shown that 

 𝑃𝑡
𝑓

= 𝜌𝐷𝑡  , (7) 

where 𝜌 is the sample mean of the price-dividend ratio. Having obtained the fundamental values, the relative 

bubble size 𝑏𝑡 is then calculated as 𝑏𝑡 = 1 − 𝜌 (𝐷𝑡 𝑃𝑡⁄ ). 

 

Figure 2. Bubble deviations and S&P 500 price index from January 1888 to May 2010 
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5. Results 

In this section, we present results from the three-regime Markov switching model and the BK model. A 

likelihood ratio (LR) test is conducted to examine the appropriateness of the BK regime-switching model against 

the more general Markov regime-switching model. The restrictions as noted above are the exclusion of abnormal 

share trading volume in the returns equation for the collapsing regime as well as the homogeneity of transition 

probability coefficients across the bubble regimes. Results are presented at the bottom of Table 1. The LR test 

strongly rejects the BK model against the Markov regime-switching model at a 1% level of significance. The 

coefficient estimates in Table 1 indicate that the rejection is due to both the Markov regime-switching structure 

and the inclusion of trade volume in both explosive and collapsing regimes.  

Despite the rejection of the BK model against the Markov regime-switching, there are some points of agreement 

in the results from both models. The two models largely agree on the contribution of bubbles to the returns on an 

asset as shown by the beta coefficients in Table 1. The coefficients exhibit the same signs but different 

magnitudes in both models. One notable difference is the inclusion of trade volume in the returns equation 

corresponding to the Markov regime-switching model which turns out to be highly significant.  

The major difference between the two models lies in the time-varying transition probabilities. Whereas the 

Markov regime-switching model finds a negative and significant effect, as indicated by 𝛼𝑛,𝑏,1, from relative 

bubble size on the probability of the S&P 500 index remaining in the dormant regime, this is not the case in the 

BK model. In the original BK model however, this coefficient was significant. The likely reason for these results 

could be the difference in sample periods used. Results from the original BK model are based on a sample from 

1888 to 2003 whereas this study uses a sample from 1888 to 2010. This represents the inclusion of seven more 

years of monthly data. Although this may not be a wide gap, between 2003 and 2010 the Great Recession 

occurred, and the sheer magnitude of this recession could be a significant contributor to this difference in results 

from the two models. Another point of departure between the Markov regime-switching model and BK model is 

observed in the transition probabilities for the explosive regime. 

 

Table 1. Results of the three-regime rational speculative bubble model 

 Markov Regime-Switching Model BK Regime Switching Model 

Coefficient Value Standard Error Value Standard Error 

𝛽1,0 

𝛽2,0 

𝛽3,0 

𝛽2,𝑏 

𝛽3,𝑏 

𝛽2,𝑣 

𝛽3,𝑣 

𝛼𝑛,0,1 

𝛼𝑛,𝑏,1 

𝛼𝑛,𝑠,1 

𝛼𝑛,0,2 

𝛼𝑛,𝑏,2 

𝛼𝑛,𝑠,2 

𝛼𝑛,0,3 

𝛼𝑛,𝑏,3 

𝛼𝑛,𝑠,3 

𝛼𝑞,0,1 

𝛼𝑞,𝑏,1 

𝛼𝑞,𝑣,1 

𝛼𝑞,0,2 

𝛼𝑞,𝑏,2 

𝛼𝑞,𝑣,2 

𝛼𝑞,0,3 

𝛼𝑞,𝑏,3 

𝛼𝑞,𝑣,3 

0.0052* 

0.0094* 

-0.0224* 

1.6892* 

-4.1854* 

0.1084* 

-0.0744* 

2.9567* 

-137.8270** 

-111.7375* 

0.1842 

-63.3835 

-27.6364 

-1.7177* 

55.5329 

-62.5901 

7.9098 

6.9507 

-7.9515 

0.2358 

7.8665 

1.0922 

-2.1642* 

116.9485* 

-0.7385 

0.0013 

0.0021 

0.0098 

0.5001 

1.2159 

0.0045 

0.0284 

0.6106 

75.9454 

30.6523 

0.6897 

84.4041 

24.4293 

0.3924 

83.0472 

46.1321 

50.9511 

522.0242 

55.9233 

0.3196 

31.7039 

1.0387 

0.3346 

55.7337 

1.0050 

0.0086* 

0.0101* 

-0.0298* 

3.6805* 

-1.5555** 

0.1504* 

- 

1.7961* 

43.5117 

-81.7089* 

- 

- 

- 

- 

- 

- 

1.1677* 

102.0700 

-1.9386** 

- 

- 

- 

- 

- 

- 

0.0011 

0.0049 

0.0127 

1.5160 

0.8069 

0.0109 

- 

0.3170 

38.3423 

22.3635 

- 

- 

- 

- 

- 

- 

0.4854 

83.1074 

1.1610 

- 

- 

- 

- 

- 

- 

𝜎1 

𝜎2 

𝜎3 

0.0008* 

0.0010* 

0.0035* 

0.0001 

0.0001 

0.0010 

0.0008* 

0.0011* 

0.0047* 

0.0001 

0.0001 

0.0007 
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Likelihood 

LR Test 

Test statistic 

P-value 

2801.9178 

 

233.3014 

0.0000 

 2685.2671 

 

 

Note. All variables are in logarithms in both models. Both models are estimated using S&P 500 data from January 1888 to May 2010. The 

BK model is estimated with restrictions noted in Brooks and Katsaris (2005). *, ** represent 5% and 10% level of significance, respectively. 

 

Here, results from the Markov regime-switching model show that once the bubble enters the explosive regime, 

the probability of remaining in the explosive regime does not depend on the relative bubble size. Once the 

explosive regime occurs the bubble sustains itself and grows with a fixed probability. Evidence in support of this 

is the prolonged period of growth in the S&P 500 index from 1990 to 2000 (during the technology bubble) and 

again from 2002 to 2008 (during the housing bubble). The final distinction between the Markov 

regime-switching model and the BK model lies in the behavior of bubbles in the collapsing regime. Once in a 

collapsing regime, as the bubble size begins to grow the probability of transitioning into an explosive regime 

increases. This phenomenon of reverting from a collapsing regime immediately to an explosive regime was 

observed in the S&P 500 index as recently as 2003 following the collapse of the technology bubble and in 2009 

after the crash as observed in Figure 1. The remainder of this section provides a detailed discussion of the results. 

We first consider the coefficients in the returns equation (15). From Table 1, the estimate of the intercept in the 

dormant regime 𝛽1,0 implies an average return of 0.52% per month (6.42% effective annual rate) whereas it is 

0.86% per month in the BK model (10.82% effective annual rate). This magnitude is reasonable in the context of 

a bubble developing before transitioning into an explosive state. The initial realization of the presence of a 

bubble causes more investors to enter the market, bidding the price of the asset upwards. This leads to increased 

returns in the dormant phase of the bubble. When the explosive regime is reached, the average returns 𝛽2,0 on 

the asset independent of the bubble size and abnormal volume stands at 0.94% per month (11.88% effective 

annual rate). This is roughly twice what is realized in the dormant regime. In the BK model, average returns of 

1.01% per month (12.68% effective annual rate) is realized. During this period, exponential growth in asset 

prices ensures that returns far exceed what is obtained in the dormant regime. More investors are attracted to the 

market to buy the asset and resell to another investor at a higher price in future. However, as several investors 

soon offer their asset holdings for sale, excess supply causes price to tumble. This ushers in the collapsing 

regime, where the return on the asset 𝛽3,0 is -2.24% per month (23.80% effective annual rate). The average 

returns are -2.98% per month (30.44% effective annual rate) in the BK model. At this rate, the gains in the 

previous regime are soon eroded. It is observed that the BK model consistently overstates the average returns on 

the asset. This could result from the model’s lack of consideration for what regime was experienced in the 

previous period.   

Turning now to the slope coefficients, bubbles in the two regimes have the expected signs and are significant at 

5%. It is observed that the size of the bubble contributes about 1.69% returns to the asset in the explosive regime 

𝛽2,𝑏 for every 1% increase in the bubble size and -4.19% in the collapsing regime 𝛽3,𝑏 for every 1% decrease in 

the bubble size. The positive sign of the bubble in the explosive regime confirms the notion that as the bubble 

increases in size investors demand higher returns to compensate them for the risk of a potential bubble collapse. 

It is also observed from the table that abnormal share volume has a significant impact on asset returns in both 

explosive and collapsing regimes. In the explosive regime, the average return on the asset 𝛽2,𝑉 increases by 0.11% 

per month for a 1% increase in trading volume. This increase agrees with the prediction of the rational 

speculative bubble model since investors make positive gains from trading assets in the explosive regime. In the 

collapsing regime, average returns on the S&P 500 index 𝛽3,𝑉 decrease by 0.07% per month for every 1% 

decrease in trading volume. Recall that the abnormal share volume traded was excluded from the returns 

equation in the collapsing regime in the BK model. The observed negative and significant impact of abnormal 

share volume traded on asset returns justifies its inclusion in the returns equation for the collapsing regime in the 

more general Markov regime-switching model. Inclusion of abnormal share volume traded in the collapsing 

regime is also consistent with the historical losses observed in the S&P 500 during a bubble collapse. On ‘Black 

Monday’ October 19, 1987, the S&P 500 lost about 20.5% of its value which was the largest loss ever 

experienced by any index in a day. Consequently, large average trading volume was experienced, standing at 

$277,026,455.45 in October 1987 compared to $177,318,727.14 in September 1987. Between January 20, 2009 

and March 9, 2009 during the financial crisis, the S&P 500 index lost about 15.90% of its value. These market 

collapses are all characterized by abnormal share volumes traded during these periods. The S&P 500 saw 

average share volume traded increasing from $1.3trillion to $1.8trillion between January and March 2009 (Based 
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on data from the NYSE obtained by Chris Brooks).  

Results of the time-varying transition probabilities (TVTPs) provide another point of departure of the Markov 

regime-switching model from the BK model. Whereas the Markov switching model estimates a different 

probability for transitioning between any two regimes or even the same regime from period t to t+1, the BK 

model implicitly assumes that the transition probabilities depend only on the exogenous variables. This implies 

that 𝑃11𝑡 = 𝑃12𝑡 = 𝑃13𝑡 ≡ 𝑛𝑗𝑡  in the dormant regime, 𝑃21𝑡 = 𝑃22𝑡 = 𝑃23𝑡 ≡ 𝑞𝑗𝑡  in the explosive regime, and 

𝑃31𝑡 = 𝑃32𝑡 = 𝑃33𝑡 ≡ 1 − 𝑞𝑗𝑡  in the collapsing regime. However, in the Markov regime-switching model 

considered here, nine separate probabilities are obtained, regarding every possible transition between the three 

regimes.  

We first consider the parameters in 𝑛𝑗𝑡, which determine the probability of being in the dormant regime. From 

Table 1, the intercept 𝛼𝑛,0,1 suggests that there is a 99.84% [obtained by Φ(𝛼𝑛,0,1)] probability of the bubble 

remaining in a dormant regime when the bubble size and spread are zero. The negative and significant 

coefficient on the bubble size 𝛼𝑛,𝑏,1 indicates that as the bubble size grows, the probability of being in the 

dormant (explosive) regime in period t+1 decreases (increases). Similarly, as the spread increases, the 

probability of remaining in the dormant regime decreases, as evident from the coefficient of the spread 𝛼𝑛,𝑠,1. 

This is a reasonable outcome as an increase in the spread can only happen when the bubble size is increasing, 

thus, reducing the likelihood of being in the dormant regime. The probability of transitioning from an explosive 

regime to a dormant regime did not yield any significant coefficients. This may suggest that the possibility of a 

reverse transition from an explosive to a dormant regime is limited, although this phenomenon was observed 

between 1990 and 1994. The intercept 𝛼𝑛,0,3  in the equation for the probability of transitioning from a 

collapsing regime to a dormant regime is negative and significant. It signifies a 4.29% [obtained from 1- 

Φ(𝛼𝑛,0,3)] probability of the bubble transitioning from the collapsing regime to the dormant regime.  

We next consider the parameters in 𝑞𝑗𝑡, which determine the probability of an explosive regime occurring. We 

find that 𝛼𝑞,𝑏,2 and 𝛼𝑞,𝑣,2 are not significantly different from zero indicating that the bubble size and trading 

volume do not significantly impact the probability of an explosive regime continuing to the next period. The fact 

that we find 𝛼𝑛,𝑏,2 = 𝛼𝑛,𝑠,2 = 𝛼𝑞,𝑏,2 = 𝛼𝑞,𝑣,2 = 0 implies that once the bubble enters the explosive regime, the 

bubble dynamics are independent of the state variables. When the bubble is in the explosive regime, the 

probability that the bubble remains in the explosive regime or transitions to the collapsing or dormant regimes is 

constant. The coefficient of the bubble size in the probability of switching from a collapsing regime to an 

explosive regime 𝛼𝑞,𝑏,3 is positive and significant. This implies that as the bubble size grows in the collapsing 

regime, the probability of an explosive regime occurring the next period increases. This phenomenon was 

observed in the S&P 500 index between 2002 and 2010 when bubble collapses were immediately followed by 

the emergence of an explosive bubble. 

Lastly, as the rational speculative bubble model predicts, the standard deviations of residuals from the 

three-regime Markov switching model yield the desired results. The standard deviation of the residuals in the 

collapsing regime exceed that in the explosive regime which in turn exceeds the standard deviation in the 

dormant regime. From Table 1, the standard deviations for the residuals in the dormant, explosive and collapsing 

regimes are 0.0008%, 0.0010%, and 0.0035%, respectively. The high standard deviation in the collapsing regime 

is consistent with experience because collapsing bubbles are associated with highly volatile negative returns. 

Figures 3, 4, and 5 plot the unconditional probabilities of being in a dormant regime, an explosive regime, and a 

collapsing regime, respectively, together with the S&P 500 price index from January 1888 to May 2010. In 

general, the three-regime Markov switching process performs well at identifying periods of asset price bubbles. 

Figure 3 shows that in periods when the S&P was relatively stable, the probability of observing a dormant 

bubble was high and remained so for an extended period from1888 to about 1930. Except for some periods of 

brief collapse in the S&P 500 such as 1901,1904,1908,1922,1929, the index was relatively stable up until the 

Great Depression. The year 1901 witnessed a stock market panic, lasting 3 years as well as the year-long panic 

of 1907. Another significant observation here is that as the bubble size increases over time, the probability of 

being in a dormant regime decreases, signaling the onset of an explosive regime. 

Figure 4 represents the probability of being in an explosive regime as the bubble size grows over time. It is 

observed that these probabilities remained low for an extended period from 1888 to 1898 and again from 1907 

until the Great Depression. The observed behavior is characteristic of the dormant nature of the S&P 500 before 

the Great Depression as well as the collapse during the Great Depression. As expected, the probability of an 

explosive bubble is close to zero for the Great Depression period, as there was no possibility for an explosive 

bubble to occur during the period. Although the model correctly identifies this, it fails however, to identify the 
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rising prices before the depression. It captures well the price rally from 1956 to 1966 in the S&P 500, following 

in that direction up to the 1990s when a price rally was more pronounced because of the internet bubble. With 

the bubble collapsing in 2000, a lower probability of an explosive bubble is observed until 2002. A price rally 

re-emerged during this period until its eventual collapse in 2007 during the Great Recession, evidenced by a low 

probability of being in an explosive regime. 

Lastly, Figure 5 which reports the probabilities of being in a collapsing regime shows a large increase in the 

probability of a bubble collapsing during the Great Depression from 1929 to 1933. The mild Kennedy crash of 

1962, also called the ‘flash crash’ is correctly identified by the model, as the probability of being in a collapsing 

regime increases sharply during the period. The stock market crash of 1970 and 1974 are also correctly identified 

with very high probabilities of a collapse. The most recent market crashes are seen in 1987, 1989, 2000 and 2007 

on ‘Black Monday,’ ‘Friday the 13th,’ the collapse of the technology bubble, and the Great Recession, 

respectively.  

 

Figure 3. Smoothed probabilities of a dormant bubble 

 

Figure 4. Smoothed probabilities of an explosive bubble 

 

6. Robustness Analysis 

In this section, two main robustness analyses are conducted. First, the sample period is split into two parts; from 

January 1888 to December 1950 (756 observations) and from January 1951 to May 2010 (713 observations). 
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This split is based on the fact that after World War II, stock markets were relatively stable with the evolution of 

Keynesian economic policies until the oil crisis in the 1970s. The choice of 1950 is to allow sufficient time after 

World War II so that the adverse economic effects of the war would have subsided, giving room for economic 

policies to function.  

 

 
Figure 5. Smoothed probabilities of a collapsing bubble 

 

Second, 1-period lagged values of the spread between the actual returns and fundamental returns on the S&P 500 

index are used in estimating the model for the full sample. This change is based on the idea that the returns on an 

asset in the immediate past period will provide more information about the existing bubble regime in period t 

than would returns for the past six months. Thus, 1-period lagged values of the spread are expected to provide 

sharper identification for asset price bubbles in period t.  

Results based on data splitting are shown in Figures 6 and 7, showing a plot of the smoothed probabilities of 

being in a dormant, explosive, and collapsing bubble regime. It is observed that results based on the full sample 

are upheld by those based on the split data. Similarly, results based on 1-period lagged spread values, reported in 

Figure 8 are consistent with those obtained in Figures 1, 2, and 3.  

Based on the results obtained, it can be concluded that the Markov regime-switching model works well in 

identifying asset price bubbles. Results are not dependent on the sample period or how the spread is measured. 

7. Conclusion 

A three-regime Markov switching model was developed to identify asset price bubbles in the S&P 500 

composite price index, using data from January 1888 to May 2010. Regimes were classified into dormant, 

explosive, and collapsing, with each characterizing the observed behavior of the S&P 500 index over the period. 

With the observed relationship between asset price bubbles and asset returns, return equations were subsequently 

formulated to provide a more flexible approach to identifying bubbles. Time-varying transition probabilities 

were formulated to account for every possible type of transition among the regimes. With a three-regime model, 

nine time-varying transition probabilities were formulated using a probit model to restrict the size between 0 and 

1. 

Two representations of the results from the three-regime Markov switching rational speculative bubble model are 

provided. First, coefficient estimates are provided in Table 1 and compared with those obtained in the BK model. 

Second, probability plots based on the coefficient estimates are presented for each regime in Figures 3, 4, and 5. 

Intercept terms show that on average returns on the S&P 500 index increase by about 0.52% per month in the 

dormant bubble regime, 0.94% in the explosive regime and decrease by 2.22% in the collapsing regime. The 

bubble size as well as abnormal share volume traded impact asset returns significantly in the explosive and 

collapsing regimes. On the time-varying transition probabilities, it is observed that the spread between actual 

returns and fundamental returns negatively affects the probability of remaining in a dormant bubble regime. On 

the probability plots, it is observed from Figures 3, 4, and 5 that the three-regime rational speculative bubble 

model is able to identify most of the historical bubble phenomena, such as ‘The Great Depression,’ ‘Black 
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Monday,’ ‘Friday the 13th,’ the ‘Kennedy slide (flash crash),’ and the ‘Internet Bubble.’ The above results show 

that the rational speculative bubble model accurately identifies multiple historical bubbles. It performs better 

than the BK model which fails to identify some historical bubble crashes such as observed in 1962 (the Kennedy 

slide), 1987 (Black Monday), 1989 (Friday the 13th), and 2000 (the technology bubble). The Markov regime 

switching model therefore has more explanatory power relative to the standard regime switching model. The 

likelihood ratio test also provides evidence that the Markov regime-switching model is a better specification for 

analyzing bubbles in the S&P 500 index. 

 

 

Figure 6. Smoothed probabilities of a dormant, explosive, and collapsing bubble, 1888 to 1950 

 

 

Figure 7. Smoothed probabilities of a dormant, explosive, and collapsing bubble, 1951 to 2010 
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Figure 8. Smoothed probabilities of a dormant, explosive, and collapsing bubble, 1888 to 2010 
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