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Abstract 

The purpose of this study is to explore the volatility and secondary effects in the four Nordic stock exchanges of 

Norway: Oslo Børs Linked all-share index AXLT Denmark: OMX Copenhagen 20, Sweden: OMX Stockholm 30 

and Finland: OMX Helsinki 25. Keeping in mind that there is an ARCH effect in the returns of the four stock 

exchanges, we move on to the evaluation to the evaluation of models ARCH (q), GARCH (p, q) και GARCH-M (p, 

q). Evaluating the parameters became possible through the use of the maximum likelihood method using the 

BHHH algorithm of (Berndt et al., 1974) and the three distributions (normal, t-Student, and the Generalized 

normal distribution GED). The results of this study indicate model ARMA(0,1)-GARCH-Μ(1,1) with t-student 

distribution as the appropriate one to describe the returns of the all Nordic stock exchanges except that of Sweden, 

where model ARMA(0,3)-GARCH-Μ(1,1) describes it best. Lastly, for forecasting the models 

ARMA(0,1)-GARCH-Μ(1,1) and ARMA(0,3)-GARCH-Μ(1,1) of the current stock exchanges we use both the 

dynamic and static process. The results of this study indicate that the static process forecasts better than the 

corresponding dynamic. 

Keywords: stock returns, GARCH models, forecasting volatility, Nordic stock exchanges, BHHH algorithm 

1. Introduction 

In recent years the financial world is in a serious instability. Modeling financial series is a complex matter for most 

economists. This complexity derives not only from the various financial market products (interest rate, exchange 

rates, reserves etc.) but also from the effect of political incidents. These incidents create volatility in time-series, 

resulting to the difficulty of creating various stochastic models. Assets evaluation becomes possible using their 

return, which is conventionally defined as the logarithmic price changes, which is close to the relative price change. 

This return is depicted as follows:  

 Rt = ln(Xt /Xt-1)                                       (1)

 where Rt is a financial asset with value Xt at time t and Xt -1 at time t-1. The return is scale-free, which facilitates 

comparisons between assets. 

The theory of option pricing is an important topic in the financial literature. The Black, and Scholes (1973) study 

was the beginning of the European-style purchase options. Consequently it was discovered that the prices of Black 

and Scholes models differ from the market prices, therefore the literature for evaluating the purchase options 

formulated a series of theoretical models designed to capture these empirical biases. Various empirical studies 

related to the price dynamics of current assets, indicated that the assets features in time is the volatility, the 

non-normality and leverage effect, thus, they should be taken into consideration in financial data. Therefore the 

various models and developed techniques should incorporate some or all of the above properties. 

As previously stated volatility clustering has been used instead of a constant variable in volatility functions 

depended on the asset value and time. Furthermore time-series are regarded as a stochastic process which can be 

analysed in two elements: 

Rt = mt + ut                                        (2) 
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ut = ζεt                                       (3) 

Where mt is a predictable process, and ut is a nondeterministic process driven by a random noise εt is iid with zero 

mean value and variance one.  

GARCH symmetrical models cannot define asymmetry and leptokurtosis in financial data. For this particular 

reason the GARCH-in-mean model is used in this study, which adds a heteroscedastic term in the equation mean 

which is determined as a risk premium and incorporates a type of assymetry. 

The research on the return and volatility of the Nordic stock markets was carried out for the following reasons: 

 There is a strong financial cooperation between those countries. 

 The monetary and tax systems of the researched markets are similar and a close association exists between 

these countries. 

 These four Nordic countries have similar industries, therefore their stock markets display a strong 

correlation. 

 They have common trade partners. 

 Their stock markets opening and working times coincide. 

This research differs from past ones which researched the Nordic market for the following reasons: 

1) The past studies of researching volatility and the relationship between the Nordic markets used data from 

1988 to 1994 Booth et al. (1997), while Hyytinen (1999) used weekly data and only for three markets 

(Finnish, Norwegian and Swedish market) from 1983 to 1997. The expansion of data in this study and the 

conclusions analysis are important for investors who want to diversify their portfolios. 

2) The results of this study indicate that every one of these markets are described better from model 

ARMA(0,1)-GARCH-Μ(1,1) with t-Student distribution, unlike Booth’s et al. (1997) study which uses the 

EGARCH asymmetric model, and Hyytinen’s (1999) which uses the TGARCH asymmetric model for 

Sweden and GARCH symmetric models for Finland and Norway. 

3) Furthermore, the results of this study agree with those of Booth’s et al. (1997) that the volatility in the four 

markets indicate that ill news are stronger than good news. The research on the returns and the volatility of 

secondary effects in the Nordic markets dictate the enactment of a common Nordic stock market, to create 

the fourth bigger stock market in Europe after the ones of London, Paris and Frankfurt. 

In this paper a short introduction of financial return is presented in section 1. The rest of this paper is as follows: 

section 2 contains the literature review, section 3 presents the methodological analysis, section 4 describes the data 

and the descriptive statistics, in section 5 the empirical results of this study are given, while in section 6 the 

forecasting results are presented. Last but not least, in section 7 the conclusions of this study are given. 

2. Literature Review 

Time-series performance analysis has troubled financial researchers in recent years. One of the first evaluation 

tries was conducted from Eun and Shim (1989) when they researched the daily returns of the Australia, Hong Kong, 

Japan, France, Canada, Switzerland, Germany, the United States and Britain stock exchanges. The results of their 

study indicated that there are substantial interdependencies among these markets, most of which are with the U.S. 

stock market. European and Asian stock exchange dependencies are strong but with one day delay. 

Hamao, et al. (1990) used daily data from April 1985 to March 1988 from three stock indexes, Nikkei 225 of the 

Japan stock exchange, FTSE of the Great Britain stock exchange and S & P 500 of the U.S.A. stock exchange. 

Using model GARCH-M(1,1) they resulted that Nikkei 225 is influenced both from S & P 500 and FTSE, while 

FTSE is influenced only from S & P 500. 

Booth et al. (1997) in their study used a multivariate exponential generalized autoregressive conditionally 

heteroscedastic (EGARCH) model to research the interaction of the four Scandinavic stock markets in period 

May 2
nd

 1988 to June 30
th

 1994. The results of their study indicate that volatility in the asymmetric model used is 

being more pronounced for bad than good news. 

Hyytinen (1999) studies the development of conditional volatility of returns in three Scandinavian countries 

(Finland, Norway and Sweden) using weekly data from 1983-1997. The results of the paper shown that the 

asymmetric EGARCH model is most suitable for Sweden’s data whereas the symmetric model GARCH (1,1) is 

more preferable for the other two countries. 

Ng (2000) examined the magnitude and changing nature of volatility spillovers from Japan and the US to six 
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Pacific–Basin equity. He used indexes Hang Seng of Hong Kong, the Korean Composite Stock Price Index, the 

Kuala Lumpur Stock Exchange Composite Index (Malaysia), the Stock Exchange of Singapore All Share Index, 

the Taiwan Stock Exchange Weighted Price Index, the Stock Exchange of Thailand Index, the Tokyo Stock Price 

Index, and the Standard and Poor's 500 Index. The results of his study indicated that four of six Pacific Basin 

Region stock exchanges are influenced less than 10% weekly from a change in the returns of Japan and USA 

stock markets. 

Lee (2004) in his study researches the transition mechanism of the stock market return via wavelet analysis. He 

used the wavelet analysis instead of CARCH models, claiming that his analysis researches the potential and 

possible interactions of international stock markets. Using daily data from the USA and Korean stock exchange he 

resulted that developed markets volatility one-way influence the developing ones. 

Trang Nha Le and Makoto Kakinaka (2010) researched volatility and secondary effects in three major stock 

markets, such as these of Japan, USA and China, as well as two emerging ones of Indonesia and Malaysia from the 

years 2005 to 2007. Using CARCH models they found that there are significant mean spillover effects from the 

three major markets to the two emerging markets. Furthermore they found that the size of the USA stock market 

influence upon the emerging ones is greater than those of Japan and China. Lastly, the results of their study 

indicated that the USA stock market influence upon the Indonesian market is greater than in the Malaysian. 

Prashant (2014) researched the return and volatility among the indexes BSE and DJIA of India and US Stock 

Markets respectively. To do this he used model GARCH-BEKK from January 2, 2012 to April 4, 2014. His study 

results indicated that DJIA index exercises more influence on BSE in terms of shocks and volatility transmission .  

Furthermore, he proved that total volatility is greater in the USA stock exchange. 

Thenmozh and Chand (2016) in their study showed that forecasting returns based on global reserves attributed 

better in day trading both in emerging and major markets. Forecasting the returns, the researchers used vector 

regression for six stock markets, namely those of USA (Dow Jones, S&P500), UK (FTSE-100), India (NSE), 

Singapore (SGX), Hong Kong (Hang Seng) and China (Shanghai stock exchange) for the period 1999-2011. The 

empirical analysis shows that models with other global market price information outperform forecast models based 

merely on auto-regressive past lags and technical indicators. 

3. Methodology 

Uncertainty plays an essential role in economic analysis and is usually measured with volatility. There are 

time-series, mainly financial, who display periods of mass volatility. These time-series experience periods with 

dramatic increases and decreases, during which their variance is varying over time. Therefore, researchers can test 

the variance of this particular time-series in the varying period, namely the conditional variance. Hence, we can 

describe the time-series models with conditional variance as conditional heteroscedastic models. Engle (1982) 

suggested that the varying variance can be described through an autoregressive model depending on its former 

values. Specifically this model is described as Autoregressive Conditional Heteroscedastic Model, known as 

ARCH model. 

Therefore, based on a structured model, variance can be measured and forecasted. Variance forecasting is crucial to 

pricing and risk management. In various studies, several variance models have been suggested to be able to include 

the features of financial time-series efficiency or an asset. The features of an asset’s efficiency that researchers 

acknowledge are as follows: 

 The variance of an asset develops with time, in a constant way. 

 Periods of great movement in prices, alternate with periods where prices don’t move. This feature is known 

as volatility clustering. 

 The variance of an asset does not tend to infinity. 

 There is an asymmetric movement in variance. 

 Usually, extreme kurtosis or fat-tailedness is observed in variance. 

3.1 ARCH-GARCH Varying Models 

ARCH-GARCH varying models are consisted of two equations. The first one (mean equation) describes the data 

over another variable (if present) adding the standard error. The second one (covariance equation) define the 

evolution of conditional covariance of the error, from the mean equation as a variance of the past conditional 

covariance of the lagged error. 

The mean equation in ARCH – GARCH models is depicted as: 
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 Rt = μ + εt (ARCH model)                                   (4) 

The error term εt in a simple mean equation is linear unrelated, but not time-independent. 

 Rt = μ + βζt
2
 + εt (GARCH model)       (5) 

Covariance equation in ARCH – GARCH models is depicted as: 

 ζt
2
 = ω +∑ 𝑎𝑖

𝑞
𝑖=1 𝜀𝑡−𝑖

2  (ARCH model)       (6) 

The non-linear dependency that the error term εt depicts can be described through the use of squared lagged errors 

Parameters ω, α1, α2,...,αq are unknown and because covariance is a positive number, meaning that the positive 

terms are in place, where ω>0 and α1,α2,…,αq≥ 0. 

 ζt
2 = 

ω + ∑ 𝛼𝑖𝜀𝑡−𝑖
2𝑞

𝑖=1  + ∑ 𝛽𝑗𝜎𝑡−𝑗
2𝑝

𝑗=1  (GARCH model)        (7) 

We hypothesize that, for p≥0 and q>0, the parameters are unknown and because of covariance being a positive 

number the following conditions are in place ω≥0 and αi≥0 for i=1,…,q and βi≥0 for j=1,…,p 

ARCH(1,1) model is depicted as: 

 ζt
2
 = ω + α1ε

2
t-1      (8) 

where ω≥0 and αi≥0 for the positive number of σt
2
  

GARCH(1,1) model is depicted as: 

 ζ
2
t = ω + α1ε

2
t-1 + β1ζ

2
t-1      (9) 

where ω≥0, αi≥0 and βi≥0 for the positive number of σt
2
 

3.3 ARCH- GARCH Models Features 

ARCH – CARCH model according to Engle(1982) is based on the two following hypothesis: 

 The error term εt in a simple mean equation (yt =μt + εt) is linear unrelated, but not time-independent. 

 The non-linear dependency that the error term εt depicts can be described through the use of squared lagged 

errors 

3.4 ARCH-GARCH Models Test and Evaluation 

Evaluation of ARCH-GARCH models is possible through the use of maximum likelihood method. The logged 

equation of maximum likelihood is depicted as: 

 lnL(θ) = −(1/2) ∑ [𝑙𝑛(2𝜋) + 𝑙𝑛(𝜎𝑡
2(𝜃)) +  𝑧𝑡 

2(𝜃)]𝑛
𝑡=1           (10) 

where  

θ is the vector of parameters (μ, ω, α, β) estimated that maximize the objective function lnL(θ),  

zt represents the standardized residual calculated as (Δyt – μ) /√𝜎𝑡
2. 

3.5 Diagnostic Checking of the Model ARCH-GARCH 

There are plenty diagnostic tests for the analysis of ARCH- GARCH modeling. The residual correlogram is used to 

test the residual autocorrelation, while the squared residual correlogram is used to test the autocorrelation of the 

conditional heteroscedasticity of residuals. To define if the time-series presents autocorrelation or 

heteroscedasticity we use the Ljung and Box (Q-statistics) (1978). This statistics are depicted as: 

 Qm = n(n+2)∑ 𝑒𝑘
2 (𝑛 − 2)⁄𝑚

𝑘=1       (11) 

where: 

ek is the residual autocorrelation in lag k. 

n is the residual number. 

m is the time-lags number tested. 

The model is appropriate when the probability of  Ljung and Box Q-statistics  is higher than 5%. 

3.6 The GARCH-M Model 

Engle, Lilien, and Robins (1987), build on the ARCH(q) methodology for the purpose of conditional covariance 

influencing the mean order. In other words we could say that Engle, Lilien, and Robins (1987) restructured the 

conditional variance model in order that the mean of a sequence to be depended on the conditional covariance. 

These models are named ARCH-M and are adequately adjusted to the study of the return of financial products. The 

model that Engle, Lilien and Robins built is the following: 
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 Rt = μ + other terms + δζ
2
t-1 + εt (mean equation)      (12) 

 ζ
2
t = ω + ∑ 𝛼𝑖𝜀𝑡−𝑖

2𝑞
𝑖=1  + ∑ 𝛽𝑗𝜎𝑡−𝑗

2𝑝
𝑗=1  (covariance equation)     (13) 

where: 

μ is the conditional mean of the stock market return in time t.  

ζ
2
t is the conditional covariance that reflects the risk premium. 

ω is a constant term. 

εt is the error term in time t.  

μ, δ, ω, αi and βj are parameters for evaluation. 

In this study the model GARCH-M (1,1) is used, considering the study of Bollerslev (1986), where he claims 

that the length of the time lag of the squared error and the conditional variance is enough for the stock market 

return model. 

GARCH-M (1,1) model equation can be depicted as: 

 Rt = μ + other terms + δζ
2
t-1 + εt (mean equation)        (14) 

 ζ
2

t = ω +α1ε
2

t-1 + β1ζ
2

t-1 (covariance equation)      (15) 

3.7 Forecasting Performance 

ARCH-GARCH models are used for forecasting the variance return. Forecasting in ARCH-GARCH models is 

estimated both in-sample, and out-of-sample. The best forecasting price is given from the mean squared error. 

Furthermore, other indexes that are usually used for forecast return are the Mean Absolute Error (MAE), Root 

Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and the inequality index of Theil 

(U-Theil) (1967). 

These indexes are depicted as follows:  

 MSE = (1/T)∑ (𝑌𝑡̂
𝑇
𝑡=1  - 𝑌𝑡)2

         
 

(16) 

 MAE = (1/T)∑ |𝑌𝑡̂
𝑇
𝑡=1  - 𝑌𝑡|2

         
 

(17) 

 RMSE = √(1/𝑇) ∑ (𝑌𝑡̂
𝑇
𝑡=1  −  𝑌𝑡)2

        
 

(18)
 

 MAPE = (1/T)∑ |(𝑌𝑡̂
𝑇
𝑡=1  - 𝑌𝑡)/𝑌𝑡|2

        
 

(19) 

the inequality index of Theil is given as: 

 U= (√(1/𝑇) ∑ (𝑌𝑡̂
𝑇
𝑡=1  −  𝑌𝑡)2

)/(√(1/𝑇) ∑ (𝑌𝑡̂
𝑇
𝑡=1 )2

+√(1/𝑇) ∑ (𝑇
𝑡=1 𝑌𝑡)2

)   0 ≤ 𝑈 ≤ 1       (20) 

where: 

Yt: Actual value of endogenous variable Y at time t. 

𝑌𝑡̂: Redacted value of endogenous variable Y at time t. 

T: Number of observations in the simulations (of the sample). 

If the inequality index of Theil U=0, then the actual prices of the time-series, would equal the predicted ones Yt = 

Yt̂  for all t, therefore in this case we can say that there is a “perfect fit” between actual and predicted data. 

Otherwise if variable U=1, there is no right forecast for the studied model. Consequently the individual indexes 

of Theil are presented, known as inequality proportions, and are depicted as: 

 Bias proportion: indicates the systematic differences in actual and forecasted values. 

 UM = ((𝑌̅̂ −  𝑌̅)
2
)/((1/T)∑ (𝑌𝑡̂

𝑇
𝑡=1  - 𝑌𝑡)2

)      (21) 

where:  

𝑌̅̂ and 𝑌̅ are the time-series mean of Yt̂ and Yt correspondingly. Bias proportion counts the distance between 

the mean of the simulated series and the mean of the actual one. 

 Variance proportion: indicates unequal variances of actual and forecasted values. 

 US = ((𝑆̂𝑌̂ − 𝑆𝑌)2
)/ ((1/T)∑ (𝑌𝑡̂

𝑇
𝑡=1  - 𝑌𝑡)2

)    (22) 

where: 
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𝑆̂𝑌̂ and 𝑆𝑌 are the standard deviations of series Yt̂ and Yt correspondingly. Variance proportion counts the 

distance between the variance of the simulated series and the variance of the real one. 

 Covariance proportion: indicates the correlation between the actual and forecasted values (zero=perfect 

correlation between actual and forecasted values). 

 UC = (2(1-ρ) 𝑆̂𝑌̂𝑆𝑌)/ ((1/T)∑ (𝑌𝑡̂
𝑇
𝑡=1  - 𝑌𝑡)2

)      (23) 

where: 

ρ is the correlation variable between 𝑌𝑡̂ and Yt. Covariance proportion counts the balance of the non-systematic 

error of simulation. 

The forecasting ability of a model is sufficient, when the bias and covariance proportions are low. 

The relationship between the above proportions is:  

 UM+US+UC=1    (24) 

4. Data and Descriptive Statistics 

The data for this study was collected from the websites www.nasdaqomxnordic.com for the OMX Copenhagen 20, 

OMX Stockholm 30 and OMX Helsinki 25 indexes and from the website www.oslobors.no for the AXLT index of 

Oslo Børs. The data covers the period from January 3
rd 

1983 to April 7
th

 2016 for the Norwegian Index and 

contains 8347 observations, the period from October 10
th

 1996 to May 11
th

 2016 for the Danish Index and contains 

4893 observations, the period from September 30
th

 1986 to May 11
th

 2016 for the Swedish Index and contains 7434 

observations and lastly the period from September 3
rd

 2001 to May 11
th

 2016 for the Finnish Index and contains 

3687 observations. 

The daily return of stock markets is calculated as: 

Rt = ln(Xt/Xt-1) * 100 = (lnXt – lnXt-1)*100                      (25) 

where,

 Xt is the daily closing price of stock market at time t,

 Rt is the daily return of stock market.

 The daily closing prices of the AXLT, OMX Copenhagen 20, ΟΜΧ Stockholm 30 and OMX Helsinki 25 Indexes 

and their returns are presented at Figures 1 and 2, correspondingly. 

 

     

     

Figure 1. Daily closing prices of the Norwegian, Danish, Swedish and Finnish stock markets 
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From Figure 1 we can assume that the daily closing prices of all stock markets display a random walk. 

 

    

    

Figure 2. Daily returns of the Norwegian, Danish, Swedish and Finnish stock markets 

 

From Figure 2 we can assume that the daily returns of all the stock markets are stationary. Consequently we can 

move on to Tables 1 and 2 of correlograms and check if autocorrelation exists in the daily returns of stock 

markets, as well as the form of autocorrelation in the correlograms of the daily squared returns. 

 

Table 1. Correlogram of the daily return of the Norwegian, Danish, Swedish and Finnish stock markets 
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Ljung and Box (Q-statistics) indicate that a serial correlation exists for all time lags of the autocorrelation function. 

 

Table 2. Correlogram of the squared daily return of the Norwegian, Danish, Swedish and Finnish stock markets. 
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Results of Table 2 indicate that Ljung and Box (Q-statistics) for all time lags is statistical significant, therefore an 

ARCH effect exists. 

 

Table 3. Descriptive statistics of the daily return of the Norwegian, Danish, Swedish and Finnish stock markets 

 NOR DEN SWE FIN 

Mean 0.045110 0.041417 0.031782 0.021683 

Median 0.092587 0.085747 0.069711 0.063065 

Maximum 10.48099 9.496355 11.02284 9.285563 

Minimum -21.21879 -11.72319 -8.526937 -8.905445 

Std. Dev. 1.320211 1.289933 1.462234 1.444397 

Skewness -1.012962 -0.268218 0.025068 -0.036580 

Kurtosis 17.89832 7.847888 7.250442 6.317618 

Jarque-Bera 78613.88 4849.151 5594.544 1691.251 

Probability 0.000000 0.000000 0.000000 0.000000 

Sum 376.4856 202.6100 236.1706 79.92401 

Sum Sq.Dev. 14544.98 8138.264 15886.28 7687.956 

Observations 8346 4892 7431 3686 

 

Table 4. Stationarity test of the daily return of the Norwegian, Danish, Swedish and Finnish stock markets 

Variable ADF P-P 

C C,T C C,T 

RNOR -85.93(0)* -85.95(0)* -86.51[25]* -86.50[25]* 

R SWE  -84.31(0)* -84.31(0)* -84.32[15]* -84.32[15]* 

RFIN -58.86(0)* -58.85(0)* -58.87[11]* -58.86[11]* 

RDEN -67.09(0)* -67.08(0)* -67.03[14]* -67.02[14]* 

Note. 1. *, ** and *** show significant at 1%, 5% and 10% levels respectively. 

2. The numbers within parentheses followed by ADF statistics represent the lag length of the dependent variable used to obtain white 

noise residuals. 

3. The lag lengths for ADF equation were selected using Schwarz Information Criterion (SIC). 

4. Mackinnon (1996) critical value for rejection of hypothesis of unit root applied. 

5. The numbers within brackets followed by PP statistics represent the bandwidth selected based on Newey West (1994) method using 

Bartlett Kernel. 

6. C=Constant, T=Trend.. 

 

After the stationarity detection with tests Dickey-Fuller (1979, 1981) and Phillips-Perron (1988) of all 

time-series we can define the form of model ARMA (p, q) from the correlogram of Table 1. Parameters p and q 

can be defined from the partial autocorrelation and correlation variable, correspondingly, comparing them with 

the critical value ±2 / √𝑛 = ±2 / √8347 = ±0.022  for the Norwegian stock exchange,  ±0.028  for the 

Danish stock exchange, ±0.023 for the Swedish stock exchange and ±0.032 for the Finnish stock exchange.

 

 

Therefore for Norway and Finland p value will be 0<p <1 and q value will be 0<q<1, for Denmark p value will 

be 0<p<2 and q value will be 0<q<2 and lastly for Sweden p value will be 0<p<3 and q value will be 0<q<3.  

Consequently we can create Table 5 as such: 

 

Table 5. Comparison of models within the range of exploration using AIC, SIC and HQ 

ARIMA model AIC SC HQ 

RNOR    

(1,0,0) 3.3903 3.3928 3.3912 

(0,0,1) 3.3902 3.3927 3.3911 

(1,0,1) 3.3904 3.3938 3.3915 

R DEN    

(0,0,1) 3.3462 3.3502 3.3476 

(0,0,2) 3.3469 3.3512 3.3478 

(1,0,0) 3.3463 3.3503 3.3477 

(1,0,1) 3.3463 3.3516 3.3482 

(1,0,2) 3.3468 3.3524 3.3481 

(2,0,0) 3.3462 3.3510 3.3476 

(2,0,1) 3.3463 3.3524 3.3481 

(2,0,2) 3.3462 3.3532 3.3480 
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R SWE    

(0,0,1) 3.5979 3.6017 3.5989 

(0,0,2) 3.5975 3.6012 3.5988 

(0,0,3) 3.5965 3.6012 3.5981 

(1,0,0) 3.5979 3.6017 3.5989 

(1,0,1) 3.5980 3.6017 3.5993 

(1,0,2) 3.5968 3.6015 3.5984 

(1,0,3) 3.5968 3.6024 3.5987 

(2,0,0) 3.5974 3.6012 3.5987 

(2,0,1) 3.5968 3.6014 3.5983 

(2,0,2) 3.5969 3.6025 3.5989 

(2,0,3) 3.5970 3.6035 3.5993 

(3,0,0) 3.5966 3.6013 3.5982 

(3,0,1) 3.5969 3.6025 3.5988 

(3,0,2) 3.5971 3.6036 3.5993 

(3,0,3) 3.5965 3.6039 3.5990 

R FIN    

(1,0,0) 3.57368 3.57874 3.57548 

(0,0,1) 3.57366 3.57872 3.57546 

(1,0,1) 3.5741 3.5809 3.5765 

 

The results from Table 5 indicate that according to the criteria of Akaike (AIC), Schwartz (SIC) and 

Hannan-Quinn (HQ) model ARΙMA (0,0,1) is the fittest for the Norwegian, Finnish and Danish stock while 

model ARΙMA (0,0,3) for the Swedish one. 

 

Table 6. ARMA models estimation 
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After the model estimation we test the existence of conditional heteroscedasticity (ARCH(q) test), from the 

squared residuals of the last model. Table 7 presents us with the results.  

 

Table 7. ARCH(q) effect test 

        

        

 

Table 7 results indicate that the autocorrelation and partial autocorrelation variables are statistically significant. 

Therefore the null hypothesis for the absence of ARCH or GARCH effect is rejected. 

5. Empirical Results 

Keeping in mind that the ARCH effect exists in the returns of the stock markets of Norway, Denmark, Sweden 

and Finland we can move on to the evaluation of the models ARCH(q), GARCH(p, q) and GARCH-M(p, q). The 

parameters are evaluated with the BHHH algorithm (Berndt et al., 1974). The evaluation of models 

ARCH-GARCH-GARCH-M is presented in Tables 8a, 8b, 8c and 8d using three distributions for every country. 
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Table 8a. Estimated ARCH-GARCH-GARCH-M models for the daily returns of Norway 

ARMA(0,1)-ARCH (1,0) 

Parameter Normal t-Student GED 

ω 1.049(0.000) 1.058(0.000) 1.018(0.000) 

α1 0.401(0.000) 0.408(0.000) 0.387(0.000) 

  D.O.F=4.226(0.000) PAR=1.142(0.000) 

LL -13400.04 -12834.64 -12896.37 

Jarque-Bera 11940.87(0.000) 13041.28(0.000) 13068.85(0.000) 

ARCH(1) 1.364(0.242) 1.753(0.1855) 1.616(0.204) 

Q2( 1) 1.365(0.243) 1.754(0.185) 1.615(0.2037) 

ARMA(0,1)-GARCH(1,1) 

Parameter Normal t-Student GED 

ω 0.056(0.000) 0.036(0.000) 0.043(0.000) 

α1 0.162(0.000) 0.126(0.000) 0.138(0.000) 

β1 0.808(0.000) 0.852(0.000) 0.837(0.000) 

  D.O.F=7.686(0.000) PAR=1.405(0.000) 

LL -12591.19 -12360.71 -12410.64 

Jarque-Bera 10895.61(0.000) 1428.65(0.000) 12761.06(0.000) 

ARCH(30) 23.758(0.783) 30.736(0.428) 27.712(0.586) 

Q2( 30) 23.390(0.799) 30.490(0.441) 28.059(0.567) 

ARMA(0,1)-GARCH-M (1,1) 

Parameter Normal t-Student GED 

ω 0.056(0.000) 0.036(0.000) 0.043(0.000) 

α1 0.162(0.000) 0.126(0.000) 0.138(0.000) 

β1 0.809(0.000) 0.852(0.000) 0.837(0.000) 

  D.O.F=7.686(0.000) PAR=1.405(0.000) 

LL -12591.18 -12360.70 -12410.60 

Jarque-Bera 10899.43 14212.21(0.000) 12742.25(0.000) 

ARCH(30) 23.821(0.780) 30.697(0.430) 27.914(0.575) 

Q2( 30) 23.453(0.796) 30.449(0.0443) 27.564(0.594) 

Note. 1.Values in parentheses denote the p-values. 2. LL is the value of the log-likelihood. 

 

Table 8b. Estimated ARCH-GARCH-GARCH-M models for the daily returns of Denmark 

ARMA(0,1)-ARCH (1,0) 

Parameter Normal t-Student GED 

ω 1.154(0.000) 1.179(0.000) 1.138(0.000) 

α1 0.315(0.000) 0.319(0.000) 0.311(0.000) 

  D.O.F=4.888(0.000) PAR=1.243(0.000) 

LL -7952.25 -7757.382 -7771.147 

Jarque-Bera 1703.559(0.000) 1723.106(0.000) 1719.885(0.000) 

ARCH(1) 5.540(0.018) 5.242(0.022) 5.437(0.019) 

Q2( 1) 5.544(0.019) 5.246(0.022) 5.441(0.020) 

ARMA(0,1)-GARCH(1,1) 

Parameter Normal t-Student GED 

ω 0.050(0.000) 0.044(0.000) 0.047(0.000) 

α1 0.111(0.000) 0.117(0.000) 0.115(0.000) 

β1 0.856(0.000) 0.856(0.000) 0.855(0.000) 

  D.O.F=9.752(0.000) PAR=1.523(0.000) 

LL -7557.238 -7499.126 -7507.439 

Jarque-Bera 556.6304(0.000) 611.3892(0.000) 584.5145(0.000) 

ARCH(30) 24.802(0.734) 26.952(0.625) 25704(0.690) 

Q2( 30) 24.540(0.747) 26.284(0.661) 25274(0.712) 

ARMA(0,1)-GARCH-M (1,1) 

Parameter Normal t-Student GED 

ω 0.050(0.000) 0.044(0.000) 0.047(0.000) 

α1 0.111(0.000) 0.117(0.000) 0.115(0.000) 

β1 0.856(0.000) 0.856(0.000) 0.855(0.000) 

  D.O.F=9.745(0.000) PAR=1.523(0.000) 

LL -7557.204 -7499.085 -7507.436 

Jarque-Bera 553.5764(0.000) 615.2196(0.000) 585.4903(0.000) 

ARCH(30) 24883(.0.730) 26.859(0.630) 25.678(0.691) 

Q2( 30) 24.623(0.743) 26.190(0.665) 25.249(0.713) 

Note. 1.Values in parentheses denote the p-values. 2. LL is the value of the log-likelihood. 
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Table 8c. Estimated ARCH-GARCH-GARCH-M models for the daily returns of Sweden 

ARMA(0,3)-ARCH (1,0) 

Parameter Normal t-Student GED 

ω 1.4888(0.000) 1.515(0.000) 1.452(0.000) 

α1 0.317(0.000) 0.349(0.000) 0.323(0.000) 

  D.O.F=4.377(0.000) PAR=1.186(0.000) 

LL -13013.86 -12645.75 -12674.25 

Jarque-Bera 2991.354(0.000) 3154.959(0.000) 3118.569(0.000) 

ARCH(1) 3.749(0.052) 5.957(0.014) 5.037(0.024) 

Q2( 1) 3.751(0.053) 5.960(0.015) 5.040(0.025) 

ARMA(0,3)-GARCH(1,1) 

Parameter Normal t-Student GED 

ω 0.038(0.000) 0.025(0.000) 0.030(0.000) 

α1 0.097(0.000) 0.095(0.000) 0.096(0.000) 

β1 0.884(0.000) 0.894(0.000) 0.890(0.000) 

  D.O.F=9.038(0.000) PAR=1.499(0.000) 

LL -12242.42 -12109.21 -12145.77 

Jarque-Bera 2594.030(0.000) 3443.449(0.000) 3004.152(0.000) 

ARCH(30) 11.953(0.998) 16.746(0.975) 14.541(0.992) 

Q2( 30) 11.986(0.999) 16.301(0.980) 14.378(0.993) 

ARMA(0,3)-GARCH-M (1,1) 

Parameter Normal t-Student GED 

ω 0.038(0.000) 0.025(0.000) 0.030(0.000) 

α1 0.097(0.000) 0.095(0.000) 0.096(0.000) 

β1 0.883(0.000) 0.894(0.000) 0.890(0.000) 

  D.O.F=9.016(0.000) PAR=1.498(0.000) 

LL -12242.21 -12109.09 -12145.69 

Jarque-Bera 2567.730(0.000) 3465.321(0.000) 3020.694(0.000) 

ARCH(30) 11.895(0.998) 16.785(0.975) 14.581(0.991) 

Q2( 30) 11.929(0.999) 16.345(0.980) 14.420(0.993) 

Note. 1.Values in parentheses denote the p-values. 2. LL is the value of the log-likelihood. 

 

Table 8d. Estimated ARCH-GARCH-GARCH-M models for the daily returns of Finland 

ARMA(0,1)-ARCH (1,0) 

Parameter Normal t-Student GED 

ω 1.586(0.000) 1.673(0.000) 1.565(0.000) 

α1 0.262(0.000) 0.275(0.000) 0.261(0.000) 

  D.O.F=4.206(0.000) PAR=1.161(0.000) 

LL -6490.810 -6317.607 -6318.631 

Jarque-Bera 1053.977(0.000) 1051.303(0.000) 1050.031(0.000) 

ARCH(1) 4.779(0.028) 4.711(0.030) 4.949(0.026) 

Q2( 1) 4.784(0.029) 4.716(0.030) 4.954(0.026) 

ARMA(0,1)-GARCH(1,1) 

Parameter Normal t-Student GED 

ω 0.019(0.000) 0.016(0.000) 0.018(0.000) 

α1 0.078(0.000) 0.078(0.000) 0.078(0.000) 

β1 0.911(0.000) 0.913(0.000) 0.912(0.000) 

  D.O.F=11.939(0.000) PAR=1.598(0.000) 

LL -6043.635 -6023.131 -6021.973 

Jarque-Bera 80.132(0.000) 83.137(0.000) 81.579(0.000) 

ARCH(1) 1.387(0.238) 1.228(0.267) 1.303(0.253) 

Q2( 1) 1.389(0.239) 1.230(0.267) 1.304(0.253) 

ARMA(0,1)-GARCH-M (1,1) 

Parameter Normal t-Student GED 

ω 0.019(0.000) 0.016(0.000) 0.018(0.000) 

α1 0.079(0.000) 0.078(0.000) 0.078(0.000) 

β1 0.911(0.000) 0.913(0.000) 0.912(0.000) 

  D.O.F=11.966(0.000) PAR=1.599(0.000) 

LL -6043.226 -6023.118 -6023.968 

Jarque-Bera 76.780(0.000) 82.487(0.000) 81.195(0.000) 

ARCH(1) 1.452(0.228) 1.240(0.265) 1.311(0.252) 

Q2( 1) 1.453(0.228) 1.242(0.265) 1.312(0.252) 

Note. 1.Values in parentheses denote the p-values. 2. LL is the value of the log-likelihood. 
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The last tables presented us the evaluations and the standard errors for the parameters with the value of 

log-likelihood function, as well as the tests of normality, autocorrelation and conditional heteroscedasticity. The 

result of each table revealed the statistical significance of coefficients, in every country, model and distribution. 

Also, no autocorrelation or conditional heteroscedasticity issue is found. Furthermore, models 

ARMA(0,1)-GARCH-Μ(1,1) models, and model ARMA(0,3)-GARCH-Μ(1,1) in case of Sweden, are the ones 

with the max Log Likelihood value using the t-Student distribution. Therefore, these models can be used for 

forecasting. 

6. Forecasting 

In forecasting the Nordic stock markets using the models ARMA(0,1)-GARCH-Μ(1,1) and 

ARMA(0,3)-GARCH-Μ(1,1) we applied both the dynamic and static process. The dynamic process forecasts the 

time periods after the first time period of the sample, using the last forecast values from the lags of the dependent 

variable and the ARMA terms. This process is known as n-step ahead forecasts. The static process uses real, and 

not forecasted values, of the dependent variable. This process is known as one step- ahead forecast. 

In Figures 3, 4, 5 and 5 we present the criterions of the evaluation of stock markets forecasting using the 

dynamic and static process, respectively. 

 

     

Figure 3. Dynamic and static forecast of the daily returns of Norwegian stock 

 

       

Figure 4. Dynamic and static forecast of the daily returns of Danish stock 
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Figure 5. Dynamic and static forecast of the daily returns of Swedish stock 

 

    
Figure 6. Dynamic and static forecast of the daily returns of Finnish stock 

 

Based on the diagrams above we observe that static process gives better results than the dynamic one in each of 

the researched stock market (Theil index is lower in static process). But the fact that the Theil index is close to 

number one indicates that there is no appropriate forecast for the researched model. 

7. Discussion and Conclusion 

This study aims at modeling the volatility and the secondary effects at the four Nordic stock exchanges. The 

results indicated that each of the markets is well described by an ARMA(0,1)-GARCH-M(1,1) model except that 

of Sweden which model ARMA(0,3)-GARCH-M(1,1) describes it best. Each market's returns and volatilities are 

strongly dependent on their own past values. Linear dependence is probably due to the presence of a 

time-varying risk premium or in a form of market ineffectiveness. Volatility in each one indicated that the ill 

news is stronger than good news. Research of volatility and returns of each market, is motivated by the ongoing 

discussion related to the enactment of common Nordic stock market among Nordic countries. This merging will 

create the fourth biggest stock exchange market in Europe, after London, Paris and Frankfurt. 
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