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Abstract 

Portfolio allocation is embedded in many decisional tasks for ensuring best returns under the constraint of 

minimising risk. In this paper, we implement several strategies in order to generate a holistic assessment of 

portfolio evaluation. The study analyses the performance of an extended framework of the classical tangency and 

targeted portfolio strategies. The extension is essentially the use of the skewed student-t distribution for the 

individual assets‟ log-return. Our investigation is based on 15 currencies with US dollar as the base currency for 

the period spanning from 1999 to 2015. A comparative performance analysis between the portfolio optimization 

strategies is undertaken on the basis of various performance measures, namely the portfolio expected return, 

standard deviation, Beta coefficient, Sharpe Ratio, Jensen‟s Alpha, Treynor ratio and Roy ratio. The portfolio 

VaR being perceived as one of the core metrics for risk management is also computed. It is actually proxied by 5 

VaR estimates - the parametric Gaussian, the equally-weighted historical VaR, the bootstrapping historical VaR, 

the Monte-Carlo simulation VaR and the parametric GHD VaR. The results show that both tangency portfolios, 

with the Gaussian or the skewed student-t distribution perform best, particularly on the basis of highest Sharpe 

reward-to-variability ratio and lowest Value-at-Risk. 

Keywords: portfolio optimization, exchange rates, performance measures, value-at-risk 

1. Introduction 

The generic principle embedded in portfolio analysis relates to the notion of “do not put all your eggs in one 

basket”. The basic tenet of such a statement is that if the basket falls, all the eggs are broken. In the same vein, 

fund managers worldwide resort towards portfolio allocation in view of ensuring the best returns being 

optimized under various economic conditions subject to adherence to the stipulated risk-profile of the clients. 

The theory of portfolio analysis is now embedded not only for securities analysis but also for other important 

decisional tasks. For instance, credit portfolio analysis is now an inherent feature of any commercial bank in 

view of harnessing the maximum returns feasible.  

The current study undertakes a comprehensive and rigorous analysis of a portfolio of 15 currencies with US 

dollar as the base currency for the period spanning from 1999 to 2015. We construct various strategies, namely 

equal allocation, single index model with short sales, single index model without short sales, tangency portfolio 

based on normal distribution, tangency portfolio based on skewed student-t distribution, targeted portfolio return 

based on normal distribution and targeted portfolio return based on skewed student-t distribution. In essence, 

seven strategies are considered to generate a holistic assessment of portfolio evaluation. Currencies constitute the 

focus of our study as data is freely available on yahoo finance, let alone the fact that the foreign exchange market 

is the only market which operates 24 hours over 24 hours throughout the whole week. Consequently, liquidity 

bias is less susceptible to buffet in our results relative to the equity or commodity markets.  

The primary aim of the paper is to gain insight as to which strategy generates the best risk-returns tradeoff. 

However, care may be exercised in the sense that a specific strategy may trail behind the highest return subject to 

certain impediment such as higher cost. This is akin to hedging in the field of finance whereby GARCH model 

tends to generate better out-of-sample portfolio performance but at the cost of having more portfolio reshuffling 

effects. This can also be captured out via active portfolio management which undeniably unleashes higher costs 

relative to passive portfolio management strategy.  
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The rest of this paper is organized as follows. Section two focuses on the literature review and section three deals 

with the data and methodology. Section four discusses on the results obtained while section five concludes.  

2. Literature Review 

A major breakthrough pertaining to portfolio asset allocation occurred in 1952 ensuing the seminal work of 

Markowitz. At its core development level of the theory of portfolio diversification, Markowitz (1952) assumed 

free market forces without hindering effects of taxes or transaction costs, infinitely divisible assets to be traded, 

no room for short-sales and negative proportions of assets to be incorporated in the portfolio. Most importantly, 

the crux of portfolio analysis relied heavily on the first two moments of asset returns, namely risk and return 

under a mean-variance analysis framework. Under such a framework, based on a given expected return, the 

whole objective is geared towards minimization of the variance.  

Sharpe (1964) came forward with the term Capital Asset Pricing Model (CAPM) to generate proper demarcation 

line between diversifiable risk and systematic risk. The gist of such a framework is that systematic risk is 

non-diversifiable by leveraging on more and more securities in a portfolio. Consequently, investors need to be 

sufficiently rewarded for shouldering systematic risk. The next evolution in the field came from the work of 

Borch, Hester and Tobin (1969) who incorporated a risk-free asset in the Markowitz framework to come forward 

with the Separation theorem concept. The latter argues that in the presence of a risk-free asset, the optimal risky 

portfolio can be sieved out without knowledge of the investors‟ risk preferences.  

In 1976, Ross pushed forward the portfolio theory framework via the Arbitrage Pricing Theory. In a nutshell, the 

distinctive feature of the Arbitrage Pricing Theory (APT) relative to CAPM refers to the fact that the former 

considers a certain number of macroeconomic variables while the latter only factors in the market returns. Both 

APT and CAPM presume linear associations to the forces which drive asset returns. 

Throughout the years, portfolio theory underwent major changes. For instance, the CAPM is now modelled 

under the Generalised Autogressive Conditional Heteroscedasticity (GARCH) approach based on the existence 

of volatility clustering (symmetric GARCH) and leverage effects (asymmetric GARCH). Studies stretching 

beyond conventional first two moments have also been considered such as Sereda et al. (2010). Advanced 

technique from mathematical physics was also considered such as asset selection filters based on Random Matrix 

Theory as performed by Daly et al. (2008). Another important evolution came when utility functions were 

incorporated when modelling the portfolio asset returns under Von Neumann-Morgenstern's (1953) Expected 

Utility Hypothesis. Black and Litterman (1992) gave due consideration to investors‟ opinions when modelling 

asset returns. Today, the use of priors is now deemed as an important advancement in the field of finance under 

the Bayesian approach to modelling.  

With time, the main advancements in the field of portfolio theory were more of computational design in lieu of 

theoretical advancements, mainly propelled by the use of high quality technology. Studies such as Parpas and 

Rustem (2007) and Troha (2011) used stochastic programming and simulations. In the case that random variables 

manifest in the problem statement, recourse is made towards stochastic optimization methods. Crama and 

Schyns (2003) used simulated annealing based technique to model portfolio selection. Hochreiter (2008) resorted 

to evolutionary stochastic portfolio optimization using genetic algorithm. Mishra et al. (2009) implemented a 

multi-objective particle swarm optimization method for the portfolio optimization problem. Studies have also 

incorporated neural networks approach to portfolio analysis such as those of Zimmermann et al. (2001) and 

Steiner and Wittkemper (1997).  

The choice of performance indicators for portfolio evaluation is of fundamental importance. Caporin and Lisi 

(2011) defined four types of performance indicators among which we have absolute performance measures and 

relative performance measures. Absolute performance evaluation is performed using the indicators in isolation. 

On the other hand, relative performance measures help investors in analyzing their portfolios as compared to 

market benchmarks or to other strategies, which is a more sensible assessment approach. Generally, the 

comparative analyses are performed on the basis of two dimensions namely the expected return and the risk. 

Before the 1960s, investors were overlooking the risk component in the composition of their portfolios as their 

main focus was mistakenly based on the returns. However, over time investors dedicated more and more 

importance to portfolio risk assessment. The most famous risk indicator is the volatility of returns. Though it 

proved interesting for comparative analysis, the volatility does not capture the total risk picture of returns, 

especially for portfolios exhibiting skewed return distributions. The Value-at-Risk (VaR) actually overcomes this 

major limitation, its focus being on downside risk and potential losses. In other words, VaR captures the tail end 

of the returns to the down side. In the paper of Koh and Lee (2011), the portfolio assessment is performed using 

other sets of performance measurement tools which are also known as the risk-adjusted performance measures. 
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These indicators are the Sharpe ratio, the Jensen‟s alpha, the Treynor ratio and the Roy ratio, which are merely a 

combination of risk and return performance.  

Basically, the literature on portfolio theory is expected to develop more on the computational side in lieu of the 

theoretical side. Nonetheless, the main focus lies in the trade-off between the costs of using a highly 

sophisticated technique and the benefits emanating from the use of that specific technique.  

3. Methodology 

This paper analyses the performance of different portfolio optimization strategies. The investigation is based on 

15 currencies with US dollar as the base currency for the period spanning from 1999 to 2015. Using currency 

data eventually reduces the susceptibility of having liquidity bias buffeting in our results. The data is freely 

downloaded on yahoo finance.  

3.1 Asset Allocation Strategies 

This paper constructs seven portfolio strategies namely, equal allocation, single index model with short sales, 

single index model without short sales, tangency portfolio based on normal distribution, tangency portfolio based 

on skewed student-t distribution, targeted portfolio return based on normal distribution and targeted portfolio 

return based on skewed student-t distribution.  

3.1.1 Equal Allocation 

The equal allocation is also referred to as a “naïve strategy” as it is basically an equally weighted portfolio.  

This passive allocation strategy will be used as a benchmark for our active optimization strategies.  

3.1.2 Single Index Model 

The single index model is a computationally simplified version of the Markowitz‟s model which was developed 

by Sharpe (1963). It is formulated as  

𝑅𝑖𝑡 = 𝛼𝑖 + 𝛽𝑖𝑅𝑀𝑇 + 𝜖𝑖𝑡                                   (1) 

where 𝑅𝑖𝑡 denotes the return on asset 𝑖, 𝑅𝑀𝑇 denotes the market index return and 𝜖𝑖𝑡 denotes the specific 

return on asset 𝑖. The parameters 𝛼𝑖 and 𝛽𝑖 are to be determined empirically by regressing asset returns against 

market returns.  

The determination of optimal portfolios makes use of the simplified correlation representation model to establish 

an optimal ranking of the portfolio potential components. A threshold is then determined in the list such that only 

those securities above that threshold are retained to compose the portfolio. In this study, the Treynor Ratio (TR) 

is used to rank the assets from the highest ratio to the lowest. Indeed, the higher the TR, the more desirable it is 

to include the asset in the portfolio. The Treynor Ratio for asset 𝑖 is calculated as: 

𝑇𝑅𝑖 =
𝐸(𝑅𝑖)−𝑅𝑓

𝛽𝑖
                                      (2) 

In this study, the risk-free interest rate 𝑅𝑓 is assumed to be 0%, since this study investigates portfolio allocation 

in the exchange market.  

The threshold value 𝐶∗ is calculated using an iterative procedure. In fact, a value 𝐶𝑖 for a portfolio comprising 

𝑗 securities is calculated each time a security is included in the portfolio. It is computed using the expression 

𝐶𝑖 =
𝜎𝑀

2 ∑
(𝐸(𝑅𝑖)−𝑅𝑓)𝛽𝑗

𝑣𝑎𝑟(𝜖𝑗)
𝑖
𝑗=1

1+𝜎𝑀
2 ∑

𝛽𝑗
2

𝑣𝑎𝑟(𝜖𝑗)
𝑖
𝑗=1

                                   (3) 

where 𝜎𝑀
2  is the variance of market returns. Securities from the list are no more added to the portfolio when the 

corresponding TR is lower than the 𝐶𝑖 calculated for the previous portfolio.  

The optimal weights 𝑥𝑖 for the single index model are determined by: 

𝑥𝑖 =
𝑍𝑖

∑ 𝑍𝑖
𝑁
𝑖=1

                                       (4) 

where 𝑁 is the number of components in the portfolio and the parameter 𝑍𝑖 is obtained by the expression: 

𝑍𝑖 =
𝛽𝑖(𝑇𝑅𝑖−𝐶∗)

𝑣𝑎𝑟(𝜖𝑖)
                                      (5) 
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In this study, the single-index model is implemented using two distinct approaches: 

(1) when short-sales is not allowed, 𝐶∗ = 𝑚𝑎𝑥(𝐶𝑖) 

(2) when short-sales is allowed, 𝐶∗= last 𝐶𝑖 in the portfolio  

3.1.3 Tangency Portfolio 

The tangency portfolio is defined as being the composition of securities which maximizes the corresponding 

Sharpe Ratio (SR). The portfolio Sharpe Ratio 𝑆𝑅𝑝 is calculated as: 

𝑆𝑅𝑝 =
𝐸(𝑅𝑝)−𝑅𝑓

𝜎(𝑅𝑝)
                                     (6) 

This ratio is often referred to as the reward-to-variability ratio. The strategy is therefore defined by a 

maximization problem over 𝑆𝑅𝑝.  

This study implements the strategy using two distinct underlying distributions namely the normal distribution 

and the skewed student-t distribution. 

3.1.4 Targeted portfolio return 

The targeted portfolio return works in the Markowitz‟s mean-variance framework where the objective is to 

minimize the portfolio risk constrained to a target return, which is set to 0.5% in this study. The optimization 

problem is therefore formulated as follows: 

𝑀𝑖𝑛 𝜎(𝑅𝑝) = √∑ ∑ 𝜔𝑖𝜔𝑗𝐶𝑜𝑣𝑖,𝑗

𝑗

 

𝑖

= √𝝎𝑻𝜮𝝎  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {
∑ 𝜔𝑖𝐸(𝑅𝑖)𝑖  = 𝝎𝑻𝝁 = 0.5%

∑ 𝜔𝑖𝑖  = 1         
                         (7) 

where 𝜔𝑖  denotes the allocation weight to asset 𝑖 and 𝐶𝑜𝑣𝑖,𝑗 is the covariance between returns of assets 𝑖 and 

𝑗. In matrix representation, 𝜔 is the vector of allocation weights and Σ denotes the variance-covariance matrix 

of all the securities. 

It is assumed that short-selling is possible in this strategy. As for the tangency portfolio strategy, the normal 

distribution and the skewed student-t distribution are assumed.  

3.2 Performance Measures 

The comparative analysis between the different optimal portfolio strategies and the passive asset allocation 

strategy is performed using different performance metrics which are presented in the table below. 

 

Table 1. Definition of the portfolio performance measures 

Portfolio Performance Measures Definition 

1. Expected return 𝐸(𝑅𝑝) = ∑ 𝜔𝑖𝐸(𝑅𝑖)𝑖 = 𝝎𝑻𝝁                                   (8) 

2. Standard deviation 𝜎(𝑅𝑝) = √𝝎𝑻𝚺𝝎                                            (9) 

3. Beta coefficient 𝛽𝑝 =
𝐶𝑜𝑣𝑝,𝑀

𝜎𝑀
2                                              (10) 

where  

 𝐶𝑜𝑣𝑝,𝑀 is the covariance between the portfolio returns and the market index 

 𝜎𝑀
2  is the variance of the market index returns 

4. Sharpe ratio 
𝑆𝑅𝑝 =

𝐸(𝑅𝑝)−𝑅𝑓

𝜎(𝑅𝑝)
                                        (11) 

5. Jensen‟s alpha It is defined as the difference between the portfolio return and the CAPM benchmark return 

for the portfolio, hence given by: 

𝛼𝐽𝑒𝑛𝑠𝑒𝑛 = 𝑅𝑝 − [𝑅𝑓 + 𝛽𝑝(𝑅𝑀 − 𝑅𝑓)]                     (12) 
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6. Treynor ratio 
𝑇𝑅𝑝 =

𝐸(𝑅𝑝)−𝑅𝑓

𝛽𝑝
                                        (13) 

7. Roy ratio 
𝑅𝑅𝑝 =

𝐸(𝑅𝑝)−𝐸(𝑅𝑀)

𝜎(𝑅𝑝)
                                     (14) 

where 𝑅𝑀 is the expected return of the returns of the market index. 

8. Value-at-Risk (VaR) It is defined as the maximum loss that an investor can expect to incur given a specified time 

horizon and a confidence level 𝛼%. In this study, five different estimates for the VaR are 

calculated namely : 

 the parametric Gaussian 

 the equally-weighted historical VaR 

 the bootstrapping historical VaR 

 the Monte-Carlo simulation VaR  

 the parametric GHD VaR 

 

4. Results 

4.1 Preliminary Analyses 

The Shapiro-Wilks and Jarque-Bera normality tests reveal that the individual currency log-returns are not 

normally distributed except for USD/EUR, USD/JPY and USD/SEK currencies. The corresponding normality 

hypothesis being not rejected for at least one of the statistical tests. The observations are confirmed by the 

boxplots and the histogram graphs in Figure 1 and 2 respectively. The currencies which failed the normality tests 

display a distribution with extreme outliers, hence showing a skewed rather than a symmetric distribution shape. 

This observation hence supports our methodology to employ a skewed student-t log-return distribution within 

the strategies‟ framework. 

 

Figure 1. Return distribution comparison of the 15 currencies and the US Dollar Index (DTWEXB) 

 

Figure 2 also shows that all currency log returns display positive correlation with the US Dollar Index 

(DTWEXB). 
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Figure 2. Correlation analysis and return distribution comparison of the 15 currencies and the US Dollar Index 

(DTWEXB) 

 

4.2 Performance of Portfolio Allocation Strategies 

To generate a holistic assessment of our findings, recourse is made towards the averages of 8 months 

out-of-sample results obtained under each of the seven strategies deployed to compose the portfolio of 15 

currencies. The corresponding results are displayed in Table 2. 

 

Table 2. Averages of 8 months out-of-sample results obtained under each of the 7 strategies deployed 

AVERAGES 
Expected 

Return 

Std. 

Deviation 

Beta 

Coeff. 

Sharpe 

Ratio 

Jensen‟s 

alpha 

Treynor 

Ratio 

Roy 

Ratio 

Equal Allocation 0.0184% 2.0567% 1.2551 0.0090 0.0201% 0.0147% 0.9625% 

Single index (Short-Selling) 0.1707% 0.3394% -1.3145 0.5030 0.1691% -0.1300% 50.6841% 

Single index (No Short-Selling) 0.4174% 3.1093% 1.4161 0.1340 0.4192% 0.2951% 13.4452% 

Tangency (Gaussian) 0.2178% 0.3956% -0.0117 0.5503 0.2178% -19.9491% 55.3429% 

Tangency (Skewed Student-t) 0.3335% 0.6366% -0.0758 0.5235 0.3334% -4.4336% 52.5375% 

Target (0.5%) (Gaussian) 0.5000% 0.9908% -0.0120 0.5048 0.4999% 17.1299% 50.6316% 

Target (0.5%)  (Skewed Student-t) 0.5022% 1.0034% -0.1184 0.5008 0.5019% -4.2680% 50.2296% 

 

4.2.1 Expected Return  

Under expected return analysis, it transpires that targeted return strategy under student t-distribution unleashed 

the best return while equal allocation registered the worst performance. However, investors rarely cling to 

expected returns when gauging on the type of portfolio strategy to deplore. The underlying rationale is that 

expected return does not factor in risk but simply projects a desired rate of return. Alternatively stated, it is clear 

that imposing a certain level of return on the portfolio will automatically trigger such imposed return as to beat 

other strategies deployed. However, assessing the other side of the coin, such strategy does not factor in the level 

of risk embodied in that higher return relates to higher risk so much so that at any point in time, the portfolio can 

significantly underperform vis-à-vis an equally allocated portfolio. Such a finding also shows that 0.5% return 

per month constitutes a highly optimistic approach to return. Technically speaking, the superior return generated 

by skewed student-t distribution is due to the fact that financial data are usually non-normal in practice so that 

the use of normal distribution underperforms that of the skewed student-t distribution. This, despite the fact that 
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both fall under the purview of targeted return strategy. The worst performance noted in the case of equal 

allocation can be accounted for by the fact that the portfolio is passive to changes in returns and thus fails to ride 

through the different phases of the market trends in the portfolio of currencies.  

4.2.2 Standard Deviation  

Under pure risk analysis via standard deviations without factoring in any element of return, findings show that 

the single-index strategy with short sales generates the best result. Ironically, the worst performance was also 

triggered under the single-index strategy but under no short sales being incorporated. Such a result implies that 

the very existence of short sales in a portfolio enables to trigger lower risk in terms of standard deviation. Most 

importantly, the distinctive feature of short sales significantly alters the single-index strategy in the sense that 

short sales are introduced as a dynamic feature in our portfolio modelling exercise in view of harnessing 

maximum benefits from asset holdings. Indeed, as per our short sales formula, it can be noted that only 

currencies which trigger returns beyond a threshold level are retained in the portfolio. The equal allocation 

strategy did not also fare up well under standard deviation analysis. Interestingly, it is found that tangency 

portfolio, under both student t-distribution and Gaussian approach, emerged as the second and third best 

performers out of the various strategies under consideration. Such a result bodes well with the fact that under 

tangency analysis, the whole aim is geared towards triggering low risk and high return. Targeted return fares 

poorly on the back of no due consideration being attribute to the other side of return, that is risk.  

4.2.3 Beta 

Beta, deemed as the systematic component of any risk imbued in portfolio analysis, represents one of our key 

performance indicators. Only equal allocation and single-indexed model without short sales post positive returns. 

All other strategies unleash negative returns. Technically speaking, betas can be zero, above one or below 1, but 

this holds in equity markets. In the current context, betas can take different values. Equal allocation and 

single-indexed strategy without short sales, engender aggressive betas. This means that should the benchmark 

return generate a return of 10%, then, both strategies will outperform the benchmark return. All other strategies 

post negative betas, that is betas which go against the movement in the market. If the market triggers positive 

returns, the strategy will actually register negative returns. Conversely, in the case that the market exhibits 

negative returns, all the other strategies (excluding equal allocation and single-indexed strategy) will post 

positive returns with single-indexed model under short sales unleashing the best performance. Thus, short sales 

can have substantial impact on the performance of a portfolio. Such a state of affairs implies that short sales can 

be particularly beneficial during crisis times as witnessed during the US subprime crisis. It is important to note 

that all those strategies which register positive betas, basically pertain to passive strategies which do not take into 

account the evolution of the market index. For instance, the equal allocation strategy constitutes weights 

irrespective of changes in returns. In the same vein, the single-indexed strategy without short sales does not 

factor in the changes in market returns.  

4.2.4 Sharpe Ratio  

Sharpe ratio takes into account the risk component of a portfolio and is thereby a better analytical tool to gauge 

on the superiority of an adopted strategy. Out of the various strategies considered, it transpires that the tangency 

portfolio under Gaussian and student t-distribution came out as the first and second best performers respectively. 

Consequently, it can be conjectured that the tangency portfolios constitute interesting optimizing points for 

investors too. The equal allocation strategy manifested as the worst performer. This glaringly shows that equal 

allocation is not really helpful as it does not cater for the distinct types of asset distributions. Above all, in the 

current context, for the same asset type (currency), it is most likely that equal allocation is unlikely to unleash 

superior returns as it fails to ride through the distinct phases of market trends. 

4.2.5 Jensen‟s Alpha   

Technically speaking, the Jensen‟s performance is measured as the expected return of the portfolio minus the 

expected return of the portfolio à la CAPM approach. In this case, the whole term collapses into expected 

portfolio return (which is nothing else but our first metric of assessment used) minus the product of beta and that 

of the market return. Therefore, since market return is exogenous by nature and beta is computed based on the 

various strategies, expected portfolio return has a strong say when it comes to assessing the performance of 

portfolio under Jensen‟s alpha. This fact explains the reason behind the top positions noted in the case of targeted 

return strategies. Findings actually show exactly the same ranking of portfolios on the basis of the two 

performance indicators, expected return and Jensen‟s alpha. Besides, it is noteworthy to say that skewed 

student-t distribution generates the best performance within targeted return strategies.  
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4.2.6 Treynor Ratio 

Reflecting the risk-adjusted version of return based on systematic risk, the Treynor ratio constitutes a widely 

coveted tool among investment professionals. Findings show that the targeted return based on Gaussian 

distribution triggered the best performance while the tangency portfolio based on Gaussian returns unleashed the 

worst performance. Intriguingly, strong negative returns are noted in the case of the tangency portfolio based on 

Gaussian distribution. This could be feasibly attributed to the presence of outliers. 

4.2.7 Roy Ratio 

The Roy ratio shows that the tangency portfolio strategies generate the best performances with quite similar 

results to those observed under the Sharpe ratio analysis. Such a finding shows the feasible link between Sharpe 

ratio and Roy ratio.  

4.2.8 Value-at-Risk 

Perceived as one of the core metrics for risk management, Value-at-Risk is also given due consideration in our 

analysis. The five different VaR metrics are calculated based on a monthly horizon at a 5% significance level. 

To ease the comparative analysis on the basis of the VaR performance indicator, an average for the 5 VaRs is 

calculated for each strategy. The results are presented in Table 3. The findings show that the tangency portfolio 

under Gaussian distribution followed by its homologue under skewed student-t distribution emerge as the best 

performers on the back of lowest negative return. The worst performers consist of the single index model with 

and without short sales. Hence, the tangency approach for portfolio evaluation is found to be particularly helpful 

under VaR assessment. Ironically, in the case of imposed returns, Value-at-Risk does not fare better. It is 

noteworthy to point out that the performance analysis undertaken on the basis of the „average‟ value is in 

accordance with an analysis on the basis of the individual VaRs. 

 

Table 3. Performance of the strategies on the basis of the 5 value-at-risk measures 

 

Value-at-Risk (VaR) 

Parametric Gaussian 

(Eq-weight) 

Historical 

(Eq-weight) 

Historical 

(Boots-trapping) 

Monte-Carlo 

Simulation 

Parametric GHD 

(Eq-weight) 

AVERAGE 

VaR 

Equal Allocation -0.00301 -0.00241 -0.00395 -0.00259 -0.00234 -0.00286 

Single index (Short-Selling) -0.00526 -0.00571 -0.00947 -0.00561 -0.00596 -0.00640 

Single index (No Short-Selling) -0.01820 -0.00684 -0.00387 -0.01629 -0.01246 -0.01153 

Tangency (Gaussian) -0.00186 -0.00109 -0.00080 -0.00177 -0.00144 -0.00139 

Tangency (Skewed Student-t) -0.00301 -0.00170 -0.00142 -0.00284 -0.00231 -0.00225 

Target (0.5%) (Gaussian) -0.00437 -0.00229 -0.00170 -0.00414 -0.00331 -0.00316 

Target (0.5%) (Skewed Student-t) -0.00458 -0.00236 -0.00212 -0.00431 -0.00346 -0.00337 

 

5. Conclusions 

The study implements the passive “naïve” strategy and 6 active portfolio optimization strategies on a basket of 

15 currencies with US dollar as the base currency for the period spanning from 1999 to 2015. The comparative 

analysis is done on the basis of specific portfolio performance indicators. Overall, the results show that all the 

active allocation techniques outperformed the passive strategy. Furthermore, the study reveals that both tangency 

portfolios, with the Gaussian or the skewed student-t distribution perform best, particularly on the basis of 

highest Sharpe reward-to-variability ratio and lowest Value-at-Risk. The corresponding low magnitude beta 

coefficients means that they are conservative towards fluctuations in the exchange market. An extension to this 

study could be investigating the performance of tangency portfolios using alternative risk metrics to the standard 

deviation, such as the Value-at-Risk or the Expected Shortfall. 
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