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Abstract 

This paper has two objectives. First, we apply the symmetric and asymmetric VAR(1)-BEKK-MGARCH(1.1), 

VAR(1)-CCC-MGARCH(1,1), VAR(1)-DCC-MGARCH, VAR(1)-VARMA-CCC-MGARCH and VAR(1)- 

VARMA-DCC-MGARCH models to explore the return and volatility interactions among electricity and other 

fuel price markets(oil, natural gas, and coal). Second, this paper investigates the importance of not only volatility 

spillover among energy markets, but also the asymmetric effects of negative and positive shockson the 

conditional variance of modeling one energy market’s volatility upon the returns of future prices within and 

across other energy markets. The empirical results display that these models do capture the dynamic structure of 

the return interactions and volatility spillovers and exhibit statistical significance for own past mean and 

volatility short-and long-run persistence effects, while there are just a few cross-market effects for each model. 

Keywords: return and volatility spillover, electricity market, fuel market, energy market, MGARCH 

1. Introduction 

The uncertain context that currently affects the world economy and the energy sector, as well as the unstable 

political situation of some countries that are the most important producers of raw materials (for example, oil, 

natural gas, coal, and electricity), makes it even more necessary to develop quantitative tools and models that 

help to improve investment decisions and to adequately deal with such increasing uncertainty. The risks to the 

energy sector are mainly linked with the high volatility of natural gas, coal, oil, and electricity prices, which 

evolve over time and aredifficult to model. Electricity is traded nowdays in competitive markets, as occurs with 

other commodities, but it presents some characteristics that make it quite different, such as it cannot be stored, or 

cannot be used for just a small amount, or demand needs to be covered immediately. These peculiar features are 

responsible for its highly volatilite behavior and the difficulty in its price forecasting. Other energy prices (such 

as oil, coal, and gas) are also very volatilite and difficult to forecast and model, yet they influence electricity 

prices as well. 

Natural gas iswidely considered as a timely alternative source to oil, as stated by Munoz and Dickey (2009) in 

which natural gas is the main component of electricity generation and of electricity price. The inputs to 

electricity generation, such as oil and natural gas price changes, are directly or indirectly reflected in electricity 

price changes. These fuel prices may also affect electricity prices to the extent that they serve as substitutes on 

the demand side of the energy market. Mohanmadi (2009) stated that under market-based pricing, electricity 

prices should partly reflect fuel costs at least in the long run, but under cost-based pricing, they should reflect a 

mark-up over average or marginal costs. 

The relationship between electricity prices and fuel costs has been extensively studied in the previous literatures. 

For example, Emery and Liu (2002) analyzed the relationship between electricity and natural gas future prices on 

the New York Mercantile Exchange (NYMEX), California Oregon Border (COB), and Palo Verde (PU) and 

found that the two futures prices are cointegrated. Mjelde and Bessler (2009) examined the relationships among 

electricity prices and coal, natural gas, crude oil, and uranium prices. Empirical results show that peak electricity 

prices react to shocks in natural gas prices. Serletis and Shahmoradi (2006) investigated the causal relationships 

between natural gas and electricity price (and volatility) changes, with results indicatingbi-directional (linear and 

non-linear) causality between them. Mohammadi (2009) looked at the long-run and short-run dynamic relations 
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among electricity prices and coal, natural gas, and crude oil prices in the U.S. marketfrom 1960 to 2007. He 

found significant long-run relationship between electricity and coal prices and uni-directional short-run causality 

relation from coal and natural gas prices to electricity prices.Furio and Chulia (2012) used VECM and 

MGARCH methods to study the causal relationship between Spain’s electricity, oil, and natural gas prices. They 

found that oil and natural gas forward prices play a important role in electricity prices. Moreover, causation, both 

in price and volatility, runs from oil and natural gas forward markets to electricity forward markets at Spain. 

The important characteristic of electricity is that it cannot be stored at any significant scale. The lack of 

inventories together with the fact that power generation and consumption need to be coincident with each other 

means prices react quickly to supply and / or demand disruptions. As a consequence, spot prices for electricity 

are highly volatile. According to this context, forward markets play a major role to the extent they provide a tool 

for participants to manage the risk derived from the volatility of spot prices. Thereby, hedging helps prevent 

financial difficulties following adverse price movements, which can have a positive effect on the financial 

stability of utilities for traders that use forward markets to protect their spot positions. Another important 

function of forward markets lies in price discovery.Electricity spot prices cannot be used to make meaningful 

predictions about movements in the forward price. Instead, a more fitting theory for electricity markets is 

provided by the Unbiased Expectation Hypothesis, which mainly states that forward prices are unbiased 

predictors of future spot prices, specifically for these that will be observed during the maturity periods of the 

forward contracts. 

Explicitly modeling the volatility process of electricity prices for daily or higher frequencies has also gained 

much attention by researchers, bringing about a growing field in the recent empirical literature. Autoregressive 

integrated moving average (ARIMA) models with autoregressive conditional heteroskedastic (ARCH) (Engle, 

1982) or generalized autoregressive conditional heteroskedastic (GARCH) (Bollerslev, 1986) processes are the 

more widely used approaches for modeling the mean and volatility of electricity prices. The success of the 

GARCH model has subsequently led to a family of univariate and multivariate GARCH models that capture 

different behaviors of price returns, including time-varying volatility, persistence and clustering of volatility, and 

the asymmetric effects of positive and negative shocks of equal magnitude. Substantial research has been 

conducted on spillover effects in energy future markets. Lin and Tamvakis (2001) investigated volatility spillover 

effects between the New York Mercantile Exchange (NYMEX) and International Petroleum Exchange (IPE), 

with crude oil empirical results exhibitinga substantial spillover effect. Ewing et al. (2002) investigated the 

transmission of volatility between oil and natural gas markets using daily return data and found that changes in 

volatility in one market may have spillovers to the other market. Chang et al. (2009) looked at multivariate 

conditional volatility and conditional correlation models of the spot, forward, and future price returnsof three 

crude oil markets (Brent, WTI, and Dubai) and provided evidence of significant volatility spillovers 

andasymmetric effects in the conditional volatilities across returns for each market.Guesmi and Fattoum (2014) 

used DCC-AGARCH models to estimate dynamic conditional correlations between oil importing countries and 

oil exporting countries. They found that cross-market co-movement, as measured by conditional correlation 

coefficients, increases positively in response to significant aggregate demand. 

Linza et al. (2006) applied the constant conditional correlation (CCC) model of Bollerslev (1990) and the DCC 

model of Engle (2002) for West Texas Intermediate (WTI) oil forward and future returns.Manera et al.(2006) 

employed the CCC and the Vector Autoregressive Moving(VARMA-GARCH) models of Ling and McAleer 

(2003), the VARMA-Asymmetric GARCH (VARMA-AGARCH) model of McAleer et al. (2009), and the DCC 

model upon spot and forward returns in the Tapis crude oilmarket.Da Veiga et al. (2008) analyzed the 

multivariate Vector ARMA-GARCH (VARMA-GARCH) model of Ling and McAleer (2003) and the 

VARMA-AGARCH model of McAleer et al. (2009) and found that they are superior to the GARCH model of 

Bollerslev (1986) and the GJR model of Glosten et al. (1992). 

There are two objectives of this paper. First, we apply the VAR(1)-BEKK-MGARCH(1,1), 

VAR(1)-CCC-MGARCH(1,1), VAR(1)-DCC-MGARCH(1.1), VAR(1)-VARMA-CCC-MGARCH(1.1) and 

VAR(1)-VARMA-DCC-MGARCH(1.1) models to analyze the return and volatility interactions among 

electricity and other fuel price markets (oil, natural gas, and coal). These models cansimultaneously estimate 

returns and volatility cross-effects for the fuel price markets under consideration. The MGARCH approach 

further explains the origins, directions, and transmission intensity of the shocks between markets. All these 

models can capture the effects on the current conditional volatility of own innovations and lagged volatility as 

well as the cross-market shocks and the volatility transmission of other markets. As shown by Gallaghar and 

Twomey (1998), modeling price volatility spillover provides better insight into the dynamic price relationship 

between markets, but inferences about any inter-relationship depend importantly on how we model the cross 
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dynamics in the conditional volatilities of the markets. Second, this paper investigates the importance of not only 

volatility spillover among energy markets, but also the asymmetric effects of negative and positive shocks of 

equal magnitude on the conditional variance of modeling one energy market’s volatility upon the returns of 

future prices within and across other energy markets. We do this by using the VAR(1)-BEKK-AMGARCH(1.1), 

VAR(1)-CCC-AMGARCH(1.1), VAR(1)-DCC-AMGARCH(1.1), VARMA-CCC-AMGARCH(1.1), and 

VARMA-DCC-AMGARCH(1.1) models. 

The structure of the remainder of this paper is organized as follows. Section 2 discusses the multivariate 

GARCH model to be estimated. Section 3 describes the data and some preliminary analysis. Section 4 analyzes 

the empirical estimates from the empirical model. Concluding remarks are given in Section 5. 

2. Econometric Models 

The objective of this study is to investigate the price returns and volatility spillovers between electricity and fuel 

price markets. First proposed by Bollerslev et al. (1988), the MGARCH models are becoming standard in 

finance and energy economics. Combined with a Vector Autoregressive model for the mean equation, theyallow 

for rich dynamics in the variance-covariance structure of the series, making it possible to model spillovers in 

both the values and conditional variances of series under this study. 

This section presents the BEKK model of Engle and Kroner (1995), the CCC model of Bollerslev (1990), the 

VARMA-AGARCH model of McAleer et al. (2009), and the VARMA-GARCH model of Ling and McAleer 

(2003). These models assume constant conditional correlations and do not suffer from the problem of 

dimensionality, as compared with the VECH model (McAleer et al., 2008; Caporin & McAleer, 2009; Chang et 

al., 2013). The BEKK model is a more general specification, while the DCC model of Engle (2002) is less 

computationally demanding and enables time-varying correlation among series with only two additional 

parameters (Efimova, 2014). 

MGARCH is a valuable approach, because volatility spillovers are expected among coal, oil, natural gas, and 

electricity markets. Not only are they substitutes in consumption, but coal, natural gas, and oil are also used as 

inputs in electricity generation, and oil, natural gas, and coal are complements in production. The chosen 

specification allows us to model the transmission of price volatility transmission from one energy market to the 

others and to estimate the effects of volatility in any of the four energy markets on the price of each energy 

market. 

The VARMA method to modeling the conditional variances allows large shocks to one variable to affect the 

variance of other variables. It is a convenient specification that allows for volatility spillovers. This specification 

assumes symmetry in that positive shocks and negative shocks of equal magnitude have the same impact on 

conditional volatility. McAleer et al. (2009) extended the VARMA-GARCH model to include asymmetric 

GARCH effects, and this is referred to as the VARMA-AGARCH model. 

2.1 VAR(1) Conditional Mean Model 

For the empirical analysis of energy price mean return spillovers, this paper assumes that the conditional mean of 

price returns on the electricity and fuel markets can be described as a Vector Autoregressive (VAR) model. Under 

the four-variable model, we describe the VAR(1) model as: 

                 𝑟𝑒 = 𝛼𝑒 + 𝛽𝑒0𝑟𝑒,𝑡−1 + 𝛽𝑒1𝑟𝑜,𝑡−1 + 𝛽𝑒2𝑟
′
𝑠,𝑡−1 + 𝛽𝑒3𝑟𝑒,𝑡−1 + 𝜀𝑒𝑡                 (1) 

                              𝑟𝑜 = 𝛼𝑜 + 𝛽𝑜0𝑟𝑒,𝑡−1 + 𝛽𝑜1𝑟𝑜,𝑡−1 + 𝛽𝑜2𝑟
′
𝑠,𝑡−1 + 𝛽𝑜3𝑟𝑒,𝑡−1 + 𝜀𝑜𝑡                 (2) 

                              𝑟𝑠 = 𝛼𝑠 + 𝛽 𝑠0𝑟𝑒,𝑡−1 + 𝛽𝑠1𝑟𝑜,𝑡−1 + 𝛽𝑠2𝑟
′
𝑠,𝑡−1 + 𝛽𝑠3𝑟𝑒,𝑡−1 + 𝜀𝑠𝑡                  (3) 

                              𝑟𝑐 = 𝛼𝑐 + 𝛽 𝑐0𝑟𝑒,𝑡−1 + 𝛽𝑐1𝑟𝑜,𝑡−1 + 𝛽𝑐2𝑟′𝑠,𝑡−1 + 𝛽𝑐3𝑟𝑒,𝑡−1 + 𝜀𝑐𝑡                (4) 

Here,  𝑟𝑒, 𝑟𝑜, 𝑟𝑠, and 𝑟𝑐  are the logarithmic returns of the electricity, oil, natural gas, and coal price return series, 

respectively. The residuals ε𝑒𝑡 , ε𝑜𝑡 ,  ε𝑠𝑡 ,   and ε𝑐𝑡 are assumed to be serially uncorelated, but the covariance 

does not need to be zero. Here, the parameter coefficients (𝛽𝑒0,  𝛽𝑜1,  𝛽𝑠2,  and 𝛽𝑐3) provide the measure of own 

mean price return spillovers. However, the rest of the parameter coefficients measure the cross-mean spillover 

between electricity prices and fuel energy markets. 

2.2 MGARCH Conditional Volatility Spillover Models 

This section presents the BEKK model of Engle and Kroner (1995), the CCC model of Bollerslev (1990), the 

DCC model of Engle (2002), the VARMA-GARCH model of Ling and McAleer (2003), and the 

VARMA-AGARCH model of McAleer et al. (2009). This paper employs the MGARCH approach to examine 
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the price returns of inter-dependence and dynamic volatility spillover between electricity, oil, natural gas, and 

coal markets. 

The first model contains a variance equation, which is the dynamic conditional model of BEKK introduced by 

Engle and Kroner (1995). The BEKK model of MAGRCH(1.1) is given as: 

              𝐻𝑡 = 𝐶′𝐶 + 𝐴′𝐻𝑡−1𝐴 + 𝐵′
𝑡−1
 ′𝑡−1𝐵                                  (5) 

Here, 𝐶’𝐶, 𝐵’𝐵, and 𝐴’𝐴 are 4X4 matrices with 𝐶 being a triangular matrix to ensure positive definiteness of 

𝐻𝑡 . This specification allows positive volatilities 𝐻𝑡−1, as well as lagged values of  𝜂𝑡  𝜂′𝑡, to show up in 

estimating the current energy price volatilities. We assume matrix 𝐻𝑡  is symmetric. Thus, the model provides 

eight unique equations modeling the dynamic variances of electricity, oil, gas, and coal prices, as well as the 

covariance between them. 

According to this diagonal representation, the conditional variances are functions of their own lagged values and 

own lagged square return shocks, while the conditional covariances are functions of the lagged covariance and 

lagged cross-products of the corresponding returns shocks. The estimations of the BEKK models are carried out 

by the quasi-maximum likelihood (QML), where the conditional distribution of error term is assumed to follow a 

joint Gaussian log-likelihood function of a sample of T observations and 𝐾 = 4 as follows: 

𝑙𝑜𝑔 𝐿 = −
1

2
∑ ,𝑘 𝑙𝑜𝑔(2𝜋) + 𝑙𝑛|𝐻𝑡| + 𝜂𝑡−1 𝐻𝑡

−1𝜂𝑡-
𝑇
𝑡=1                 (6 )  

We present the CCC model of Bollerslev (1990) as: 

                                  𝑅𝑡=𝐸(𝑅𝑡|𝛹𝑡−1) + ℰ𝑡 , ℰ𝑡 = 𝐷𝑡𝑄𝑡 , 𝑉𝑎𝑟(ℇ𝑡|𝛹𝑡−1) = 𝐷𝑡Г𝐷𝑡                    (7) 

Here, we denote 𝑅𝑡=(𝑅1𝑡…𝑅𝑚𝑡 )’, 𝑄𝑡=(𝑄1𝑡….𝑄𝑚𝑡 )’as a series of independently and identically distributed 

random vectors. These return series decompose R into its predictable conditional mean and random component, 

where 𝛹𝑡  is the past information available at time t, 𝐷𝑡=diag(𝑕𝑡

1

2…𝑕𝑚𝑡

1

2), and m is the number of returns. 

AsГ = 𝐸(𝐷𝑡𝐷′𝑡|𝛹𝑡−1) = 𝐸(𝐷𝑡𝐷𝑡′), whereГ = 𝑒𝑖𝑗 = 𝑒𝑗𝑖 for𝑖,j=1…m, the constant conditional correlation matrix 

of the unconditional shocks, 𝑄𝑡 , is equal to the constant conditional covariance matrix of the conditional 

shocks, ℇ𝑡. The conditional covariance matrix is positive definite if and only if all the conditional variances are 

positive and Г is positive definite. Here, Г is equal to 𝐷𝑡
−1Ω𝐷𝑡

−1, which is assumed constant over time, and 

each conditional correlation coefficient is estimated from the standard residual of ℇ𝑡  (Chang et al., 2013). 

The CCC model of Bollerslev (1990) assumes that the conditional variance of price returns, 𝐻𝑖𝑡 , 𝑖 = 1… .𝑚, 

follows a univariate GARCH process defined as: 

𝐻𝑖𝑡 = 𝑍𝑖 + ∑ 𝐴𝑖𝑗
𝑟
𝑖=1 ∑ ,𝑡−𝑗

2
𝑖 + ∑ 𝐵𝑖𝑗

3
𝑗=1 𝑕𝑖 ,𝑡−𝑗                        (8) 

Here, 𝐴𝑖𝑗 represents the ARCH effect and the short-run persistence of shocks to return𝑖. However, 𝐵𝑖𝑗 shows 

the GARCH effect, and 𝐴𝑖𝑗 plus 𝐵𝑖𝑗 denotes the long-run persistence of shocks to returns. In the DCC model, 

which assumes a time-dependent conditional correlation matrix 𝑅𝑡 = (𝑒𝑖𝑗,𝑡), 𝑖, 𝑗 = 1… .4 , the conditional 

variance-covariance matrix Ht is defined as: 

𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡                                         (9) 

Here, 𝐷𝑡 = 𝑑𝑖𝑎𝑔{√𝑕𝑖𝑡} is a 4x4 diagonal matrix of time-varying standard deviations from univariate GARCH 

models, and 𝑅t = *𝑒𝑖𝑗+𝑡 , 𝑖, 𝑗=1…4, which is a correlation matrix containing conditional correlation coefficients. 

We define 𝐻𝑖𝑡  as a GARCH(1,1) specification as follows: 

𝑕𝑖𝑡 = 𝑤𝑖 + ∑ 𝛼𝑖𝑡
𝑛
𝑗=1 ∑ +2

𝑖𝑗−𝑛 ∑ 𝐵𝑖𝑙
𝑘
𝑡=1 𝑕𝑖𝑡−𝑙and 𝑅𝑡 = 𝑑𝑖𝑎𝑔(√𝑞𝑖𝑗,𝑡)𝑄𝑡𝑑𝑖𝑎𝑔(√𝑞𝑖𝑗,𝑡)        (10) 

We now give the 4x4 symmetric positive definite matrix 𝑄𝑡 = (𝑞𝑖𝑗)𝑡,𝑖,𝑗
= 1…4 by: 
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    𝑄𝑡 = (1 − 𝛼 − 𝛽)𝑄̅ + 𝛼ℰ𝑡−1ℰ′𝑡−1 + 𝛽𝑄𝑡−1                                                          (11) 

Here, 𝑄𝑡 is the 4x4 conditional covariance matrix 𝑄 obtained from the first stage of estimation and 𝑄𝑡
∗ is a 

diagonal matrix containing the square root of the diagonal elements of 𝑄𝑡. The DCC-MGARCH process is 

estimated by using the maximum likelihood method in which the log-likelihood can be expressed as: 

𝐿 =
−1

2
∑ (𝑛 𝑙𝑜𝑔(2𝜋) + 2 𝑙𝑜𝑔|𝐷𝑡| + 𝑙𝑜𝑔|𝑅𝑡| + ℇ′𝑡𝑅𝑡

−1ℰ𝑡)
𝑇
𝑡=1                   (12) 

The estimation of DCC is broken into two stages, simplifying the estimation of a time-varying correlation matrix. 

In the first stage, univariate volatility parameters are estimated using GARCH models for each of the variables. 

In the second stage, the standardized residuals from the first stage are used as inputs to estimate a time-varying 

correlation matrix. The DCC model allows asymmetry, meaning that the weights are different for positive and 

negative changes to a series. The asymmetries are in variances, not in correlations (Cappielo et al., 2003). 

This study also utilizes the DCC model form of the MEGARCH model to analyze the electricity market and fuel 

market interdependence and also the volatility transmission between electricity, gas, oil, and coal markets. The 

asymmetric GARCH model captures the asymmetric volatility spillovers and assumes that the correlations 

between shocks will be constant over time. Here, this study allows these correlations to be time-varying. 

Following Sarva et al. (2005), this paper sets up the VAR(1)-DCC-MGARCH(1,1) model as: 

𝑅𝑖𝑡 = 𝛽𝑖𝑜 + ∑ 𝛽𝑖𝑗
𝑛
𝑗=1 𝑅𝑗,𝑡−1 + 𝑈𝑖𝑡                                                                  (13) 

𝜍𝑖.𝑡
2 = 𝑒𝑥𝑝[𝛼𝑖𝑜 + ∑ 𝛼𝑖𝑗

𝑛
𝑗=1 𝑓𝑗(𝑍𝑗,𝑡−1) + 𝛿𝑖 𝑙𝑛(𝜍𝑖,𝑡−1

2 )]                         (14) 

𝑓𝑗(𝑍𝑗,𝑡−1) = (|𝑍𝑗,𝑡−1| − 𝐸(|𝑍𝑗,𝑡−1|) + 𝑟𝑗𝑍𝑗,𝑡−1)                          (15) 

According to the mean equation, the dynamic return relationships among the energy markets are captured by 

using a VAR(1) model, E[𝑅𝑡|𝑈𝑡−1], where 𝑈𝑡−1 is the past information available at time 𝑡 − 1. Here, Rit is a 

function of own past returns and the cross-market price return, 𝑅𝑗,𝑡−1. The parameter coefficient of 𝐵𝑖𝑗 captures 

the return spillover relationships in different price markets, for 𝑖 ≠ 𝑗. The conditional variance in each market is 

an exponential function of past standardized innovations (𝑍𝑗,𝑡−1 = 𝜀𝑗,𝑡−1|𝑏𝑗,𝑡−1). Persistence in volatility is 

measured by 𝛿𝑖. Suppose that 𝛿𝑖 = 1, and then the unconditional variance does not exist and the conditional 

variance follows an I(1) process. The coefficients of 𝛼𝑖𝑗 measure the spillover effects, while r𝑗 < 0 implies 

asymmetry. The asymmetric influence of innovation on the conditional variance is captured by the 

term (∑ 𝛼𝑖𝑗
𝑛
𝑗=1 𝑓𝑗(𝑍𝑗,𝑡−1) ). Here, a significant positive 𝑖𝑗  together with a negative(positive) r𝑗  shows that 

negative shocks in market 𝑗 have a greater impact on the volatility of market 𝑖 than positive(negative) shocks. 

The ratio of |-1+r𝑗 |/|(1+r𝑗)| measures the relative importance of the asymmetric (or leverage) effect. 

The notations (|𝑍𝑗,𝑡 |-E(|𝑍𝑗,𝑡−1|) measure the size effects, which show that a positive α𝑖𝑗 implies that the impact 

of  Z𝑗,𝑡 on X,σ𝑖,𝑡
2  will be positive(negative) if the magnitude of Z𝑗,𝑡 is greater than its expected value 𝐸(|𝑍𝑗,𝑡|). 

The distrubance error term of the mean equation is assumed to be conditionally multivariate normal with zero 

mean, and conditional covariance matrix Ht is given as: 

𝜀𝑡|𝛹𝑡−1 ∼ 𝑁(0, 𝐻𝑡), 𝐻𝑡 = 𝐷𝑡𝑆𝑡𝐷𝑡,𝜍𝑖𝑗,𝑡 = q
𝑖𝑗,𝑡

𝜍𝑖,𝑡𝜍𝑗𝑡                                                               (16) 

In the above equation, D𝑡 is a nxn diagonal matrix with the time-varying standard deviations of equation on the 

diagonal and S𝑡 is a time-varying symmetric correlation matrix as: 

Dt =

[
 
 
 
𝜍1,t 0… 0

0 b2,t 0

⋮ ⋱ ⋮
0 0 bn,t]

 
 
 
St =

[
 
 
 
S1,1,t S1,2,t … S1,n,t

S2,1,t S2,2,t S2,n,t

⋮ ⋮ ⋮
Sn,1,t Sn,2,t Sn,n,t]

 
 
 
                                                     (17) 

The DCC model is a specification of the dynamic correlation matrix 𝑆𝑡. The dynamic correlations are captured 

in this model by the asymmetric general diagonal DCC equation: 
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𝑄𝑡 = .𝑄 − 𝐴′𝑄𝐴 − 𝐵′𝑄𝐵 − 𝐶′𝑁𝐶/ + 𝐴′𝑍𝑡−1,𝑍𝑡−1𝐴 + 𝐵′𝑄𝑡−1𝐵 + 𝐶′𝜂𝑡−1𝜂
𝑡′−1𝐶               (18) 

Here, 𝑄  and  𝑁  are the unconditional correlation matrices of  𝑍𝑡  and 𝜂𝑡 , with 𝜂𝑖,𝑡 = 𝐼[𝑍𝑖,𝑡<0]𝑍𝑖,𝑡 ,  where 

𝐼[𝑍𝑖,𝑡<0] is the indicator function that takes the value unity when 𝑍𝑖,𝑡<0 (Engle, 2002; Capiello et al., 2003). The 

matrices of A, B, and C are restricted to being diagonal for estimation purposes. If (𝑄 − 𝐴’𝑄𝐴 − 𝐵’𝑄𝐵 − 𝐶’𝑁𝐶) 

is positive definite, then 𝑄𝑡 will be positive definite with probability one. Because 𝑄𝑡 does not have unit 

diagonal elements, then we scale it to get a correlation. Matrices𝑆𝑡are given as 𝑆𝑡 = 𝑄𝑡∗ − 𝑄𝑡𝑄𝑡∗−1. However, 

the MEGARCH model allows us to test both the volatility spillovers and asymmetries, but it is not useful to 

apply this model to the conditional correlations, because it would unduly restrict the conditional correlations to 

be always positive and because it has to many parameters. The DCC model does not have these problems, but 

does allow for the possibility of asymmetric effects. 

The model can be estimated by maximum likelihood, in which the log-likelihood function can be shown as: 

𝐿(𝑄) = −
1

2
∑ (𝑘 𝑙𝑜𝑔(2𝜋)𝑇

𝑡=1 + 𝑙𝑜𝑔(|𝐻𝑡|) + 𝜀′
𝑡𝐻𝑡

−1𝜀𝑡                    (19) 

= −
1

2
∑ (𝑘 𝑙𝑜𝑔(2𝜋)𝑇

𝑡=1 + 𝑙𝑜𝑔(|𝐷𝑡𝑆𝑡𝐷𝑡|) + 𝜀′
𝑡𝐷𝑡

−1𝑆𝑡
−1𝐷𝑡

−1𝜀𝑡)                                    (20) 

Here, 𝑘 is the number of equations, 𝑇 is the number of observation, 𝑄 is the parameter vector to be estimated, 

𝜀𝑡 is the vector of innovations at time t, and𝐻𝑡  is the time-varying conditional variance-covariance matrix with 

diagonal elements and cross-diagonal elements. Although Engle (2002) and Cappiello et al. (2003) used the 

two-step approach, Wong and Vlaar (2003) showed this can lead to a relatively large loss of efficiency. This 

study employs the VAR(1)-MGARCH model by including the lagged returns from each market in the mean 

equation in order to capture the price spillover effects from one market to the other markets. Similarly, the 

variance equation captures the volatility spillover effects and also the asymmetry effects. We utilize the one-step 

estimation procedure, which is more efficient than the two-step approach. 

2.3 MGARCH-Asymmetric Model 

This study uses the daily price returns of the energy markets, which are computed as first differences of their 

natural logarithms. As the goal of this study is to consider the interdependence across the four energy markets, 

this study use the MGARCH model in the style of the BEKK model proposed by Engle and Kroner (1995). We 

first consider four-variate sequences of data *𝑟𝑡+𝑡=1 
𝑛 consisting of electricity price changes and the other energy 

price market returns. The statistical model is given by: 

𝛾𝑖,𝑡 = 𝛼𝑖𝑡 + 𝛽𝑖𝑡 ∑ 𝛾𝑖,𝑡−1
4
𝑖=1 + 𝜀𝑖𝑡 , 𝜀𝑖𝑡 = √𝐻𝑡𝑉𝑡                          (21) 

Here, 𝑟𝑖,𝑡 is the 4X1 vectors of the four daily energy price returns at time t, 𝜀𝑡 is a 4X1 vector of residuals, 𝑉𝑡is 

a 4X1 vector of standardized (i,i.d) residuals, and 𝐻𝑡 is the 4X4 conditional variance-covariance matrix. The 4X1 

vector, 𝛼𝑖𝑡, represents a constant.  

Bollerslev et al. (1988) proposed that 𝐻𝑡  is a linear function of the lagged squre errors, the cross products of 

errors, and the lagged values of elements of 𝐻𝑡  as follows: 

𝑉𝑒𝑐𝑕(𝐻𝑡) = 𝑉𝑒𝑐𝑕(𝐶) + ∑ 𝐴𝑖
𝑛
𝑖=1 𝑉𝑒𝑐𝑕(𝜀𝑡−𝑖𝜀

′
𝑡−𝑖) + ∑ 𝐺𝑖𝑉𝑒𝑐𝑕(𝐻𝑡−𝑖)

𝑇
𝑖=1             (22) 

Here, Vech is the operator that stacks the lower triangular portion of a symmetric matrix into a vector. The 

problems with this are that the number of parameters to be estimated is large and the restrictions on the 

parameters are to ensure that the conditional variance matrix is positive definite. Engle and Kroner (1995) 

proposed the BEKK model to overcome the above problem as: 



www.ccsenet.org/ijef International Journal of Economics and Finance Vol. 8, No. 7; 2016 

61 

                                                         𝐻𝑡 = 𝐺’𝐺 + 𝐴′𝑈′
𝑡−1𝐴 + 𝐵′𝐻𝑡−1𝐵                                                                   (23) 

The BEKK model provides cross-market effects in the variance-covariance equation and guarantees positive 

semi-definiteness by working with quadratic forms. The conditional variance-covariance matrix is specified 

according to the asymmetric BEKK model (ABEKK) of Kroner and Ng (1998). The ABEKK model allows the 

asymmetric response of volatility (i.e., price volatility tends to rise more in response to negative shocks (bad 

news) than to positive shocks (good news)) in the variance and co-variance: 

𝐻𝑡 = 𝐺′𝐺 + 𝐴′u ′𝑡−1u
𝑡−1

𝐴 + 𝐵′𝐻𝑡−1𝐵 + 𝐷′𝜌′𝑡−1𝜌𝐷                   (24) 

Here, 𝜌𝑡 is defined as 𝑈𝑡 if 𝑈𝑡  is negative and zero otherwise. The last part of the right-hand side for 𝐻𝑡 

captures the asymmetric property of the time-varying variance-covariance. 𝐺 is a 4X4 lower triangular matrix of 

constants, while 𝐴, 𝐵, and D are 4X4 parameter matrices. The diagonal parametric in matrices𝐴 and 𝐵 

measures the effects of own past innovations and past volatility of market𝑖 on its conditional variance, while the 

diagonal parameters in matrix 𝐷 measure the response of market i to its own past negative innovations. The 

off-diagonal parameters in matrices 𝐴 and 𝐵, measure the cross-market effects of stock and volatility, also 

known as volatility spillover, while the off-diagonal parameters measure the response of market𝑖 to negative 

shocks, i.e., bad news, from the other markets. This is called the cross-market asymmetric response. 

The BEKK models can be estimated efficiently and consistently using the full information maximum likelihood 

method. The log likelihood function of the joint distribution is the sum of all the log likelihood functions of the 

conditional distribution. The log likelihood function is given as: 

𝐿𝑡 =
𝑛

2
𝑙𝑛(2𝜋) −

1

2
𝑙𝑛|𝐻𝑡| −

1

2
𝑢𝑡𝐻𝑡

−1𝑢𝑡                        (25) 

This study takes the VARMA-GARCH model of Ling and McAleer (2003) and the VARMA-AGARCH model 

of McAleer et al. (2009) to set up the volatility dynamics and conditional correlations between electricity and 

fuel energy prices. The VARMA-AGARCH model is an extension of the VARMA-GARCH model of Ling and 

McAleer (2003) and assumes the symmetry in the effects of positive and negative shocks of equal magnitude on 

the conditional volatility. The VARMA-GARCH approach to modeling the conditional variance allows large 

shocks to one variable to affect the variances of the other variables. The VARMA-GARCH(1,1) model used to 

model the time-varying variances and covariancesis: 

R𝑖𝑡 = E(R𝑖𝑡|X𝑡−1) + u𝑡                                                                         (26) 

∅(𝐿)(𝑅𝑡−𝑢) = 𝛹(𝐿)𝑢𝑡                                                                                (27) 

u
𝑡
= 𝐷𝑡𝜂𝑡                                         (28) 

𝐻𝑡 = 𝐴𝑡 + ∑ 𝐵𝑖
𝑟
𝑖=1 𝑢𝑡−𝑖⃗⃗ ⃗⃗ ⃗⃗  ⃗ + ∑ 𝐶𝑗

𝑠
𝑗=1 𝐻𝑡−𝑗                               (29) 

Here, R𝑖𝑡  is the return for variable series 𝑖 at time t, X𝑡−1  is the past information available at time t, 

∅𝐿 = 𝑙𝑚 − ∅1𝑙 … . . −∅𝑃𝐿𝑃and 𝛹(𝐿) = 𝑙𝑚 − 𝛹1𝐿 … . . −𝛹𝑞𝐿
𝑞 are polynomials in the lag operator, H𝑡 =

(h1𝑡 … . . h𝑚𝑡), 𝜂𝑡 = (𝜂1𝑡 − 𝜂𝑚𝑡)′, 𝐴𝑡 = (𝑤1𝑡 − 𝑤𝑚𝑡)
′, 𝑢𝑡 = (𝑢𝑖𝑡

2 − 𝑢𝑚𝑡
2 )′𝐷𝑡  is diag (h𝑡

1

2
), 𝑚 is the returns to 

be analyzed, 𝑡 = 1…𝑚, 𝐵𝑖  and C𝑗 are mxm matrices, and α𝑖𝑗 and β𝑖𝑗  for 𝑖, 𝑗=1…m are 𝑚𝑋𝑚 matrices and 

represent the ARCH and GARCH effects, respectively. The spillover effects of the conditional variance between 

electricity price future returns and fuel energy price future returns are given in conditional volatility for each 

market in the portfolio. If 𝑚 = 1, then the VARMA-GARCH model reduces to the univariate GARCH model of 

Bollerslev (1986). 

McAleer et al. (2008) proposed the VARMA-AGARCH model to accommodate asymmetric impacts of the 

positive and negative shocks and to capture asymmetric spillover effects from each of the other returns. The 

VARMA-AGARCH model specification of the conditional variance is: 

H𝑡 = A𝑡 + ∑ 𝐵𝑖
𝑟
𝑖=1 𝑢𝑡−𝑖 + ∑ 𝐷𝑖

𝑟
𝑖=1 (𝐼𝑡−𝑖)𝑢𝑡−𝑖⃗⃗ ⃗⃗ ⃗⃗  ⃗ + ∑ 𝐶𝑗

𝑠
𝑗=1 𝐻𝑡−𝑗                  (30) 

Here, u𝑖𝑡 = ηh
𝑖𝑡

1
2⁄  for all 𝑖and 𝑡, 𝐷𝑖  are mxm matrices, and D𝑖(I𝑡−𝑖) is an indicator variable, such that: 
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I = (1,   𝑢𝑖,𝑡≤0
0,   𝑢𝑖𝑡>0

                                         (31) 

If 𝐷𝑖=0 for all 𝑖, then VARMA-AGARCH reduces to VARMA-GARCH. Furthermore, if 𝐷𝑖 = 0, with 𝐵𝑖  and 

𝐶𝑗 being diagonal matrices for all 𝑖, and𝑗, then VARMA-AGARCH reduces to the CCC model of Bollerslev 

(1990). The CCC model does not have asymmetric effects of positive and negative shocks on conditional 

volatility and volatility spillover effects across different financial assets. 

The parameters can be estimated by maximum likelihood by using a joint normal density as: 

𝑄̂ = 𝑎𝑟𝑔𝑚𝑖𝑛
1

2
∑ (𝑙𝑜𝑔|𝑄𝑡| + 𝑢𝑡

1 𝑄𝑡
−1𝑢𝑡)                                               

𝑛
𝑡=1    (32) 

Here, 𝑄̂ is the vector of parameters to be estimated by the conditional log-likelihood function. Moreover, |𝑄𝑡 | is 

the determinant of  𝑄𝑡, the conditional covariance matrix, when 𝜂𝑡 does not follow a joint multivariate normal 

distribution. The Quasi-MLE (QMLE) model presents the appropriate estimators (Chang et al., 2010, 2011, 

2013). 

3. Data and Descriptive Statistics 

For our empirical application, the volatility of daily prices is selected, because the MGARCH models are mostly 

appropriate for daily frequency. The dataset covers 2660 daily observations from March 22, 2004 to May 29, 

2014, selected because volatility clustering was highly observed during this period. The variable series under 

study are the following. 

 Electricity price, NYMEX, Unit:US$/TE, Code No:NTGCS00. 

 Crude oil, NYMEX, Unit:US$/BL, Code No:NCLCS00. 

 Natural Gas, NYMEX, Unit:US$/TE, Code No:NNGCS00. 

 Coal, NYMEX, Unit:US$/TE, Code No: NOLCS00. 

 

 
Figure 1. Plot of the energy price variables 

 

We respectively define elef, gasf, oilf, and coalf as the natural logarithms of the future energy prices of electricity, 

natural gas, oil, and coal. Figure 1 plots the electricity, natural gas, oil, and coal prices. According to Figure 1, 

we find that electricity futures prices and oil prices are more volatile than coal futures prices. All three energy 

prices follow an increasing trend from 2004 to 2007, reach a peak at the beginning of 2008, and then sharply 

decrease at the end of 2008. The oil price is gradually increasing until 2014, while the coal price is volatile until 

2014. Finally, the electricity price is volatile over the whole sample period, with a spike at the beginning of 2014. 

We estimate the daily price returns by taking the difference in the logarithms of two consecutive prices. Table 1 
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reports the descriptive statistics for all the daily future price return series. The data suggest that average daily 

returns range from 0.000135 (for coal) to 0.000505 (for electricity). Unconditional volatility as measured by the 

standard deviation ranges from 0.011992 (for gas) to 0.039838 (for oil). The skewness value is both positive and 

negative. Positively skewed returns are found in coal (1.062772) and gas (0.541167) energy prices, while 

negatively skewed returns are found in oil (-1.287436) and electricity (-0.177480) price returns. The kurtosis 

coefficients are found to be over three for all the return series. These estimates indicate that the probability 

distributions of the energy price returns are skewed and leptokurtic. We also apply the Ljung-Box Q statistics 

returns as well as square returns, which show significant serial autocorrelation in all of the return series. The 

statistically significant value of the ARCH-LM test indicates that the ARCH effect exists and thusthe estimation 

of a GARCH model is appropriate. 

 

Table 1. Descriptive statistics for daily price 

 
OILF 

 
ELEF 

 
COALF 

 
GASF 

Mean 0.000271 
 

0.000505 
 

0.000135 
 

0.000202 

Median 0.000000 
 

0.000270 
 

0.000000 
 

0.000000 

Maximum 0.466792 
 

0.089454 
 

0.267712 
 

0.080253 

Minimum -0.456391 
 

-0.092572 
 

-0.119312 
 

-0.046201 

Std.Dev. 0.039838 
 

0.017617 
 

0.031292 
 

0.011992 

Skewness -1.287436 
 

-0.17748 
 

1.062772 
 

0.541167 

Kurtosis 49.14148 
 

5.469736 
 

9.427199 
 

7.15335 

Jarque-Bera 415.981*** 
 

510.592*** 
 

16.920*** 
 

136.836*** 

L_BQ(12) 27.101*** 
 

26.644*** 
 

130.100*** 
 

55.939*** 

L_BQ2(12) 287.205*** 
 

459.160*** 
 

843.490*** 
 

163.610*** 

ARCH_LM 132.963*** 
 

179.505*** 
 

114.869*** 
 

6.825*** 

Note. ***,** and * indicated that significant at 1%,5%, and 10%, respectively. 

 

A stationary process of the return series is tested using the ADF and PP unit root tests. Table 2 shows the results 

of these tests. Table 2 provides tests of unit roots in the level and first difference of individual energy prices. The 

results fail to reject the null hypothesis of unit roots in the level, but do reject the hypothesis in first difference. 

Therefore, we conclude that all of the energy prices are first difference (I(1)) stationary. 

 

Table 2. ADF and PP of unit roots 

  
ADF 

 
PP 

variables 
 

level 
 

lst difference 
 

level 
 

lst difference 

LOILF 
 

-0.699 
 

-53.551*** 
 

-0.779 
 

-53.692*** 

LELEF 
 

-0.110 
 

-51.771*** 
 

-0.050 
 

-42.925*** 

LCOALF 
 

-0.050 
 

-42.925*** 
 

-0.046 
 

-43.250*** 

LGASF 
 

-0.170 
 

-25.460*** 
 

-0.194 
 

-41.337*** 

Note. ***,** and * indicated that significant at 1%,5%, and 10%, respectively. 

 

4. Empirical Results 

This section presents the empirical results obtained from estimating multivarite GARCH models. Five 

multivariate GARCH models (VAR(1)-BEKK-MGARCH, VAR(1)-CCC-MGARCH, VAR(1)-DCC-MGARCH, 

VAR(1)-VARMA-CCC-MGRCH, and VAR(1)-VARMA-DCC-MGARCH are estimatedto analyze the mean and 

volatility spillover among electricity price returns and other energy price markets. We also estimate five 

multivariate asymmetric GARCH models (VAR(1)-BEKK-AMGARCH, VAR(1)-CCC-AMGARCH, 

VAR(1)-DCC-AMGARCH, VAR(1)-VARMA-CCC-AMGARCH, and VAR(1)-VARMA-DCC-AMGARCH) to 

set up the volatilities and conditional correlations between the electricity price, oil price, natural gas price, and 

coal price markets. 

4.1 Price and Volatility Spillovers-Symmetric Multivarite GARCH Models 

Table 3 and 4 presents the estimation results for five symmetric-MGARCH models. In terms of the mean 

equations, there are positive and negative statistically significant own mean spillover effects for electricity and 
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gas (𝐵11, 𝐵33, and 𝐵44). For electricity, gas, and coal, these price markets depend on their own past returns. 

This finding shows some evidence of short-term predictability for energy price changes over time. For the 

electricity market mean equation, there is a statistically significant negative coefficient of natural gas price across 

mean spillover effect to the electricity price market, telling us that an increase of lag one period in natural gas 

price decrease electricity prices. However, the positively statistical significant coefficient of B14 indicates that 

the increasing price of coal also decreases the cost of electricity and then increases the price of electricity. For 

the coal equation, the estimated coefficient (B34) is positive and statistically significant for all models, 

exhibiting that the increasing price of coal will increase the price of natural gas. For the oil equation, there is no 

coefficients are statistically significant at own lag and cross all other price markets. Therefore, there is no 

evidence for persistence in returns. In general, we find that there are significant price spillover effects from gas 

and coal prices to electricity prices and for coal prices to gas prices, except for the CCC model. The own lag 

period price spillover effects are found for electricity, gas and coal prices, but not for oil prices. 

 

Table 3. Multivariate symmetric GARCH parameter estimates(ELEF-OILF-GASF-COALF) 

  
BEKK 

 
CCC 

 
DCC 

 
VARMA-CCC 

 
VARMA-DCC 

variable  
 

coeff. 
 

t-stat. 
 

coeff. 
 

t-stat. 
 

coeff. 
 

t-stat. 
 

coeff. 
 

t-stat. 
 

coeff. 
 

t-stat. 

Mean 
                    

B10 
 

0.001 
 

0.997 
 

-0.000 
 

-0.252 
 

-0.000 
 

-0.328 
 

0.001*** 
 

26.124 
 

0.001*** 
 

7.367 

B11 
 

0.369*** 
 

10.157 
 

0.282*** 
 

7.957 
 

0.286*** 
 

7.641 
 

0.298*** 
 

92.008 
 

0.222*** 
 

150.594 

B12 
 

-0.011 
 

-0.381 
 

-0.050 
 

-1.589 
 

-0.048 
 

-1.425 
 

-0.029*** 
 

95.812 
 

-0.015 
 

-1.117 

B13 
 

-0.215*** 
 

-8.185 
 

-0.294** 
 

-13.330 
 

-0.289*** 
 

-13.095 
 

-0.219*** 
 

-93.541 
 

-0.089*** 
 

-15.639 

B14 
 

0.126** 
 

2.487 
 

0.089* 
 

1.686 
 

0.088 
 

1.486 
 

-0.060*** 
 

-26.845 
 

0.035** 
 

2.211 

B20 
 

0.000 
 

0.771 
 

0.000 
 

1.154 
 

0.000 
 

1.118 
 

0.001*** 
 

124.189 
 

0.000 
 

1.383 

B21 
 

-0.007 
 

-0.643 
 

-0.000 
 

-0.483 
 

-0.000 
 

-0.541 
 

-0.013*** 
 

-52.288 
 

-0.002 
 

-0.220 

B22 
 

0.003 
 

0.136 
 

-0.000 
 

-0.242 
 

-0.000 
 

-0.325 
 

-0.008*** 
 

-76.717 
 

0.006 
 

0.282 

B23 
 

0.002 
 

0.160 
 

0.014 
 

0.923 
 

0.015 
 

1.024 
 

0.036*** 
 

74.657 
 

0.018 
 

1.468 

B24 
 

0.001 
 

0.018 
 

0.013 
 

0.378 
 

0.000 
 

0.166 
 

0.044*** 
 

50.514 
 

0.004 
 

0.140 

B30 
 

0.000 
 

0.238 
 

-0.000 
 

-0.296 
 

-0.000 
 

-0.324 
 

-0.000*** 
 

-910.471 
 

0.000* 
 

1.905 

B31 
 

-0.010 
 

-0.491 
 

0.012 
 

0.573 
 

0.000 
 

0.089 
 

0.022*** 
 

23.893 
 

-0.029*** 
 

-3.492 

B32 
 

0.033 
 

0.924 
 

-0.000 
 

-0.169 
 

0.000 
 

-0.045 
 

-0.000*** 
 

-26.426 
 

-0.059* 
 

-3.173 

B33 
 

-0.086*** 
 

-3.406 
 

-0.160*** 
 

-5.313 
 

-0.137*** 
 

-4.430 
 

-0.139*** 
 

-36.593 
 

-0.077*** 
 

-5.012 

B34 
 

0.197*** 
 

3.474 
 

0.209*** 
 

3.534 
 

0.200*** 
 

3.293 
 

0.146*** 
 

52.564 
 

0.195*** 
 

4.940 

B40 
 

0.000 
 

0.725 
 

0.000 
 

0.520 
 

0.000 
 

0.346 
 

0.000*** 
 

553.216 
 

0.000 
 

1.465 

B41 
 

0.010 
 

1.177 
 

-0.000 
 

0.589 
 

0.000 
 

0.624 
 

-0.005*** 
 

-10.983 
 

0.000 
 

0.296 

B42 
 

-0.024 
 

0.016 
 

-0.029* 
 

-1.699 
 

-0.029* 
 

-1.773 
 

-0.028*** 
 

-17.089 
 

-0.022 
 

-1.829 

B43 
 

-0.010 
 

0.009 
 

-0.014 
 

-1.4197 
 

-0.014 
 

-1.352 
 

-0.007*** 
 

-28.276 
 

-0.011 
 

-1.049 

B44 
 

0.243*** 
 

10.187 
 

0.271*** 
 

0.031 
 

0.268*** 
 

8.208 
 

0.279*** 
 

22.608 
 

0.273*** 
 

10.892 

Variance 
                    

C(1,1) 
 

0.013*** 
 

16.303 
 

0.000*** 
 

8.231 
 

0.000 
 

0.346 
 

0.000*** 
 

145.043 
 

-0.000*** 
 

-19.800 

C(2,1) 
 

-0.000 
 

-0.168 
                

C(2,2) 
 

0.001*** 
 

3.913 
 

0.000** 
 

2.196 
 

0.000*** 
 

7.875 
 

0.000*** 
 

35.210 
 

0.000*** 
 

78.006 

C(3,1) 
 

0.003*** 
 

3.561 
                

C(3,2) 
 

0.002 
 

1.679 
                

C(3,3) 
 

0.000 
 

0.001 
 

0.000*** 
 

3.666 
 

0.000*** 
 

3.696 
 

-0.000*** 
 

-106.38 
 

0.001*** 
 

53.568 

C(4,1) 
 

-0.000 
 

-0.007 
                

C(4,2) 
 

-0.002*** 
 

-3.629 
                

C(4,3) 
 

-0.000 
 

-0.002 
                

C(4,4) 
 

0.000 
 

0.000 
 

0.000** 
 

2.256 
 

0.000** 
 

2.354 
 

0.000*** 
 

32.091 
 

0.000*** 
 

13.108 

A(1,1) 
 

1.071*** 
 

27.773 
 

0.807*** 
 

8.985 
 

0.776*** 
 

9.222 
 

0.488*** 
 

56.328 
 

0.581*** 
 

137.125 

A(1,2) 
 

-0.001 
 

-0.650 
         

-0.279*** 
 

-33.952 
 

-0.159** 
 

-6.979 

A(1,3) 
 

0.089*** 
 

3.514 
         

0.169*** 
 

88.922 
 

-0.177*** 
 

-15.812 

A(1,4) 
 

0.003*** 
 

0.323 
         

-0.467*** 
 

-344.988 
 

-0.125*** 
 

-4.439 

A(2,1) 
 

-0.116*** 
 

-2.875 
         

0.015*** 
 

15.321 
 

0.008*** 
 

3.498 

A(2,2) 
 

0.097*** 
 

4.283 
 

0.043*** 
 

4.426 
 

0.045*** 
 

3.759 
 

0.131*** 
 

60.272 
 

0.031*** 
 

29.595 

A(2,3) 
 

0.073** 
 

1.925 
         

0.372*** 
 

252.507 
 

0.017*** 
 

2.846 

A(2,4) 
 

0.018 
 

1.336 
         

-0.037*** 
 

-76.246 
 

0.034*** 
 

5.076 
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Table 4. Multivariate symmetric GARCH parameter estimates (Continued) 

  
BEKK 

 
CCC 

 
DCC 

 
VARMA-CCC 

 
VARMA-DCC 

variable 
 

coeff. 
 

t-stat. 
 

coeff. 
 

t-stat. 
 

coeff. 
 

t-stat. 
 

coeff. 
 

t-stat. 
 

coeff. 
 

t-stat. 

A(3,1) 
 

-0.599*** 
 

-15.699 
         

0.063*** 
 

306.670 
 

0.005*** 
 

7.346 

A(3,2) 
 

-0.019* 
 

-1.683 
         

-0.072*** 
 

-97.945 
 

-0.078*** 
 

-9.182 

A(3,3) 
 

0.126*** 
 

4.355 
 

0.065*** 
 

6.309 
 

0.068*** 
 

6.421 
 

0.030*** 
 

131.174 
 

0.258*** 
 

62.966 

A(3,4) 
 

0.028*** 
 

3.051 
         

-0.078*** 
 

-82.657 
 

-0.327*** 
 

-32.346 

A(4,1) 
 

0.521*** 
 

7.844 
         

-0.025*** 
 

-18.850 
 

-0.026*** 
 

-34.355 

A(4,2) 
 

0.050* 
 

1.966 
         

-0.022*** 
 

-38.155 
 

-0.058*** 
 

-6.908 

A(4,3) 
 

0.023 
 

0.420 
         

0.043*** 
 

49.866 
 

0.019* 
 

2.11808 

A(4,4) 
 

0.128*** 
 

4.447 
 

0.126*** 
 

4.603 
 

0.138*** 
 

4.826 
 

0.117*** 
 

109.211 
 

0.158*** 
 

13.673 

B(1,1) 
 

0.535*** 
 

26.133 
 

0.360*** 
 

8.805 
 

0.374*** 
 

9.683 
 

0.462*** 
 

135.732 
 

-0.212*** 
 

-187.348 

B(1,2) 
 

0.003 
 

0.539 
         

4.268*** 
 

98.492 
 

-0.208* 
 

-1.676 

B(1,3) 
 

-0.039* 
 

-2.488 
         

0.818*** 
 

60.271 
 

3.465*** 
 

377.545 

B(1,4) 
 

-0.001 
 

-0.185 
         

-5.898*** 
 

-38.454 
 

-6.457*** 
 

104.023 

B(2,1) 
 

-0.035 
 

-1.060 
         

1.852*** 
 

43.854 
 

-0.083*** 
 

-4.8800 

B(2,2) 
 

0.989*** 
 

344.974 
 

0.947*** 
 

79.792 
 

0.945*** 
 

63.489 
 

0.644*** 
 

116.492 
 

0.928*** 
 

477.916 

B(2,3) 
 

-0.052*** 
 

-5.249 
         

0.718*** 
 

75.411 
 

0.013*** 
 

9.936 

B(2,4) 
 

0.009* 
 

2.284 
         

0.444*** 
 

199.367 
 

0.135*** 
 

20.534 

B(3,1) 
 

0.156*** 
 

8.139 
         

-0.081*** 
 

-295.639 
 

0.616*** 
 

117.705 

B(3,2) 
 

0.008** 
 

2.317 
         

2.123*** 
 

773.463 
 

1.773*** 
 

54.106 

B(3,3) 
 

0.982*** 
 

111.980 
 

0.913*** 
 

71.351 
 

0.910*** 
 

69.415 
 

0.824*** 
 

797.299 
 

-0.113*** 
 

-34.812 

B(3,4) 
 

-0.020*** 
 

-6.005 
         

1.080*** 
 

657.123 
 

3.869*** 
 

75.107 

B(4,1) 
 

0.093 
 

1.515 
         

-0.194*** 
 

-326.372 
 

-0.103*** 
 

-5.144 

B(4,2) 
 

0.002 
 

0.177 
         

-0.485*** 
 

-45.066 
 

0.482*** 
 

22.468 

B(4,3) 
 

0.145*** 
 

6.309 
         

0.904*** 
 

55.341 
 

0.336*** 
 

23.918 

B(4,4) 
 

0.980*** 
 

85.318 
 

0.733*** 
 

8.944 
 

0.709*** 
 

8.326 
 

0.197*** 
 

18.174 
 

0.294*** 
 

19.967 

R(2,1) 
     

0.020 
 

0.777 
     

-0.008*** 
 

-64.189 
    

R(3,1) 
     

0.468*** 
 

23.452 
     

0.470*** 
 

54.507 
    

R(3,2) 
     

0.133*** 
 

5.175 
     

0.109*** 
 

626.596 
    

R(4,1) 
     

0.134*** 
 

5.221 
     

0.127*** 
 

104.461 
    

R(4,2) 
     

0.259*** 
 

11.059 
     

0.245*** 
 

943.169 
    

R(4,3) 
     

0.215*** 
 

8.488 
     

0.209*** 
 

426.658 
    

DCC(1) 
         

0.029* 
 

2.545 
     

0.012*** 
 

53.265 

DCC(2) 
         

0.642*** 
 

4.618 
     

0.841*** 
 

36.834 

LogL 
 

13707.376 
   

13645.867 
   

13647.200 
   

13689.225 
   

13695.462 
  

AIC 
 

-10.221 
   

-10.460 
   

-10.588 
   

-10.734 
   

-10.978 
  

SBC 
 

-10.107 
   

-10.235 
   

-10.370 
   

-10.555 
   

-10.811 
  

Note. ***, ** and * indicated that significant at 1%, 5%, and 10%, respectively. 

 

For the variance equation, the elements of the A matrix are estimated coefficients for the ARCH volatility that 

measure short-term volatility persistence. The own conditional ARCH effects 𝐴11,  𝐴22,  𝐴33  and 𝐴44 are 

statistically positive significant at the 1% level, presenting considerable evidence of short-term persistence. In 

addition, the conditional variances are a function of the own lagged covariance and lagged cross-product of the 

shocks. From the variance equation, the BEKK and VARMA-GARCH models also measure short-term volatility 

spillover between energy prices. The positive and significant coefficients of𝐴13state that a shock of gas volatility 

spills over to the electricity price market. The negative statistically significant coefficient of 𝐴32 displays cross 

and feed-back effects between oil and gas markets. 

For the variance equation, own conditional GARCH effect (𝐵𝑖𝑗), the elements of B matrix are the estimated 

coefficients for the GARCH volatility thatmeasure long-term persistence. According to the variance equation of 

Table 4, the positive and statistically significant coefficients of 𝐵𝑖𝑗 note own long-term volatility persistence. 

From the variance equation, we observe that, in addition to own past innovations, the conditional variance in 

each market is also affected by innovations coming at least from one of the other markets. There are positive 

significant volatility spillovers from the coal price market to the oil price market, the oil price market to the gas 

price market, and the gas price market to the coal price market. However, for the VARMA-CCC and DCC 
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models, the positive significant volatility spillover effectsare from gas to electricity, while there are negative 

effects from coal to electricity. Those energy price volatility spillovers affecting each other directly or indirectly 

may be due to common fundamental factors that influence energy equity markets. 

For the DCC model, the estimations of the DCC parameter (DCC(1) and DCC(2)) are positively statistically 

significant at the 1% level for the DCC and VARMA models. These estimated coefficients sum to a value that is 

less than one, indicating that the dynamic conditional correlations are mean reverting and the significantly 

coefficients leading to a rejection of the assumption of CCC for all news to return. The short-run persistence of 

shocks on DCC is the highest for electricity at 0.776, while the largest long-run persistence of shocks to DCC is 

0.945 for oil. The magnitude of the DCC estimator of the VARMA model is greater than that for the DCC model. 

As in the case of Table 4, the estimated value of short-run own volatility persistence is larger than the cross 

volatility effect for the electricity market, and the estimated value of the long-run own volatility persistence is 

also larger than the cross volatility effect for each market under the BEKK model. 

For the residual diagnostic test of Table 5, the estimated coefficients of the AIC and SBC criteria display that the 

VARMA-DCC model is the best model for each of the energy markets. The residual diagnostic test of the 

standardized residuals (Q-statistics) exhibits no statistically significant evidence of autocorrelation in the 

standardized results (ARCH effect) at the 1% level. Moreover, the Q-square statistics show no statistically 

significant evidence of the GARCH effect at the 1% level. Based on the residual diagnostic test, we find that the 

VARMA-DCC model is chosen as the best of the models versus the other MGARCH models. 

 

Table 5. Residual diagnostic test 

 
BEKK 

 
CCC 

 
DCC 

 
VARMA-CCC 

 
VARMA-DCC 

 
Elef 

 
Oilf 

 
Gasf 

 
Coalf 

 
Elef 

 
Oilf 

 
Gasf 

 
Coalf 

 
Elef 

 
Oilf 

 
Gasf 

 
Coalf 

 
Elef 

 
Oilf 

 
Gasf 

 
Coalf 

 
Elef 

 
Oilf 

 
Gas 

 
Coalf 

ARCH-LM 1.168 
 
0.657 

 
0.731 

 
0.505 

 
1.011 

 
0.704 

 
0.711 

 
0.547 

 
1.002 

 
0.599 

 
0.762 

 
0.613 

 
1.332 

 
0.697 

 
0.701 

 
0.585 

 
1.057 

 
0.607 

 
0.709 

 
0.609 

𝑄 -stat 20.34 
 
18.66 

 
11.79 

 
15.61 

 
20.71 

 
18.19 

 
12.01 

 
15.69 

 
21.12 

 
19.00 

 
11.11 

 
15.79 

 
20.88 

 
16.99 

 
10.89 

 
15.14 

 
22.8 

 
18.71 

 
11.91 

 
15.77 

𝑄2 -stat 7.69 
 

5.71 
 

4.88 
 

7.25 
 

7.99 
 

5.32 
 

5.09 
 

6.98 
 

6.99 
 

5.11 
 

3.97 
 

7.33 
 

7.13 
 

5.43 
 

5.16 
 

6.90 
 

7.81 
 

5.32 
 

4.79 
 

7.14 

 

4.2 Price and Volatility Spillover-Asymmetric Multivariate GARCH Models 

We now can discuss the results estimated by the four-variable asymmetric MGARCH models as presented in 

Table 6 and 7. Regression results are presented for five models: VAR(1)-BEKK-AGARCH, 

VAR(1)-CCC-AGARCH, VAR(1)-DCC-AGARCH, VAR(1)-CCC-VARMA-AGARCH, and VAR(1)-DCC–

VARMA-AGARCH. We first look at the mean equation, with electricity, natural gas, and coal price current 

returns depending on their own past returns (𝐵11, 𝐵33 and 𝐵44). Here, the one-period lagged values of the energy 

price returns are largely determined by their current values at different levels. This suggests that the past returns 

can be used to forecast future returns in these markets, indicating short-term predictability in energy price 

changes. For the electricity, natural gas, and coal price markets, the lag one period return influences the current 

return. For the electricity equation, the estimated coefficients of 𝐵12and 𝐵13 are each negative and statistically 

significant in each of the three models that are not VARMA. It indicates the return transmission from oil and gas 

to the electricity market. For the gas equation, the estimated coefficients of 𝐵34 are positive and statistically 

significant in each specification. In terms of the information transmission through returns, the natural gas price 

returns are affected by the coal price returns. For the oil and coal equations, there is no considerable evidence of 

the estimated coefficients being statistically significant across all models. The analysis shows that the electricity, 

gas, and coal returns are more related to their own past returns, however, there is not much evidence of price 

transmission effects in mean equations, except for oil and gas to electricity and for gas to coal. 
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Table 6. Multivariate asymmetric GARCH parameter estimates (ELEF-OILF-GASF-COALF) 

  
BEKK 

 
CCC 

 
DCC 

 
VARMA-CCC 

 
VARMA-DCC 

variable  
 

coeff. 
 

t-stat. 
 

coeff. 
 

t-stat. 
 

coeff. 
 

t-stat. 
 

coeff. 
 

t-stat. 
 

coeff. 
 

t-stat. 

Mean 
                    

B10 
 

0.0005 
 

0.8381 
 

-0.0005 
 

-1.1255 
 

-0.0034*** 
 

-7.5841 
 

0.0010*** 
 

10.4853 
 

0.0011*** 
 

163.5935 

B11 
 

0.3714*** 
 

10.3146 
 

0.2721*** 
 

6.7986 
 

0.3890*** 
 

15.5073 
 

0.1692*** 
 

28.3297 
 

0.1547*** 
 

864.7315 

B12 
 

-0.1167 
 

-0.3868 
 

-0.0457*** 
 

-3.8492 
 

-0.1003*** 
 

-4.5681 
 

-0.0679*** 
 

-29.7524 
 

-0.0964*** 
 

-87.2012 

B13 
 

-0.1998*** 
 

-7.2591 
 

-0.2957*** 
 

-21.1135 
 

-0.2435*** 
 

-21.5290 
 

0.0122*** 
 

6.7214 
 

0.0093*** 
 

115.1704 

B14 
 

0.1345*** 
 

2.6893 
 

0.08918** 
 

2.0581 
 

-0.0029 
 

-0.1369 
 

-0.0152*** 
 

-5.2089 
 

-0.0822*** 
 

-508.1074 

B20 
 

0.0000 
 

0.1139 
 

0.0002 
 

0.6435 
 

0.0001 
 

0.1981 
 

0.0004 
 

1.6147 
 

0.0001*** 
 

38.2693 

B21 
 

-0.0126 
 

-1.1883 
 

-0.0043 
 

-0.4298 
 

-0.0067 
 

-0.7144 
 

0.0007 
 

0.1309 
 

-0.01311*** 
 

-143.5341 

B22 
 

-0.0033 
 

-0.1306 
 

-0.0042 
 

-0.1653 
 

0.0494* 
 

1.8463 
 

-0.003 
 

-1.0774 
 

0.0000*** 
 

42.0473 

B23 
 

0.0071 
 

0.5335 
 

0.0108 
 

0.7958 
 

0.0154 
 

1.1709 
 

0.0063*** 
 

2.3864 
 

0.01378*** 
 

97.4384 

B24 
 

0.0063 
 

0.1908 
 

0.0259 
 

0.7917 
 

-0.0433 
 

-1.2780 
 

0.0184*** 
 

3.0501 
 

0.0156*** 
 

49.9715 

B30 
 

0.0001 
 

0.1249 
 

-0.0009 
 

-1.4904 
 

-0.0027*** 
 

-3.9844 
 

-0.0003*** 
 

-3.4881 
 

-0.0004*** 
 

-94.9822 

B31 
 

0.0123 
 

0.5832 
 

0.0094 
 

0.5325 
 

0.0054 
 

0.3309 
 

-0.0219*** 
 

-2.7594 
 

-0.0255*** 
 

-856.2304 

B32 
 

0.0312 
 

0.9192 
 

-0.0032 
 

-0.0961 
 

-0.0300 
 

-0.8158 
 

0.0002 
 

0.0068 
 

0.0061*** 
 

34.0973 

B33 
 

-0.0803*** 
 

-3.1604 
 

-0.1514*** 
 

-6.3006 
 

-0.0829*** 
 

-3.2073 
 

-0.0289*** 
 

-3.6516 
 

-0.0274*** 
 

-89.6655 

B34 
 

0.2051*** 
 

3.8090 
 

0.1925*** 
 

3.3982 
 

0.1689*** 
 

3.0141 
 

0.1655*** 
 

4.7775 
 

0.1445*** 
 

77.3832 

B40 
 

0.0000 
 

0.2118 
 

-0.0000 
 

-0.3977 
 

-0.0007*** 
 

-3.2957 
 

0.0001* 
 

1.7829 
 

-0.0000*** 
 

-61.6670 

B41 
 

0.0067 
 

0.8122 
 

0.0049 
 

0.7300 
 

-0.0045 
 

-0.6531 
 

0.0002 
 

0.1861 
 

-0.0036*** 
 

-574.3116 

B42 
 

-0.0274 
 

-1.6353 
 

-0.0374*** 
 

-4.0693 
 

-0.0201 
 

-1.3498 
 

-0.0265*** 
 

-18.0473 
 

-0.0229*** 
 

-318.0272 

B43 
 

-0.0038 
 

-0.3903 
 

-0.0186** 
 

-2.5445 
 

0.0089 
 

0.9420 
 

-0.0145*** 
 

-11.9170 
 

-0.0143*** 
 

-508.2969 

B44 
 

0.2246*** 
 

8.9705 
 

0.2872*** 
 

12.5279 
 

0.2277*** 
 

9.2108 
 

0.2834*** 
 

94.9589 
 

0.2683*** 
 

687.2374 

Variance 
                    

C(1,1) 
 

0.0128*** 
 

13.0731 
 

-1.7730*** 
 

-11.6768 
 

-2.6018*** 
 

-156.1905 
 

0.0000*** 
 

18.4718 
 

0.0002*** 
 

341.8299 

C(2,1) 
 

0.000 
 

0.0365 
                

C(2,2) 
 

-0.0000*** 
 

-2.6416 
 

-0.3191*** 
 

-4.4466 
 

-0.2309*** 
 

-19.0519 
 

-0.0000*** 
 

-39.9018 
 

-0.0000*** 
 

-102.8287 

C(3,1) 
 

0.0024*** 
 

2.8907 
                

C(3,2) 
 

-0.0019 
 

-3.0719 
                

C(3,3) 
 

0.0000 
 

0.0003 
 

-0.3363*** 
 

-5.2382 
 

-2.3616*** 
 

-126.738 
 

-0.0000 
 

-15.1247 
 

-0.0001*** 
 

-587.2904 

C(4,1) 
 

-0.0004 
 

-0.7126 
                

C(4,2) 
 

0.0014 
 

3.6142 
                

C(4,3) 
 

0.0000 
 

-0.0008 
                

C(4,4) 
 

0.0000 
 

-0.0001 
 

-1.1874*** 
 

-3.8423 
 

-4.7149*** 
 

-223.5130 
 

0.0000*** 
 

391.4862 
 

0.0003*** 
 

553.584 

A(1,1) 
 

0.9906*** 
 

16.6481 
 

0.7029*** 
 

13.7594 
 

0.8677*** 
 

16.5046 
 

0.4696*** 
 

541.5870 
 

0.5539*** 
 

547.307 

A(1,2) 
 

-0.0117 
 

-1.1492 
         

-0.3232*** 
 

-628.2661 
 

-0.2731*** 
 

-178.7385 

A(1,3) 
 

0.1105*** 
 

4.4816 
         

0.1080*** 
 

311.9547 
 

0.006*** 
 

109.147 

A(1,4) 
 

0.0005 
 

0.0597 
         

-0.5029*** 
 

-660.2993 
 

-0.4325*** 
 

-643.6746 

A(2,1) 
 

-0.1395*** 
 

-3.8899 
         

0.0049*** 
 

2.5559 
 

-0.0052*** 
 

-183.4503 

A(2,2) 
 

0.0704*** 
 

3.0718 
 

0.0563*** 
 

2.6919 
 

0.0381*** 
 

2.3064 
 

0.0131*** 
 

39.5071 
 

0.0310*** 
 

129.9564 

A(2,3) 
 

0.0473 
 

1.4012 
         

0.0195*** 
 

5.2335 
 

0.0163*** 
 

184.7724 

A(2,4) 
 

0.0306 
 

2.3933 
         

0.0172*** 
 

13.2711 
 

-0.0750*** 
 

-90.7212 

 

Table 7. Multivariate asymmetric GARCH parameter estimates (Continued) 

 

variable  
 

BEKK 
 

CCC 
 

DCC 
 

VARMA-CCC 
 

VARMA-DCC 

 
coeff. 

 
t-stat. 

 
coeff. 

 
t-stat. 

 
coeff. 

 
t-stat. 

 
coeff. 

 
t-stat. 

 
coeff. 

 
t-stat. 

A(3,1) 
 

-0.5837*** 
 

-14.4702 
         

0.0774*** 
 

103.0077 
 

0.0696*** 
 

896.5051 

A(3,2) 
 

-0.0026 
 

-0.2077 
         

-0.0889*** 
 
-241.6020 

 
-0.0644*** 

 
-972.5368 

A(3,3) 
 

0.0982*** 
 

3.9872 
 

0.1076*** 
 

4.9433 
 

0.1114*** 
 

3.2359 
 

0.0060*** 
 

43.8808 
 

0.0132*** 
 

354.4112 

A(3,4) 
 

0.0178** 
 

1.7684 
         

-0.0596*** 
 
-113.5523 

 
-0.1382*** 

 
-243.2561 

A(4,1) 
 

0.5011*** 
 

7.0990 
         

-0.0207*** 
 

-46.1477 
 
-0.0215*** 

 
-872.3318 

A(4,2) 
 

0.0348 
 

1.2589 
         

-0.0181*** 
 

-17.7386 
 

0.0074*** 
 

166.5552 

A(4,3) 
 

-0.0050 
 

-0.1003 
         

-0.0183*** 
 

-27.4592 
 

0.0129*** 
 

339.6110 

A(4,4) 
 

0.1571*** 
 

6.6407 
 

0.3427*** 
 

7.0914 
     

0.1671*** 
 

173.9846 
 

0.1354*** 
 

108.3268 
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B(1,1) 
 

0.5371*** 
 

14.2868 
 

0.8075*** 
 

40.6289 
 

0.7060*** 
 
234.5857 

 
0.3466*** 

 
622.7646 

 
0.3489*** 

 
542.3000 

B(1,2) 
 

0.0047 
 

0.9204 
         

-7.1517*** 
 
-169.6084 

 
-2.1213*** 

 
-170.0603 

B(1,3) 
 

-0.0494*** 
 

-3.3752 
         

0.2278*** 
 

165.3743 
 

0.5102*** 
 

827.3705 

B(1,4) 
 

0.0004 
 

0.0729 
         

6.6825*** 
 

211.2386 
 
-1.5161*** 

 
-306.7516 

B(2,1) 
 

-0.0252 
 

-0.7606 
         

-0.1368*** 
 

-15.0551 
 

0.2262*** 
 

576.7915 

B(2,2) 
 

0.9768*** 
 
239.4175 

 
0.9688*** 

 
120.3086 

 
0.9771*** 

 
545.0635 

 
0.8313*** 

 
736.5626 

 
0.7711*** 

 
257.9075 

B(2,3) 
 

-0.0399*** 
 

-4.2078 
         

-0.0621*** 
 

-68.2129 
 
-0.1143*** 

 
-857.4574 

B(2,4) 
 

0.0036 
 

0.9754 
         

0.8374*** 
 

232.5602 
 

1.0322*** 
 

145.5392 

B(3,1) 
 

0.1632*** 
 

7.2657 
         

-0.1309*** 
 
-458.0361 

 
-0.1188*** 

 
-166.6380 

B(3,2) 
 

0.0025 
 

0.6859 
         

0.9055*** 
 

753.8301 
 

0.6952*** 
 

443.1556 

B(3,3) 
 

0.9836*** 
 
125.6959 

 
0.9666*** 

 
111.5630 

 
0.6909*** 

 
271.9692 

 
0.9399*** 

 
180.9301 

 
0.8717*** 

 
774.7384 

B(3,4) 
 

-0.0186*** 
 

-5.2618 
         

0.1939*** 
 

145.0952 
 

1.0722*** 
 

691.6434 

B(4,1) 
 

0.1294*** 
 

1.9555 
         

-0.1292*** 
 
-102.4268 

 
-0.2034*** 

 
-152.6042 

B(4,2) 
 

-0.0046 
 

-0.6487 
         

-0.0331*** 
 

-26.2901 
 
-0.1213*** 

 
-899.6343 

B(4,3) 
 

0.1325*** 
 

6.5452 
         

0.7168*** 
 

265.5727 
 

0.5960*** 
 

122.8240 

B(4,4) 
 

0.9722*** 
 
105.0047 

 
0.8916*** 

 
27.2016 

 
0.5006*** 

 
215.4998 

 
0.4169*** 

 
376.9435 

 
0.3563*** 

 
116.4740 

D(1,1) 
 

0.6175 
 

4.6450 
 

-6.8075*** 
 

-2.5188 
 

-1.0901 
 

-0.3611 
 

0.0278*** 
 

90.5814 
 

0.0703*** 
 

330.0173 

D(1,2) 
 

-0.0045 
 

-0.5436 
                

D(1,3) 
 

0.0062 
 

0.2473 
                

D(1,4) 
 

-0.0076 
 

-1.0467 
                

D(2,1) 
 

-0.6176 
 

-0.7963 
                

D(2,2) 
 

-0.2164*** 
 

-7.5273 
 

123.6544*** 
 

4.0499 
 

104.007*** 
 

22.7549 
 

0.1029*** 
 

110.0251 
 

0.1484*** 
 

49.7687 

D(2,3) 
 

-0.1331*** 
 

-2.7783 
                

D(2,4) 
 

-0.0281 
 

-1.4822 
                

D(3,1) 
 

-0.2988*** 
 

-3.9069 
                

D(3,2) 
 

0.0374*** 
 

2.1826 
                

D(3,3) 
 

0.1871*** 
 

4.1798 
 

41.9337*** 
 

2.4779 
 
280.3582*** 

 
8.6447 

 
0.0264*** 

 
61.4916 

 
0.0339*** 

 
881.0117 

D(3,4) 
 

0.0788*** 
 

4.7784 
                

D(4,1) 
 

0.1678 
 

1.1625 
                

D(4,2) 
 

-0.1886*** 
 

-5.9063 
                

D(4,3) 
 

-0.0494 
 

-0.6974 
                

D(4,4) 
 

-0.1538*** 
 

-3.7335 
 
-601.8449*** 

 
-3.5287 

 
-169.4496 

 
-0.8286 

 
-0.0669*** 

 
-88.9717 

 
0.0226*** 

 
796.8398 

R(2,1) 
     

0.0212 
 

0.9129 
     

0.0224*** 
 

157.8751 
    

R(3,1) 
     

0.4705*** 
 

23.6116 
     

0.0491*** 
 

767.3811 
    

Note. ***,** and * indicated that significant at 1%,5%, and 10%, respectively. 

 

Turning to the conditional variance equations, the current conditional volatility of the energy markets is 

determined by their both own conditional ARCH effects (𝐴𝑖𝑗) that estimate the short-run persistence and own 

conditional GARCH effects (𝐵𝑖𝑗), which measure long-term persistence. The cross-market shock effects (𝛼𝑖𝑗) and 

volatility effects (𝐵𝑖𝑗) also can be found from the conditional variance equation. According to Table 8, the 

estimated result of the ARCH and GARCH coefficients for own conditional shock and volatility show positive 

and statistical significance at the 1% level (0.9906, 0.0704, 0.0982, and 0.1571 for the short-term persistence 

effect and 0.5371, 0.9768, 0.9836, and 0.9722 for the long-term persistence effect). A larger coefficient of the 

GARCH effect versus the ARCH effect implies that the former effect exhibits significant volatility impacts of 

conditional volatility on the energy markets. 

 

Table 8. Residual diagnostic test 

 
BEKK 

 
CCC 

 
DCC 

 
VARMA-CCC VARMA-DCC 

 
Elef 

 
Oilf 

 
Gasf Coalf 

 
Elef 

 
Oilf 

 
Gasf 

CoalMS 

Userf 
Elef Oilf Gasf Coalf Elef Oilf Gasf Coalf Elef Oilf Gasf Coalf 

ARCH-LM 0.877 0.930 0.256 0.404 0.961 0.998 0.310 0.523 0.865 0.840 0.330 0.572 0.792 1.205 0.472 0.313 1.151 1.124 0.665 0.533 

𝑄 -stat. 13.267 15.140 18.220 19.335 12.676 14.981 19.499 19.792 12.722 14.519 17.018 19.664 13.903 16.424 19.118 19.015 12.803 15.832 19.067 19.009 

𝑄2 -stat. 3.169 6.770 7.161 10.322 4.164 5.260 9.330 8.740 4.019 5.126 6.128 9.977 4.279 6.199 8.073 9.653 3.925 6.635 7.094 8.039 
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5. Conclusions 

Previous academic studies have shown that the electricity, oil, natural gas, and coal markets are characterized by 

high volatility and that they have become more interrelated. Therefore, analyzing the co-movement between 

these markets as well as their volatility spillovers is very important for investors, traders, and government 

agencies concerned with the energy markets. 

This study has investigated and examined the conditional correlations and volatility spillovers among electricity, 

oil, natural gas, and coal future price returns, by using the five multivariate symmetric GARCH and asymmetric 

GARCH models: the BEKK model of Engle and Kroner (1995), the CCC model of Bollerslev (1990), the DCC 

model of Engle (2002), the VARMA-GARCH model of Ling and McAleer (2003), and the VARMA-AGARCH 

model of McAleer et al. (2008). We employ a sample size of 2660 observations from March 22, 2004 to May 29, 

2014. The empirical results show that these models do capture the dynamic structure of the return interactions 

and volatility spillovers and display statistical significance for own past mean and volatility short-and long-run 

persistence effects, while there are just a few cross-market effects for each model. 
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