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Abstract 

In this paper, directed complex network is applied to the study of A shares in SSE (Shanghai Stock Exchange). In 

order to discuss the intrinsic attributes and regularities in stock market, we set up a directed complex network, 

selecting 450 stocks as nodes between 2012 and 2014 and stock yield correlation connected as edges. By 

discussing out-degree and in-degree distribution, we find essential nodes in stock network, which represent the 

leading stock,. Moreover, we analyze directed average path length and clustering coefficient in the condition of 

different threshold, which shows that the network doesn’t have a small- world effect. Furthermore, we see that 

when threshold is between 0.08 and 0.15, the network follows the power-law distribution and behaves scale-free. 

Keywords: directed complex network, stock market, small-world effect, scale-free property 

1. Introduction 

Due to the effect of guiding fund and risk transfer and so on, financial market plays a crucial role in national 

economy. For a developing economy, a healthy and stable financial system will give it soaring wings, and 

therefore it is significant to study the intrinsic regularities of financial market. In recent years, the applications of 

complex network to financial market have grown to be scholastic hotspots, and the orientation of its research has 

gradually developed from undirected to directed way. Given that the financial market shares many similarities 

with the complex system, including dynamics, nonlinearity, self-similarity, aperiodicity, self-organization, 

sensitivity and so forth, the complex system can be applied to the studying of financial market suitably. Various 

applications of complex network have been so for quite some time. Mantegna RN (1999) firstly made a linkage 

between stock market and complex network. By using the stock price data, the model established a stock 

correlation network, with individual stock as node and correlation coefficient as edge, which made clustering 

analysis of the S&P 500. Boginski (2005) and others established a complex network model with 6546 stocks in 

ASE (American Stock Market). It turned out that the network shows the characteristic of no scale. Moreover, 

Onnela J P and others (2006), built dynamic asset trees to study the correlation of 477 stocks in NYSE (New 

York Stock Exchange). A Scale-free weighted complex network is constructed and applied to the S&P 500 stocks 

(see Kim & others, 2007 for more information). This network model calculated the financial influence value of 

individual stock by summing all weight values of individual node’s edges, and confirmed its absolute value has 

scale-free property. 

For the present time，few of the domestic studies of economy were able to focus on the financial market 

compared to foreign countries，yet still some of the researchers managed to study the Securities Market with the 

complex network theory. Zhuang Xintian and others (2007) use the complex network, to study SSE (Shanghai 

stock exchange) and came to a conclusion that it has scale-free property as well as small- world effect. Complex 

network models combined with coarse graining analysis has emerged as a natural and convenient approach to the 

study on Hong Kong Stock Market (see Fang Weidong, 2008). The network model, researching the correlation 

between Hang Seng Index and Trading Volume, found the crucial nodes in stock market by calculating the 

betweenness centrality and inverse participation ratio. Gao Yachun (2013), who established a complex network 

with financial dealers and products as nodes, studied the static topology and dynamic evolution of financial 

market. Furthermore, complex network was also applied to Interbank market and futures market to judge 

whether it is scale-free and has small-world effect (see, for example, Liu Chao & Zhang Ding). According to the 

result, the former market has features of both and the latter one is equipped with small-world effect and 

assortativity except scale-free property. 
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In the past, previous researches about complex network in financial market are basically limited to undirected 

field. Chen Hua (2012), who built directed complex network successfully with A share in SSE, selected high 

frequency data after March, 2011. In this paper, by investigating daily stock data from 2012 to 2014, we firstly 

established directed complex network to study the market with the help of MATLAB. Then we mainly discussed 

structural property of the network, including the out-degree, in-degree, degree distribution, average path length, 

and clustering coefficient. In particular, we modified the statistic method of Chen about the structural property 

we mentioned above. Finally, according to related methods of undirected complex network, we judged whether it 

has scale-free property and small-world effect. 

2. The Construction of Directed Complex Network in Stock Market 

2.1 Stock Yield Rate 

The logarithmic yield of stock a can be calculated by the formula below: 
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Where,  a

tR t  is the logarithmic yield rate of stock a  from period 1t   to period t ,  aP t  is the close 

price of stock a  at time t , and t  represents the time interval of logarithmic yield rate of stock. 

2.2 Stock Correlation Coefficient 

2.2.1 The Formula of Correlation Coefficient 

Here a  and b  are two randomly chosen stocks, and t  is the time interval. Since we are going to carry out 

our analysis based in time interval, we define stock correlation coefficient as:  
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Where  ab

tQ 
 represents the correlation coefficient which measures the influence of price of stock b  arising 

from stock a  after interval  ; function  E x  and  var x  stand for the mean values and variance of variable 

x  respectively;   is the interval when calculating correlation coefficient. (attention should be paid to 

distinguish   and t : t  is the interval when calculating rate of return). 

Through calculation we can get correlation coefficients of every two stocks and then transform them into 

numerical matrix.
 

2.2.2 The Implication of Correlation Coefficient 

Firstly, the values of correlation coefficient are between -1 and 1, i.e.  1 1ab

tQ    . 

If  0 1ab

tQ   , it means that there is a positive correlation between stock a  and stock b , namely, the 

fluctuation of price a  will make the price of b fluctuate in the same direction; similarly, if  -1 0ab

tQ    , it 

means that there is a negative correlation between stock a  and stock b , and the fluctuation of price a  will 

make the price of b  fluctuate in the opposite direction; moreover,  =0ab

tQ   implies that there is no 

correlation between a  and b , and they won’t interact each other. 

The interaction relationship between stock a  and stock b  has direction as its characteristics. In the numerical 

matrix of correlation coefficient, if    ab ba

t tQ Q    implies the direction flow is stock b  to stock a , there 

is a directed edge from b to a in the directed network graph; if    ab ba

t tQ Q   , it means the direction flow 

is from the stock a  to stock b , and similarly in the directed network graph the directed edge is from a  to b ; 

if    =ab ba

t tQ Q   , it means that there is no direction flow between stock a  and stock b , therefore there is 

no directed edge in directed network graph between the two stocks. From the analysis above we can set up a 

complete directed complex network in stock market. 

2.3 The Threshold  

In normal cases, threshold should be specified. In fact, when the threshold value exceeds the absolute value of 
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correlation coefficient of stock a  and stock b , we believe that their interaction is so weak that can’t make 

clear influence. We define   as the threshold value, and suppose that there is no directed edge from a  to b  

in the complex stock network when  ab

tQ    . 

3. The Structural Property of Directed Complex Network in Stock Market 

It should be noted that as a complex system, it possesses many structural properties, and therefore, only by using 

different parameters we can mine the data as much as possible and find the inwardness as well as the law, which 

can guide us to practice. However, structural properties in directed complex network are different from 

undirected ones. For undirected complex network and its structural properties, there are a greater number of 

researches. So in this paper we only focus on directed complex network. Refer to Chen, in what follows we 

define several indexes to study directed complex network. 

3.1 Out-Degree and In-Degree 

In directed complex network, the out-degree of node a  of a graph is the number of edges that start from node 

a  to the other nodes. Similarly, the in-degree of node a  of a graph is the number of edges that start from the 

other nodes to node a . 

3.2 The Mean Value of Degree 

In the following part we define the mean value of out-degree of all nodes as the mean out-degree; similarly, the 

mean in-degree is the mean value of in-degree of all nodes in the graph. 

3.3 Interval Degree Distribution 

In the study of graphs and networks, the degree k of a node in a network is the number of connections it has 

with other nodes and the degree distribution is the probability distribution of these degrees over the whole 

network. Note that there are 450 nodes in our study, and the number of different degrees has reached 225. What’s 

more, the value of each degree is so small that it is not significant enough in statistics. Throughout this paper we 

divide the degrees into groups and suppose that the interval of every two groups is 10 per unit degree. After that, 

we will calculate the number, and the probability of every group, and carry out related analysis on the 

distribution of the nodes, In the following part we will explain it on details. 

3.4 Average Directed Path Length 

Suppose that there are n  nodes in the undirected complex network, and the maximum number of undirected 

edges is  1 2n n . Differently, in the directed complex network, there are  1n n edges at most. Let 
ijd  (the 

distance between node i  and node j ) define the number of directed edge on the shortest path which connects 2 

nodes. L  represents the average directed path length. In other words, L  is the mean value of the distance 

between two randomly chosen nodes, and therefore we can define it as： 
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Additionally, L  describes the separation degree in complex network. The larger L  becomes, the smaller 

separation degree is. Otherwise, if L  is small, it means the separation degree in the network is large. 

3.5 Directed Accumulation Coefficient 

Assume that there are ik  nodes around node i , and therefore there are  1i ik k 
 

directed edges at most of 

these ik  nodes. Let iB  defines the number of the directed edges among those ik  nodes, iC  denotes the 

accumulation coefficient of node i , and C represents the accumulation coefficient of the whole network; that 

is; 
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Where function  E x is to compute the mean of variable x . C  describes the aggregation of nodes in the 

complex network, namely, the tightness of network. The rising C  means the larger aggregation degree of the 

network. On the contrary, the aggregation degree is smaller. 
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3.6 Small-World Effect 

When a large-scale complex network has small average path length and large aggregation coefficient at the same 

time, we regard such kind of network possesses small-world effect. 

3.7 Scale-Free Property 

A scale-free network is a network whose degree distribution follows a power law, at least asymptotically. 

Generally, a testing way whether the network has scale-free property is to compute the degree of the node and 

take its logarithmic value of the degree as abscissa against the logarithmic value of the probability of the degree 

as ordinate. We then do regression analysis, and if the data can be fitted to a linear, the network can be regard as 

a scale-free network. 

4. Empirical Study and Results 

Here we consider a practical application—a sample network of Shanghai Stock market. In this section, we 

selected closing price data of A shares in SSE (Shanghai Stock Exchange), from 1st January, 2012 to 31st 

December, 2014, to carry out our empirical study. After removing some delisted stocks from original 920 stocks, 

there are 450 stocks left and 726 data points in each individual stock (the financial data from CSMAR). With the 

help of MATLAB 2012, we set up a complex network on computer and calculate some available indexes to study 

the market. 

4.1 Data Complementation 

After the screening of the remaining 450 stocks, there are still some lack of data in 1 to 3 days among some of 

these stocks. In order to supplement the data, we use a random disturbance term. Specifically, to supplement the 

missing data is to create a random number between [0, 1], and add it to the closing price the day before. Here we 

use this algorithm and take Great Wall Automobile (601633) for example:  

 

Table 1. The example of data complementation 

time 12th January, 2012 13th January, 2012 16th January, 2012 17th January, 2012 18th January, 2012 

deletion 12.65 12.26 deletion 12.99 12.77 

Supplement 12.65 12.26 12.67 12.99 12.77 

 

4.2 The Construction of Directed Network 

Intuitively, we draw the image of network(using MATLAB2012). Taking a network of which the threshold is 

=0.04 , the interval is =1  and =1t  For example, stock network image is displayed in figure 1 and figure 

2(the number of stocks in the network is 40 in figure 1 and 100 in figure 2 respectively). 

 

 

Figure 1. Network topology graph of 40 stocks 
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Figure 2. Network topology graph of 100 stocks 

 

Based on the results and graphs above, we come into a verified conclusion that the directed complex network 

exists in the stock market of China and the structure of complex network is successfully constructed about 

Shanghai Stock Exchange. 

4.3 Structural Characteristics of Directed Complex Network 

4.3.1 Distribution of Stock Correlation Coefficient under Different Threshold 

In this section, we set different threshold value intervals to do statistics of correlation coefficient matrix. Take 

interval =1  and =1t  for example, Table 2 shows the distribution of the correlation coefficient of 450 stocks 

under different threshold value intervals.  

 

Table 2. Threshold distribution of correlation coefficient 

Low limit of threshold Upper limit of threshold The number of correlation coefficient The percentage of correlation coefficient 

-1 -0.4 0 0.00% 

-0.4 -0.2 17 0.01% 

-0.2 -0.1 975 0.48% 

-0.1 -0.05 13399 6.62% 

-0.05 0 8027 3.96% 

0 0.05 151399 74.76% 

0.05 0.1 25825 12.75% 

0.1 0.2 2754 1.36% 

0.2 0.4 87 0.04% 

0.4 1 17 0.01% 

 

As we can see in table 2, from 2012 to 2014, the correlation coefficients mainly distribute in (-0.1, 0.1) and there 

are 87.52% in (0, 0.1). It indicates that the correlation between stocks is not prominent enough, and most stocks 

shows positive correlation, namely, the fluctuation of price of stock a  will make the price of stock b  fluctuate 

in the same direction. 

4.3.2 Out-Degree and In-Degree Distribution of Stock Nodes 

Using MATLAB to calculate the out-degree and in-degree of stock nodes in the situation of threshold θ=0.04, 

interval τ=1 and Δt=1, we find that the minimum out-degree is 18 stem from MAANSHAN IRON, on the 

contrary, the maximum is China Minsheng Bank’s 371; as for in-degree, Fangda Special Steel Technology 

enjoys the maximum of 377 and Huaxia Bank is 8 only. We divide the degrees into groups with the interval of 

every two groups is 10 per unit degree, and then draw probability distribution graphs of out-degree and in-degree 

respectively as figure 3 and figure 4 below. 
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Figure 3. Probability distribution of out-degree 

 

 

Figure 4. Probability distribution of in-degree  

 

As we can see in the two figures above, under the situation of threshold =0.04 , time interval =1  and =1t , 

with the increase of the number of stocks, the degree firstly increases and then decreases. We can also find that at 

about 128, the average value of degree, the probability reaches a maximal level.  

The following tables give out the top 10 stocks which enjoy largest degree(in-degree and out-degree are 

separated)and their industries involved as well. 

 

Table 3. Top 10 of out-degree 

Stock code ranking Stock name industy Out-degree 

600202 1 Harbin Air Conditioning electrical equipment 371 

601717 2 Zhengzhou Coal Mining machinery special machinery 367 

600015 3 Huaxia Bank bank 360 

600276 4 Hengrui Medicine chemical pharmaceutical 346 

600104 5 SAIC Motor automobile 343 

600837 6 Haitong Securities security 340 

600831 7 Guangdong Radio and TV Network Shares web service 335 

600815 8 Building Industry Share dedicated device 331 

600551 9 Times Books media 320 

601098 10 Zhongnan Media media 316 
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Table 4. Top 10 of in-degree 

Stock code ranking Stock name industy In-degree 

600507 1 Fangda Special Steel of Science and Technology steel 377 

600760 2 Zhonghang Heibao transport facilities 363 

601107 3 Sichuan Expressway Company expressway 357 

600808 4 Magang Stocks Trading steel 351 

600307 5 Hongxing JISCO steel 346 

600979 6 Sichuan guangan AAA public electric power industry 338 

600540 7 Xinjiang Sayram Modern Agriculture crop farming 332 

600290 8 Huayi Electric electrical equipment 327 

601118 9 Hainan Rubber Group chemical industry 327 

600810 10 Shenma Industrial chemical raw material 325 

 

When the threshold is constant, a stock with rising value of out-degree makes a positive influence to other nodes; 

on the other hand, a stock with rising value of in-degree means it will receive more infection from other nodes. 

Based on the statement mentioned before, we can draw a conclusion that the leading stocks are those whose 

price fluctuation can influence more stocks. By examining and analyzing, we see that SAIC Motor is the leader 

of automobile stocks; and Guangdong Radio and TV Network Shares, Building Industry Share, Zhongnan Media 

are the leading stocks of its industries as well. 

4.3.3 Small-World Effect 

At time interval τ=1 and Δt=1, we calculate the value of average directed path length and accumulation 

coefficient at different threshold by using MATLAB. Table 5 below shows the results. 

 

Table 5. The value of average directed path length and accumulation coefficient at different threshold 

threshold path length accumulation coefficient 

0.01 1.2006 0.8062 

0.02 1.3886 0.6312 

0.04 1.6849 0.3765 

0.08 2.3402 0.1522 

0.1 Inf 0.1193 

0.12 Inf 0.08 

0.15 Inf 0.0479 

0.18 Inf 0.0235 

0.2 Inf 0.0099 

 

According to the statistic data from paper, the average directed path length is considered to be small when it is 

less than 1.5; when the accumulation coefficient exceed 0.8, we regard it large. If the two indexes meet the above 

condition, the network shall enjoy small-world effect. Besides, the number of edges in directed complex network 

is possibly twice as many as that of the undirected complex network. Therefore, with networks of the same size, 

the path length and accumulation coefficient value of undirected network are twice as many as directed network. 

In our paper, we specified the average directed path length as relatively small when its value is less than 0.75; the 

accumulation coefficient as relative large when its value exceeds 0.4, and in this case, the network has 

small-world effect. Base on the data in Table 5, the value of average directed path length is larger than 0.75. 

Additionally, the accumulation coefficient will fall below 0.4 when the threshold exceeds 0.04. Finally, we can 

infer from the comparison that such kind of network doesn’t enjoy the small-world effect. 

4.3.4 Scale-Free Property 

Under different threshold, the network of scale-free characteristics appeared inconsistent state. When the 

threshold is too small, there are so many edges that otherness among nodes isn’t obvious enough. In this case, 

the network doesn’t have scale-free property. On the contrary, if the threshold is too large, the otherness isn’t 

obvious enough as well. The following page enumerates three examples as θ=0.04, θ=0.1, θ=0.2 to represent 

three different situations(threshold too small, moderate, and too large)at time interval τ=1, Δt=1, in which we 

apply the regression analysis method in dual-logarithm coordinates system with MATLAB to get the results . 

For θ=0.1, the regression result of out-degree is in Figure 5, with the linear equation 
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    ln 1.1418 1.2022 lnp k k    , which shows the power law with the power exponent is 1.2022 and the slope 

of the line is -1.2022. Particularly, in this equation R2
=0.8096, F=157.3544, it means that regression results are 

satisfactory. 

 

 
Figure 5. Distribution of out-degree in dual-logarithm coordinates system for threshold θ=0.1 

 

For θ=0.1, the regression result of in-degree is in Figure 6, with the linear equation 

    ln 1.1771 1.2161 lnp k k    , which shows the power law with the power exponent is 1.2161, and the 

slope of the line is -1.2161. Particularly, in this equation R
2
=0.8625, F=269.6159, it means that regression 

results are satisfactory, too. 

 

 

 Figure 6. Distribution of in-degree in dual-logarithm coordinates system for threshold θ=0.1 

 

We draw degree distribution graph (take out-degree as an example because the difference between out-degree 

and in-degree is not so obvious) for θ=0.04, θ=0.2, respectively, as Figure 7 below. We can easily find that the 

function law of out-degree distribution isn’t obvious. 

 

 

Figure 7. Distribution of out-degree in dual-logarithm coordinates system for threshold θ=0.2, θ=0.04  
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After multiple verify with program, our stock network enjoys scare-free property with threshold between [0.08, 

0.15]. 

4.3.5 The Relationship between the Amount of Nodes and Average Path Length 

Under the situation with the threshold θ=0.04, the intervalτ=1 and Δt=1, we make a statistical analysis on the 

number of nodes and average path length and the results are presented in Table 6. With the increase in the 

number of stocks, namely, the number of nodes, the average path length decreases gradually. 

 

Table 6. Relationships between the amount of nodes and average path length 

Stock amount Average path length 

20 1.773684 

30 1.772414 

40 1.728205 

50 1.704082 

75 1.694595 

100 1.695455 

150 1.684474 

200 1.685452 

250 1.687823 

300 1.68379 

400 1.681967 

450 1.68488 

 

Take the logarithm of number of stcoks as independent variables and average path length as dependent variables 

to do a quadratic regression. We get a result dramatically, in which the linear equation is 

      
2

ln =0.8039 0.1046 ln +0.0096 lnL n n   , with R
2
=0.9243 and F=54.9268. The increase in the number of 

nodes leads to the increase of the separation degree, which means that the relationships between new issues and 

original stocks are not closely related. 

 

 

Figure 8. Regression chart of nodes amount and average path length 

 

5. Conclusions 

Our page set up a directed complex network with data of A stocks in SSE from 2012 to 2014 (data derived from 

CSMAR). After analyzing the intrinsic attributes and regulations in the financial market, some conclusions are 

enumerated as follows: 

(1) During the period we study, the values of correlation coefficient mostly distribute in (-0.1, 0.1). Furthermore, 

there are 87.52% of them distributing in (0, 0.1). It indicates that the correlation between stocks is not prominent 

enough. 
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(2) According to degree distribution, one can find out the leading stocks in financial market intuitively. 

(3) The model shows scare-free property in both out-degree and in-degree when the threshold is in [0.08, 0.15]. 

Additionally, the out-degree follows power-law distribution with the power exponent 1.2022, and the in-degree 

follows power-law distribution with the power exponent 1.2161, with threshold θ=0.04. 

(4) The directed complex network model doesn’t show small-world effect. 

(5) The number of nodes and average path length follow a logarithmic relation as follows: 

      
2

ln =0.8039 0.1046 ln +0.0096 lnL n n   . As the increase in the number of nodes, the average path length decreases 

gradually. 
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