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Abstract 

Introduction: Circa 1996 Theodore Hill offered a definitive proof that under certain conditions a data generating 
process is likely to produce observations that follow the Newcomb-Benford Log10 (N-B) first digit profile. The 
central feature of Hill’s proof is the mixing property from which seems to follow base invariance for scale 
transformations. Further, it has been observed that small datasets are often not part of the N-B profile set. Study 
Precise: This suggests that, if indeed the mixing process underlies the generation of the N-B profile, that one 
should be able to take small Non-Conforming base-invariant datasets that are generated by uncorrupted 
processes and aggregate them to form datasets that conform to the N-B profile. Results: We demonstrate mixing 
convergence and find a systematic movement from Non-Conformity to Conformity at a transition point on the 
order of 250 data points. Impact: We suggest the practical importance of the Hill-Mixing result for the 
certification audit. We have all of these tests, datasets and results coded in a Decision Support System in VBA: 
Excel™ that is available from the authors free without restriction to its use. 

Keywords: theodore hill, newcomb-benford conformity, CapitalCube, base-invariance 

1. Introduction 

The historically available information on the Digit Frequency Profile (DFP) starts in 1881 when Simon 
Newcomb (1835-1909), Professor of Mathematics, Astronomer awarded The Gold Medal of London's Royal 
Astronomical Society (1874), and extensively published Political Economist (See: American National Biography 
Online: Newcomb, Simon, 19th century) notices a curious pattern of Wear & Tear of his logarithmic tables—his 
Decision Support System of the 19th century. He offers (1881, p. 39): 

That the ten digits do not occur with equal frequency must be evident to any one making much use of logarithmic 
tables, and noticing how much faster the first pages wear out than the last ones. The first significant figure is 
oftener I than any other digit, and the frequency diminishes up to 9. 

Newcomb’s “curiosity-note” gathers archive dust for some fifty years until Frank Benford (1938), an electrical 
engineer with General Electric Inc. USA with many patents to his credit, who curiously never directly cites 
Newcomb, makes and records the same observation, Benford (1938, p. 551): 

It has been observed that the pages of a much used table of common logarithms show evidences of a selective 
use of the natural numbers. The pages containing the logarithms of the low numbers 1 and 2 are apt to be more 
stained and frayed by use than those of the higher numbers 8 and 9.  

Newcomb and Benford both arrived at a simple mathematical formula to characterize the likely distribution of 
the nine first digits. To wit the (N-B Profile Log10): 

Frequency[ ] = LOG10 (1 + 1/ ) for i= 1, 2, …, 9                       (1) 

Following on the work of Nigrini (1996), this simple formula, if it is the underlying generating process for 
digital frequencies in the Big Data milieu, can be used to benchmark particular Observed digital frequency 
profiles for the purpose of generating variance information that can pique the interest of the auditor to the 
possible end of launching an extended procedures examination of the particular dataset under audit examination.  
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The important questions begged by the “non-intuitive” observation of Newcomb and Benford are:  

Why should EQ(1) work as a general DFP-generating process estimator? And under what conditions can an 
auditor reasonably expect to use EQ(1) as a profiling-screen for selecting accounts for possible extended 
procedures investigation? 

The first research to address the theoretic underpinning of the Log10 formula (EQ1), as a reasonable and 
appropriate surrogate for un-perturbed data generating processes only starts to appear some 25 years after 
Benford’s paper. In the 1960s, various aspects of the theoretical context of the Newcomb-Benford curiosity are 
offered by: Pinkham (1961), Adhikari and Sarkar (1968), Duncan (1969), and Raimi (1969). However, Hill 
(1995 a, b, 1996) is usually credited with providing the conclusive theoretical support for the Why and 
Conditional questions posed above. En bref, Hill (1998) and Fewster (2009), show by convincing argumentation 
and illustration respectively that: Where there are datasets formed from (i) many differentiable sources, or (ii) a 
kernel data-generating process with many reasonably “orthogonal” variations that data generated subject to 
these idiosyncratic conditions/constraints seems to follow the first digital pattern sketched out by the Log10 
formula. We shall term this as Hill-Mixing. Additionally, Hill (1995b) shows that Mixing generates datasets that 
have the base-invariance property. Finally, Nigrini and Mittermaier (1997) and Durtschi, Hillison and Pacini 
(2004) observe that small datasets are usually not found to Conform to the N-B first digit profile. These three 
results/observations: (i) Hill-Mixing, (ii) Base-Invariance, (iii) Inherent small sample size Non-Conformity form 
the contextual basis for our research, the objectives of which are to: 

1) Investigate the implication of these three facets of the Newcomb-Benford Profile that: There should be a 
systematic transition from Non-Conformity to Conformity as one moves from Small Base-Invariant datasets 
to their aggregation. This will be validation testing of the Hill-Mixing logic.  

2) Find, for our test data, the Point of the Conformity transition, and 

3) Discuss the implications of this Conformity Transition point for the Auditor executing a PCAOB 
certification audit. 

Consider now the following three elements of this research investigation that are needed to effect this 
Hill-Mixing testing:  

1) An alternative to the Newcomb-Benford Profile: Log10 Profile that will facilitate profile-testing of dataset 
Conformity. 

2) Datasets of financial information that are likely to be from un-perturbed or non-corrupted data generating 
processes. In this regard, we downloaded four datasets of firms the data of which was subjected to a 
PCAOB audit; therefore, this data that was accepted by the SEC as free from material reporting error.  

3) Two additional Non-Conformity & Conformity testing protocols measures that have been reported in the 
literature. These will be used as a robustness check on the Conformity Transition Point where the Small 
Non-Conforming datasets transition to Conforming datasets. 

2. An Alternative to the Newcomb-Benford Profile: Log10 Profile 

Remarkable thought it is, we will need a protocol to make the decision if the first digit profile is likely to be 
generated from a process that conforms to the N-B profile, because neither Newcomb nor Benford suggested a 
testing protocol for deciding if a particular dataset is Conforming or Non-Conforming in nature. In this 
regard, recent research of Lusk and Halperin (2014a) has offered an alternative benchmark to the Log10 model 
which is (i) related to the Log10 model, and (ii) based in the empirical realizations collected by Benford (1938, 
Table 1, p. 553). Lusk and Halperin (2014a) report that the mean frequency profile reported by Benford should 
be refined. They offer:  

“Benford reports a curious measure: In Table 1, p. 553 we find the Average (Arithmetic Mean) for the 20 point 
measures for the first digit set. To produce this measure, he took the simple average of the point frequency 
measures as reported in Table 1. Actually, this has no useful statistical meaning. The correct frequency average 
is the number of digits in a particular first digital Bin as a ratio to the sample total of 20,229. For example, in 
Table 1, p.553 Benford has the frequency proportion average for “1” as: 30.6%. However, the correct frequency 
percentage is the unit-vector product of the 20 frequencies with the respective sample sizes for the first digit. This 
develops for the 20,229 observations that 5,849.295 were “1s” and the proper ratio is 5,849.295/20,229 = 
28.9%.” 

This suggests that for the Newcomb-Benford profile one could use the N-B Log10 generating function or could 
use the Lusk and Halperin (2014a) corrected means for the 20 samples that Benford reports. These two 
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alternatives are presented in Table 1 following: 

 

Table 1. The Benford practical profile (BPP) and the N-B log10 profiles 

First Digit Array  Corrected Means of Benford Datasets N-B Log10  Difference (ColB less ColC) 

Digit 1 0.28919 0.30103 -0.01184 

Digit 2 0.19462 0.17609 0.018530 

Digit 3 0.12665 0.12494 0.001710 

Digit 4 0.09061 0.09691 -0.00630 

Digit 5 0.07544 0.07918 -0.00374 

Digit 6 0.06431 0.06695 -0.00264 

Digit 7 0.05408 0.05799 -0.00391 

Digit 8 0.05487 0.05115 0.00372 

Digit 9 0.05052 0.04576 0.00476 

Source: Lusk and Halperin (2014a). 

 

These two benchmarks are effectively the same as a perusal of the differences reported in Col4 supports. 
However, the corrected means of the BPP are most relevant to forming a testing interval as they are not point 
realizations but rather empirical observations and so will have a reliable measure of variation. Lusk & Halperin 
(2014a) use this empirical variation to form a screening interval as presented in Table 2: 

 

Table 2. The Benford practical profile (BPP) screening interval 

First Digit Array 
Corrected Means of Benford 

Datasets, n=20 

Lower Benford Screening 

Window (BSW) Value  

Upper Benford Screening 

Window (BSW) Value 

Digit 1 0.289189 0.275377 0.303001 

Digit 2 0.194622 0.179919 0.209324 

Digit 3 0.126650 0.111340 0.141960 

Digit 4 0.090612 0.074990 0.106235 

Digit 5 0.075436 0.059684 0.091189 

Digit 6 0.064314 0.048467 0.080161 

Digit 7 0.054081 0.038147 0.070014 

Digit 8 0.054872 0.038945 0.070798 

Digit 9 0.050522 0.034558 0.066485 

Source: Lusk and Halperin (2014a). 

 

This screening interval can be used to determine if the realized first digit profile is in the screening interval 
(ColC to ColD). The simple test, programmed into the DSS: Hill-Mixing is:  

If a particular digital frequency is in the closed Screening BPP-Interval (ColC to ColD) then that digital 
frequency is judged to be: Conforming; otherwise, i.e., the frequency is not in the Screening BPP-Interval, then 
that frequency would be labeled as: Non-Conforming. Lusk and Halperin (2014a) find that if 2/3 of the 
frequencies or more, that is 6, 7, 8 or 9 specific digits are outside the Screening BPP-Interval that the dataset is 
likely to be Non-Conforming; otherwise, if 1, 2, 3, 4, 5 are outside the Screening Interval then the dataset is 
likely to be Conforming.  

3. The Datasets Used to Test the Mixing Transition 

As introduced above, in testing the Hill-Mixing result, we have selected commercial data as reported in the 
financial statements of PCAOB audited firms where the two opinions on their financial statements were judged 
by the SEC as indicating that the financials were reasonable reflections of the results of operations; this being the 
case the firms were “listed” on their trading exchanges. “Listing” is a critical accrual criterion as this suggests 
that there was no evidence that the data generating processes of the firm were inappropriately modified, 
corrupted, or constrained so as not to be representative of generating processes that would be expected to 
produce data that would conform to the Newcomb-Benford profile. Here the research of Ley (1996); Nigrini and 
Mittermaier (1997); Durtschi, Hillison and Pacini (2004); Reddy and Sabastin (2012) and Lusk and Halperin 
(2014b) taken together suggest that Corrupted data generating processes often do not produce data that follows 
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the “natural” Newcomb-Benford profile. Another reason for selecting commercial data as reported in the firm’s 
financial statements is that most of the variables should be highly correlated which is a feature of base-invariance. 
Therefore, base-invariance will be a second accrual condition, to wit: that there is strong factor association 
among the selected variables.  

Specifically, we selected the two dimensions that are most often used in classifying organizations. The first has 
to do with the nature of the GAAP-USA Lens elected by the firm to record the results of operation over the 
accounting period. This impact-aspect of these elections is usually labeled: Discretionary Accruals or simply 
Accruals, made by management. These accruals are the way that management can create their conception of the 
organization as report in the financials using the variety of rules in the GAAP-Lens. For example, revenue 
recognition rules are surprisingly varied and management can opt to follow an “Aggressive” recognition 
recording perspective relative to recording/recognizing revenue in the short-term resulting in a relatively large 
revenue influx; alternatively management could adopt a relatively “Conservative” view of revenue recognition 
that would give a very different revenue profile for the organization. These discretionary GAAP-recording issues 
are usually argued in the MD&A section of the 10-K, (See EDGAR; Section 7 & 7a of the filed 10-K) and so 
have, usually, the approval of the certification auditors as well as the SEC. See the following early works where 
Discretionary Accruals are carefully discussed and illustrated: Dechow, Sloan, and Sweeney (1995); Frankel, 
Johnson, and Nelson (2002); Gul, Chen, and Tsui (2003); Hodgson and Praag (2006); Doyle, Ge, and McVay 
(2007); and Dechow, Hutton, Kim, and Sloan (2012).  

The specific set of definitions used in the category triage are offered by the CaptialCube Inc. as follows (Note 
1): 

First Category: Conservative or Aggressive application of Generally Acceptable Accounting Principles 
(GAAP):  

Conservative is defined as: “Company’s net income margin and percentage of accruals are both higher than peer 
median. Usually indicative of a company with “understated” income because of a conservative accounting 
policy.” 

Aggressive is defined as: “Company's net income margin is higher than peer median while the percentage of 
accruals is lower than peer median. Usually indicative of a company with an aggressive accounting policy.”  

Second Category: High or Low Accounting Fundamentals.  

Fundamentals is defined as: The Fundamental Analysis score is calculated by comparing the company's 
performance relative to peer companies across multiple attributes like relative valuation, valuation drivers, 
operations diagnostic, etc. The Fundamental Analysis score is computed daily, and incorporates the latest 
company and peer data as of the previous day.  

For the classification partition, we selected, on 26 Oct 2014, the CapitalCube reported data and cross-classified 
Fundamental with Aggressive and Conservative Accounting. Specifically, we then took the Highest and the 
Lowest Fundamentals score for each of the GAAP categories. This resulted in the following accruals: Low 
Fundamentals and Conservative Accounting (LFCA), n=43; High Fundamentals and Conservative Accounting, 
(HFCA) n=49; Low Fundamentals and Aggressive Accounting, (LFAA) n=53 and High Fundamentals and 
Aggressive Accounting, (HFAA) n=44. These four exclusive datasets will each be investigated for their 
Mixing-Transition profiles. For these four datasets, we selected at least one Income Statement variable and at 
least one Balance Sheet variable and then randomly added between two and five additional variables including 
also Cash Flow from Operations. This then generated the following four test sets that are presented in Table 3. 

 

Table 3. The four accrual datasets and the measurement variables (in millions) 

 Current 

Assets 

Total 

Assets 

Current 

Liabilities

Total 

Liabilities 

Gross 

Profit/Loss
COGS 

Cash Flow 

Operations

LFCA, n=43; EV:3.5(89%)  49.1  40.6 3.5  1.8 

HFCA, n=49; EV:5.7(95%) 3.5 7.8 1.6 3.9 2.6  1.2 

LFAA, n=53; EV:3.6(89%)  21.6  16.4 1.2  0.5 

HFAA, n=44; EV:4.1(82%) 0.7 1.6  0.8 0.6 0.07  

Source: Accrual Data. 

 

We then computed the usual Harman (1976) eigenvalues (EV) that pertain to the un-rotated factor matrix based 
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upon Pearson Correlation Coefficients. This is the test for a Base-Invariance effect. The values that are reported 
in the cells are the Mean values of these variables. As one can observe these four accrual sets are certainly 
reasonable characterizations of “typical” firms in the trading milieu. For example, these groups are “not in a 
Stressed Equity Position” as Total Assets on average are greater than Total Liabilities. Finally, for these variables 
over the four groups, the first eigenvalues are reported and the percentage of variance therein accounted for is 
reported. The second eigenvalues for all four groups had as their Range: (0.20 to 0.53) clearly arguing for 
base-invariance. For example, for the Low Fundamentals & Conservative Accounting partition (LFCA) we 
randomly selected: Total Assets; Total Liabilities; Gross Profit/Loss; and Cash Flow from Operations. The lead 
eigenvalue was 3.5 and accounted for 89% of the total variance. Given these datasets consider now the testing 
our expectation of the Hill-Mixing process.  

4. The Hill Mixing Process: Testing the Aggregation of Base Invariant Datasets 

Using the results of Nigrini and Mittermaier (1997) and Durtschi, Hillison, and Pacini (2004) that small datasets 
are likely to be Non-Conforming and, on the other side of the partition offered by Durtschi, Hillison and Pacini 
(2004) that, under the usual conditions, large dataset are likely to be Conforming, we first tested each of the 
individual variables of the four datasets for Conformity. Then we systematically but randomly aggregated the 
various individual datasets and then re-tested this aggregation for Conformity; we continued these aggregations 
until there was one final aggregated dataset that was tested for Conformity. Using the Bayes-conditional 
expectation, derived from the initial testing of the individual datasets, we then offer an inferential context for 
these aggregation results. Finally, given the inferential evidence that there was support for the Hill-Mixing effect, 
we conducted a robustness calibration of the final results. All of this information is reported following in Table 4. 

 
Table 4. The aggregation and staged results of the accrued datasets 

Datasets LFCA, n= 43 HFCA, n = 49 LFAA, n = 53 HFAA, n = 44 

NonConform% 2/4: 50% 6/6; 100% 3/4; 75% 4/5; 80% 

First Digits N= 171 N= 287 N= 211 N = 215 

1 0.309942 0.331010 0.312796 0.306977 

2 0.187135 0.184669 0.170616 0.162791 

3 0.128655 0.132404 0.137441 0.125581 

4 0.122807 0.108014 0.099526 0.111628 

5 0.052632 0.045296 0.080569 0.079070 

6 0.058480 0.062718 0.075829 0.046512 

7 0.040936 0.055749 0.033175 0.055814 

8 0.046784 0.045296 0.028436 0.055814 

9 0.052632 0.034843 0.061611 0.055814 

Results C:[3] C:[3] C:[4] C:[4] 

Source: Summary of Accrual Data. 

 

There are a variety of interesting results that may be gleaned from Table 4. We tested the conformity of the 
individual datasets for the four accrual groups. The Non-Conformity percentage of these tests, is noted as 
NonConform%. For example, for the Low Fundamentals and Conservative Accounting (LFCA) of the four 
datasets each of which had 43 observations at download (Total Assets, Total Liabilities, Net Profit/Loss & Cash 
Flow: Operations) two variable sets of the four or 50% tested to be Non-Conforming according to the BPP 
screening test and so is noted as: NonConform% 2/4: 50%. Along the last row is the same screening information 
for the First Digit Profile for the aggregation of all the data from the various variables in a particular data group. 
The number in () is the number of digits that were outside the BPP interval as presented in Table 2. For example, 
the LFCA group had a final aggregated sample size of N = 171 values greater than zero and for that aggregated 
dataset the First Digit Profile as noted in Col2 had (3) digits that were outside the BPP screening interval. See the 
Appendix for the details of this computation. Therefore, the LFCA was noted as a Conforming Dataset as: C(3). 
The principal result is that all four datasets after complete aggregation tested to be Conforming. The inferential 
test of this result is the simple Bernoulli test of the directional disposition in the binary space: C or NC. To fix 
the benchmark which is, of course, the Bayes conditional estimate, we took the dataset mix as downloaded from 
which the aggregate was formed. In this case we use the weighted average NonConform% over the four groups 
to determine the incidence of Conformity at download. In this case, the weighted average Conform% was: 23.04% 
(1-76.96%); this produced a p-value for finding four aggregate datasets that were Conforming in nature for the 
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usual Null of: p = 0.0028 to four places. This is certainly convincing evidence that:  

Mixing is associated with forming aggregate datasets that move from, in large part, Non-Conforming (in 
weighted average of 76.96%) to Conforming in nature. 
Another important result of this testing is the likely False Positive Investigation Error (FPIE) signal relative to 
electing extended procedures testing. Recall that the sample sizes at download were in the range (43 to 53) and 
had overall a Non-Conformity profile of 77%. However, as these datasets were downloaded from firms that were 
listed on trading exchanges their data was tested by the Audit LLPs and also scrutinized by the SEC. In this case, 
these datasets as reported are NOT likely to have warranted extended procedures testing. Therefore, if the auditor 
used the BPP to screen these datasets as downloaded, then the Auditor would make a FPIE, investigating when it 
is not likely to be warranted, about 77% of the time. This is of course due to the “small-sample size” tendency to 
Non-Conformity. Looking at the results of the aggregation for these datasets, there is no indication that extended 
procedures are in fact warranted–in fact, all of the four datasets tested to be Conforming and so the FPIE is likely 
to have been very low for the aggregation profile. Implication: The sample size Range for these four 
aggregation-datasets was (171 to 287). And so as one moves away from low sample sizes of around 50 to sample 
sizes around 250, one can expect the Hill-Mixing result to correctly produce a Conformity result thus reducing 
the FPIE dramatically. 

To enrich this result, we examined the robustness of this important validation of Hill’s Mixing proof as 
conditioned on base-invariance; we examined the Conformity of the four datasets in Table 3 using two other 
Conformity testing models and also for the Log10 benchmark where applicable. Consider now these results. 

5. Robustness Testing of the Principal BPP Result 

To effect this robustness testing, we used the following two models to make the decision if the observed First 
Digital profile ( ) is inferentially different from the BPP  or in some cases the Log10 ) profile: 

Model A: The  model where the test is: if {( ) and  or {( ) and )} are different in 
FD-profile using the standard marginal expectation projections over all 18 digits. In this regard, Lusk & Halperin 
(2014b) argue that if the overall  computed is > 15.507 which is the 95% inferential cut-off, that the dataset 
is Non-Conforming in nature. Also in this regard, the  sample size anomaly does not come into play as the 
sample sizes were projected using the upper limit suggested by Lusk & Halperin (2104b) of 440. 

Model B: This model uses the Nigrini (1996) z-test results and tests at what sample size does the 6th z-value 
move past 1.96. Lusk and Halperin (2014c) find that if this Critical Sample Size (CSS) is greater than their 
suggested triage point of 1,825, then the dataset is likely to be Conforming; and, if the CSS ≤ 1,825 then the 
dataset is likely to be Non-Conforming.  

Using these two models the robustness results are presented in Table 5. 

 
Table 5. Robustness testing of the Hill-Mixing result 

Datasets Low Conservative (LC) High Conservative (HC) Low Aggressive (LA) High Aggressive (HA) 

Overall  BPP 0.008798 0.018972 0.016098 0.012581 

Overall  Log10 0.006542 0.017087 0.013684 0.013108 

z-Test BPP 20,600 1,850 6,100 7,100 

z-Test Log10 23,100 6,100 7,850 4,850 

Source: Accrual Data. 

 

The Overall  values for the BPP or the Log10 profile relative to the ( ) profile is remarkably low 
considering that the partitioning value is: 15.507. In this case, the  test results argue strongly for Conformity 
to the benchmarks. Further, the Critical Sample Size for the Nigrini z-test equations is, in all cases, greater than 
the triage point of 1,825 indicating that the datasets are likely to be Conforming in nature. These tests confirm 
the low FPIE result presented for the BPP testing. The last aspect that we wish to present is the implication of the 
validation of the Hill-Mixing result for the auditor.  

6. Implications for the Auditor of the Hill-Mixing Results 

The important implication of the empirical validation of the Hill-Mixing results is the need to condition the 
expectation of the auditor. Recall, the purpose of Digital Frequency testing is to identify candidates for possible 
discovery sample testing–it is, essentially, a screening protocol to ferret out, in an effective and efficient way, 
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those accounts that may warrant extended procedures testing in the audit. For example if Non-Conformity is 
detected this may be interpreted as indicating that extended procedures are warranted in the execution of the 
certification audit. However, the results reported above argue that first the auditor must consider the size of the 
datasets, the Digital Frequency Profile (DFP) of which, has been developed. Small datasets, on the order of 50 
observations, do not seem to provide sufficient observations to “fill in the digital” Bins so that their DFP can 
move towards the N-B or the BPP profile. In this case, the auditor invites, to be sure, the FPIE of selecting an 
account based upon its Non-Conformity profile where such Non-Conformity is driven by the small sample size 
rather than by a corrupted data generating process. With the results reported above the auditor can avoid this 
small-sample FPIE-anomaly by aggregating base-invariant, that is correlated, datasets to derive a sample of on 
the order of 250 observations, and then test such aggregations for Non-Conformity. This, we argue, will better 
approximate the FPIE consistent with the risk level of the audit as determined at the Analytic Procedures stages 
of the audit.  

7. Summary, Conclusion and Outlook 

7.1 Summary 

The testing of the Hill-Mixing property has, for the datasets that we have collected, validated Hill’s elegant proof 
(Note 2) of the Newcomb-Benford curiosity that leads to the first digit frequency profile popularized in the audit 
context by Nigrini (1996). We find that the observation of Nigrini and Mittermaier (1997) and Durtschi, Hillison, 
and Pacini (2004) that there is a small-dataset anomaly that by extension invites the FPIE in the audit context 
seems a valid concern. Finally, our results are conditioned on the fact that we, following Hill’s results, used the 
base-invariance property to aggregate the small sample account dataset. Finally, we examined the robustness of 
these validation results by examining the DFP-nature of the finally aggregated datasets. In this regard, we used 
the DFT protocols that use the Overall  values for the BPP or the Log10 profile and the z-test calibration 
offered by Nigrini (1996).  

7.2 Conclusion 

The important recommendation that one may glean from these results is that aggregation of small correlated 
datasets of audit account variables, on the order of 50 observations, to form a single aggregate of at least 250 
observations or so will move in the direction of avoiding testing based upon Non-Conformity where such an 
indication seems to result from the small sample size and so invites the FPIE. 

7.3 Outlook 

These results need to be replicated extensively to refine the FPIE small-sample size anomaly which is now 
initially set at 250 observations. In this regard, if auditors would contribute small un-corrupted datasets, on the 
order of 50 observations, drawn from the audit context, we would post these datasets on our Commons web-link 
for other researchers in this exciting Digital Frequency Profiling milieu. Additionally, one would extend this 
testing to non-base invariant aggregations. Finally, testing of the False Negative Investigation Error (FNIE), 
failing to investigate when it is likely needed, could enhance the DFP information for the audit context. 
Collecting such FNIE information will be very challenging as it assumes that there are corrupted data generating 
processes and that such data is available. In fact, in the usual audit context, such data is used to effect corrective 
actions and so the generating process is corrected and often the data from the corrupted process is lost. Possibly 
the only way to generate such data is to take Non-Conforming DFP reported in the literature and using these 
profiles run simulations of various sizes to examine the FNIE effect (Note 3). 
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Notes 

Note 1. These CapitalCube definitions are found on: 
(http://www.capitalcube.com/blog/index.php/glossary/fundamental-analysis-score/) which we last accessed: 10 
Feb 2015. 

Note 2. The proof of the N–B observation as a general data generating process is challenging. In speaking of 
Hill’s theoretical proof of the First Digit Phenomena, Ken Ross, former president of the Mathematical 
Association of America, (2011, p. 571) offers: “The most successful seems to be Theodore Hill’s very nice, but 
sophisticated, analysis in Hill (1996). I found his analysis challenging, and I am reasonably acquainted with 
probability.” 

Note 3. In this regard, Lusk and Halperin (2014c) have offered a reasonably comprehensive list of 30 
Non-Conforming datasets that are part of the Decision Support System that they used in developing the 
information for this research paper. This set of data could be a valuable source of simulation information.  
 

Appendix A. Illustration of the Functioning of the Benford Practical Profile (BPP) Screening Interval  

Digit 
Lower Screening 

Boundary of the BPP 

Gross Profit from Low 

Conservative Digital Profile 

Upper Screening 

Boundary of the BPP 

1 0.275377 0.34884 0.303001 

2 0.179919 0.18605 0.209324 

3 0.111340 0.06977 0.141960 

4 0.074990 0.18605 0.106235 

5 0.059684 0.04651 0.091189 

6 0.048467 0.02326 0.080161 

7 0.038147 0.02326 0.070014 

8 0.038945 0.06977 0.070798 

9 0.034558 0.04651 0.066485 

Source: Accrual Data. 

 

Above we illustrate how the BPP was used in evaluating the digital profiles relative to their Conformity or 
Non-Conformity. We selected the dataset from the Low Fundamentals & Conservative Accounting (LFCA) 
where the Gross Profit was reported. This was a small dataset n = 43 and its DFP is reported in Col3. The DSS: 
Hill-Mixing evaluates these values relative to the Lower (Col2) and Upper (Col4) screening boundaries of the 
BPP. The shaded cells of the Gross Profit profile are NOT in the BPP. As there are six not in the BPP this dataset 
is labeled as Non-Conforming. All of the various datasets were so analyzed using the DSS: Hill-Mixing.  
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