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Abstract 
For the sake of a better cross-commodity arbitrage in the futures market, WNN (wavelet neural network) is 
adopted to analyze the previous spread and predict the future in this paper. Firstly, the correlation coefficient of 
previous prices between the two goods is calculated in order to examine whether there is arbitrage opportunity. 
Considered that the spread could be affected by many nonlinearity factors and BP neural network has slow 
convergence rat, BP neural network is combined with wavelet analysis which has excellent partial analysis 
ability.In this way, the prediction model about soya oil and soybean meal spreads is built based on WNN 
Compared the result calculated through that method with only BP neural network’s: WNN is superior to neural 
network in predicting rapid fluctuation and secular trend. 
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1. Introduction 
Cross-commodity arbitrage is a means of exchange through the unreasonable price difference between futures in 
order to make venture profits. Tang (2006) summarized various types of spread arbitrage, including 
intertemporal arbitrage, cross-market arbitrage and cross-commodity arbitrage. With the continuous development 
of China’s commodity futures market, cross-commodity arbitrage is appealing to investors, after calendar spread 
arbitrage and cross market arbitrage (Li, 2010). 

Ma (1988) had a research on gold’s and silver’s spot and futures market, finding that price have consistency in 
the two stages, where there are short-term arbitrage opportunities caused by spread. Tse and Booth (1995) 
studied the relationship between Treasury bonds futures and eurodollar futures, and the result is that there is a 
cointegration relationship between the two futures markets. Tian (2013) used market data to prove that there 
existed arbitrage opportunities relying on soybean crush, while he also noted that the market and trading risk 
should not be ignored owing to the immature domestic futures market. Effective analysis and trend prediction are 
important means of controlling price risk and getting revenues, which makes the domestic market continue to 
mature. 

Moving average method, exponential smoothing method and grey prediction are generally used to predict price 
changes in futures market. Due to nonlinear factors, such as economic policy and investor psychology, which 
could affect futures price, the results of traditional prediction method are unsatisfactory. Neural network, with 
strong nonlinear approximation, can deal with nonlinear relationship between input variables and output 
variables better (Wang, 2009). Grudnitski and Osburn (1993) used neural network to predict the spread between 
S&P index and gold price. Shaikh A. Hamid and Zahld Iqbal (2004) used neural network to predict the S&P 500 
index futures price. Neural network is likely to be caught into a local optimum in the learning process, so 
wavelet analysis with strong local analytical capacity is introduced to improve neural network, which makes the 
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Firstly, by analyzing the correlation between soya oil and soybean meal, arbitrage opportunity can be figured out. 
According to opening prices, high prices, low prices, closing prices, volumes and open interests,WNN and BP 
neural network are employed to predict the spread in the long term and short term. Then we compared the 
difference in precision between the two different methods. The result shows that WNN is superior to neural 
network in the process of long-term and short-term predictions. 

Although WNN is superior to neural network, it is necessary to improve accuracy of long-term prediction. 
because the number of factors that affects spread is more than that of individual commodity, and the spread is 
predicted merely according on opening price, high price low price and so on that, the information is not taken 
full useof.For sake of accurate prediction, more factors shoud be taken into consideration, such as import and 
export of related goods and interest rate. In additon, the prediction model should be connected with reality, so 
that the accuracy of it would be higher. 
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