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Abstract 
In this paper, we examine the most appropriate method for modeling and forecasting Gambia’s inflation rates. We 
investigate the statistical properties of the inflation data and specify two models namely seasonal autoregressive 
integrated moving average (SARIMA) and k-factor Gegenbauer Autoregressive Moving Average (k-factor 
GARMA). The first model seasonal ARIMA(1, 1, 1)(0, 0, 1)12 was selected using the H-K Algorithm developed by 
Hyndman and Khandakar (2008) and 3-factor GARM A from both the spectral density graph and further analysis 
of the residuals from the 3-factor Gegenbauer model. The in-sample characteristics such as the Akaike Criterion 
and Schwarz Criterion following estimation using the first data set show that the ARIMA(1, 1, 1)(0, 0, 1)12 
outperforms the 3-factor GARM A model. However, the second data set that was preserved and used for 
out-of-sample forecasting suggest that the 3-factor GARM A model outperforms the seasonal ARIMA(1, 1, 1)(0, 0, 
1)12 model in out-of -sample forecasting. Our results indicated that inflation in Gambia is stationary with 
long-memory behavior at three distinct frequencies. We also found that the k-factor GARMA outperforms the 
seasonal ARIMA in out-sample forecasting which may be ascribed to the forecast horizon been large and series 
strongly long-range dependent. 
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1. Introduction 
Inflation as defined by Webster (2000) is the persistent increase in the level of consumer prices or a persistent 
decline in the purchasing power of money. Inflation causes global concern because it can distort economic 
patterns when not anticipated. Inflation as described by Aidoo (2010) can cause uncertainty about the future 
price, interest rate, and exchange rate etc which as a result might increase the risk among potential traders and 
partners of a country. Inflation in The Gambia exhibit evidence of cyclical persistence justifying the use of a 
seasonal model such as SARIMA (seasonal autoregressive integrated moving average) which is an extension of 
the ARIMA model when the series contains both seasonal and non-seasonal behavior and a long memory 
model such as k-factor Gegenbauer autoregressive moving average (k-factor GARMA) in modeling it. 

A stationary process is said to be long memory if it exhibits a slowly decaying autocorrelation function (ACF), 
denoted ρ(n), approximated as follows: ρ(n) ≈ cp(n)n2d-1, as n tends to infinity, where cp(n) is a slowly varying 
function at infinity and d is the long memory parameter such that 0 < d < 1/2, and therefore the infinite sum 
Σ|ρ(n)| diverges. In an equivalent way, in terms of spectral analysis, a stationary process is said to be long 
memory if for some frequency λ ∈ [0, π] the spectral density becomes unbounded (Woodward et al., 2011). 
Forecasters need to take into account long-range dependence in modeling time series to obtain accurate results. 
In many economic and financial applications, time series often possess persistent cycles, especially when 
dealing with daily or monthly frequencies. To take into account this periodic and persistent behavior long 
memory models have been proposed which makes it possible to integrate a certain type of nonstationarity in 
modeling and therefore avoids a differentiation of the series which strongly reduces the available information 
set. Long-range dependence has been studied extensively and evidence of it can be found in many areas of 
applied statistics. For instance, the pioneer work of Hurst (1951) stems from problems dealing with hydrology, 
and later many authors analyzed river flows through long memory processes, see for instance Noakes et al. 
(1998) or Ooms and Franses (1998). More recently, researchers founded evidence of persistence in 



www.ccsenet.org/ijef International Journal of Economics and Finance Vol. 6, No. 10; 2014 

130 

telecommunication data (Taqqu et al., 1997) or in urban transport data (Ferrara & Guegan, 1999). However, 
most long memory applications concern financial time series such as stock market prices, exchange rates, 
inflation, etc. 

2. Literature Review 
Empirical researches have been carried out in the area of forecasting using Autoregressive Integrated Moving 
Average (ARIMA) models popularised by Box and Jenkins (1976). Junttila (2001), applied the Box and Jenkins 
(1976) approach to model and forecast Finnish inflation. Pufnik and Kunovac (2006) applied a similar approach 
to forecast short term inflation in Croatia. Alnaa and Ferdinand (2011) used ARIMA approach to predict 
inflation in Ghana. In their study, they used monthly data from June, 2000 to December, 2010 and found that 
ARIMA (6, 1, 6) is best for forecasting inflation in Ghana. An extended version of the Seasonal ARIMA, known 
as the Driftless Extended Seasonal ARIMA (DESARIMA) was introduced in a study by Pincheira and Medel 
(2012) to forecast inflation across 12 countries. Also, Barros and Gil-Alana (2012) employed a fractional 
approach (Autoregressive Fractionally Integrated Moving Average) to forecast inflation in Angola. Adjepong et 
al. (2013) considered the most appropriate short-term forecasting method for Ghana’s inflation: Seasonal 
ARIMA vs. Holt-Winters. They concluded by proposing the Seasonal-ARIMA process as the most appropriate 
short-term forecasting method for Ghana’s inflation. Recently Long-memory models have then become 
increasingly popular (Hassler and Wolters, 1995). (see, e.g., Chung & Baillie, 1993; Franses & Ooms, 1997). 
Much of the evidence supports the view that inflation is fractionally integrated with a differencing parameter 
that is significantly different from zero or unity (Sutcliffe, 1994). For instance, using US monthly data, Backus 
and Zin (1993) found a fractional degree of integration. They argued that aggregation across agents with 
heterogeneous beliefs results in long memory in the inflation process. Hasser (1993) and Delgado and Robinson 
(1994) provided strong evidence of long memory in the Swiss and Spanish inflation rates respectively. A new 
class of Fractionally Integrated Generalized AutoRegressive Conditionally Heteroskedastic (FIGARCH) 
processes was introduced by Baillie et al. (1996). Empirical evidence of long memory has also been found in 
monthly river flows (Ooms & Franses, 1998), stock market prices (Cheung & Lai, 1995), (Barkoulas & Baum, 
1996), Willinger et al. (1999) or exchange rates (Cheung, 1993), Bisaglia and Guégan (1998), Velasco (1999). 
Caporale and Gil-Alana (2011) modeled European inflation rates using Multi-Factor Gegenbauer Processes. 
Their findings show that inflation in France and Italy is nonstationary, but in the former country this applies to 
both the long-run and the seasonal frequencies, whilst for the latter the nonstationarity concerns exclusively the 
long-run or zero frequency, and the contribution of the long-range dependence in the seasonal structure is 
relatively small. For the UK, inflation seems to be stationary, though with a large component of long-memory 
behaviour, especially at the zero frequency. In the present study we model Gambia inflation rates which to the 
best of our knowledge have not been done before. We specify a seasonal autoregressive integrated moving 
average (SARIMA) model and k-factor Gegenbauer Autoregressive Moving Average (k-factor GARMA) model 
for the Gambia inflation rates and compare their in-sample characteristics and out-sample forecasting 
performances. Our results indicated that inflation in Gambia is stationary with long-memory behavior at three 
distinct frequencies. We also found that the k-factor GARMA outperforms the seasonal ARIMA in out-sample 
forecasting which may be ascribed to the forecast horizon been large and series strongly long-range dependent. 

The outline of this paper is as follows: section III describes the inflation data from the Central Bank of The 
Gambia. In section IV we present the two models namely seasonal autoregressive integrated moving average 
(SARIMA) model and k-factor Gegenbauer Autoregressive Moving Average (k-factor GARMA) model, section 
V deals with applications, and section VI gives a summary of our findings. 

3. Data Presentation 
The data was obtained from the Central Bank of the Gambia spanning the period January 1987 to June 2013 and is 
measured in percentages based on the consumer price index (CPI) of The Gambia. Figure 1 shows the graphical 
representations of realizations, distribution function, periodogram and the autocorrelation function.The spectral 
density is unbounded at the low frequencies and the autocorrelation function decay very slowly which suggest that 
the inflation series seems to be long memory process with fractional integration behavior. The periodogram 
exhibits three distinct spikes at the low frequencies and smaller peaks at other seasonal frequencies which are all 
indications that the inflation process in Gambia is possibly fractionally integrated with 0 < d < 1, i = 1, …, k where 
k is a finite integer indicating the number of seasonal structures. Patterns of seasonality are evident in the plot of 
the realizations and the autocorrelation function. 
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4. Model Presentation 
4.1 Seasonal ARIMA Model 

The extension of ARIMA model to the SARIMA model comes in when the series contains both seasonal and 
non- seasonal behavior. This behavior of the series makes the ARIMA model inefficient to be applied to the series. 
This is because it may not be able to capture the behavior along the seasonal part of the series and therefore 
mislead to a wrong order selection for non-seasonal component. 

If d and D are nonnegative integers, the {x} is a seasonal ARIMA(p, d, q)(P, D, Q)S process with period s if the 
differenced series yt = (1-B)d(1-B)Dxt is a casual ARMA process defined by: 

),0(~,)()()1()1)(()( 2σεεθφ WNBBxBBBB tt
s

Qqt
Dsd

pp Θ=−−Φ                (1) 

where 

)(...)(1)( 1 xxx pp φφφ −−−= , )(...)(1)( 1 xxx pp Φ−−Φ−=Φ  

)(...)(1)( 1 xxx qq θθθ +++=  and )(...)(1)( 1 xxx QQ Θ++Θ+=Θ  

Remark. Note that the process yt is casual if and only if 0)( ≠xφ and 0)( =Φ x  for 1|| ≤x . In applications d 
is rarely more than one and P and Q are typically less than three (Brockwell & Davis, 2002). 

To select the best SARIMA model we use an algorithm developed by Hyndman and Khandakar (2008) called the 

HK-algorith. 

4.2 The k-factor GARMA Model 

The k-factor Gegenbauer process (Xt)t∈Z is defined by the following quation:  

∏
=

=−+−
k

j
tt

d

j XBBvI j

1

2 )()2( εμ                        (2) 

where k is a finite integer indicating the maximum number of seasonal structures, where |vj|≤1 for j = 1, …, k, 
where dj’s are fractional values for j = 1, …, k, where μ is the mean of the process and where (εt)t∈Z is covariance 
stationary with mean zero and variance σε

2 (Gray et al., 1989). 

The k-factor GARMA model is defined by the following equation: 

∏
=
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j
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d
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1

2 )()()2()( εθμφ               (3) 

where 0 < d < 1/2, if |vj|<1 or 0 < d < 1/4 if |vj|=1 for all j = 1, …, k.  

(For stationarity and invertibility conditions refer to Gray et al. (1989)). 

To estimate the parameters of the k-factor GARMA model, we use in this study the Whittle approach as in 
Diongue and Guegan (2008). 

The first step involves estimating the long-memory parameters d=(d1, …, dk) and the ARMA(p, q) parameters 
),...,,,...( 11 pp θθφφα =  using Whittle's method. 
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Where IX(ωj) is the periodogram of the process (Xt)t=1
T and expressed as follows : 
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Table 5. Estimates of the ARIMA(1, 1, 1)(0, 0, 1)12 

Parameter Estimate Standard Error P-value 

Constant -0.014 0.0175  

Φ1 0.6128 0.0143 0.0000* 

θ -0.5941 0.0386 0.0000* 

Θ1 -0.5606 0.0383 0.0000* 

σε
2 2.0512   

Note. *** Parameters are statistically significant. 

 

 
Figure 3. Residual ACF and PAC 

 

The ACF of the residuals displayed in Figure 3 depicts that the autocorrelation of the residuals are approximately 
all zero, that is to say they are uncorrelated and the p-value for the Ljung-Box statistic in Table 6 clearly exceed 5% 
at lag 12, indicating that there is no significant departure from white noise for the residuals. The ARCH–LM test is 
used to test for constant variance. From the ARCH–LM test results shown in Table 7, we fail to reject the null 
hypothesis of no ARCH effect (homoscedasticity) in the residuals of the selected model. 

 

Table 6. Box-Ljung test of the null hypothesis of randomness for the residuals 

Lag Q’ P-value 

12 14.61 0.1024 

 

Table 7. ARCH–LM Test for homoscedasticity 

Model P-value 

ARIMA(1, 1, 1)(0, 0, 1)12 0.0659* 

Note. *Null hypothesis: no arch effect is present. 

 

The spectral density in Figure 1 is unbounded at the low frequencies which suggest that the inflation series 
seems to be a long memory process with fractional integration behavior (Woodward et al., 2011). The empirical 
ACF of the series in Figure 1 clearly shows a strong dependence between distant observations, as well as a 
cyclical behavior with a pretty long period. Moreover, the spectral density of the series clearly possesses three 
distinct peaks with the first peak having frequency located very close, but not necessarily equal, to zero which 
are all distinctive features of a weakly stationary Gegenbauer process. The properties of the data suggest using a 
3-factor Gegenbauer process to model inflation in Gambia. 

We assume the inflation series has the following specification: 

-0.2
-0.15
-0.1

-0.05
 0

 0.05
 0.1

 0.15
 0.2

 0  5  10  15  20  25  30

lag

Residual ACF

+- 1.96/T0.5

-0.2
-0.15
-0.1

-0.05
 0

 0.05
 0.1

 0.15
 0.2

 0  5  10  15  20  25  30

lag

Residual PACF

+- 1.96/T0.5



www.ccsenet.org/ijef International Journal of Economics and Finance Vol. 6, No. 10; 2014 

135 

∏
=

=−+−
3

1

2 )()2(
j

tt

d

j XBBvI j εμ                        (7) 

where λj=cos-1(vj), 0 ≤ λ ≤ π are called Gegenbauer frequencies. 

The following results were obtained from the estimation of the long memory model, the 3-factor Gegenbauer 
model. The parameter estimation is done using the parametric Whittles method. The three orders of integration are 
d1=0.117, d2=0.2744, d3=0.0831 with LLF = 1.9098. (See Figure 4 for the residual correlogram). 

 

 
Figure 4. ACF and PACF of the 3-factor Gegenbauer model 

 

From the autocorrelation function in Figure 4 it is obvious that the residuals are not white noise. An ARCH-LM 
test performed on the residuals fails to reject evidence of ARCH effect. We adjust various ARMA(p, q) 
specifications on the residuals and found ARMA(0, 1) to be most adequate with the parameter θ1= −0.654. 

From the autocorrelation function in Figure 4 it is obvious that the residuals are not white noise. 

 

 
Figure 5. Behavior of ACF and PACF the distribution of the estimated residuals 
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An ARCH–LM test performed on the residuals fail to reject evidence of ARCH effect. We adjust various ARCH(p, q) 
specifications on the residuals and found ARM A(0, 1) to be most adequate with the parameter θ 1 = -0.654. 

The resulting k-factor GARMA model is given below. 

tB

BBIBBIBBI

ε)654.01(

))9982.0(2())9951.0(2())9992.0(2( 2744.022744.020117.02

−=
+−+−+−          (8) 

We finally performed Box-Pierce and Ljung-Box- Pierce tests on the estimated residuals and found no evidence of 
autocorrelation in the model. 

5.2 Model Comparison 

When comparing the two models using the AIC, Schwarz Criterion, Hannan-Quinn Criterion and the standard 
deviation of innovation we obtain that the SARIMA model is better than the k-factor GARMA. See Table 8 for the 
in-sample characteristics of the two models. 

 

Table 8. In-sample comparison 
 

 SARIMA model 3-factor GARMA model 

Akaike Criterion 1081.3 1651.0 

Schwarz Criterion 1099.8 1662.1 

Hannan-Quinn Criterion 1088.7 1655.4 

S.D. of innovations 1.4601 3.7533 

 

To complete the study, we compare the forecasting performance of the two models using standard measures of 
forecast accuracy such as the following: the root-mean-squared error (RMSE), the mean-squared error (MSE), the 
mean absolute deviation (MAD) and Theil’s U (Brockwell & Davis, 1996). 

The data set was divided into two sets, the first set for model estimation and the preserved observations for out- 
of-sample forecasting. Table 9 shows the forecast evaluation statistics for both the ARIMA(1, 1, 1)(0, 0, 1)12 and 
3-factor GARMA model. The ARIMA(1, 1, 1)(0, 0, 1)12 recorded MSE, RMSE, MAE and Theil’s U of 1.3781, 
1.1739, 0.8674, and 4.4847 respectively while the 3-factor GARMA recorded MSE, RMSE, MAE and Theil’s U 
of 1.2320, 1.1100, 0.9870 and 0.0952 respectively. The 3-factor GARMA has the minimum values of MSE, 
RMSE, and Theil’s U compared to the seasonal ARIMA(1, 1, 1)(0, 0, 1)12 and model, hence we conclude 3-factor 
GARMA performs better than the seasonal ARIMA model in out-of-sample forecasting. 

 

Table 9. Forecast results for monthly Gambia inflation time series 

Models MSE RMSE MAE Theil's U 

Seasonal ARIMA 1.3781 1.1739 0.8674 4.4847 

3-factor GARMA 1.232 1.11 0.987 0.0952 
 

6. Summary and Conclusion 
In this study we investigate the statistical properties of the Gambia inflation rates and specify two models namely 
seasonal autoregressive integrated moving average (SARIMA) and k-factor Gegenbauer Autoregressive Moving 
Average (k-factor GARMA). We divided the data set into two and fit ARIMA(1, 1, 1)(0, 0, 1)12 and 3-factor 
GARM A to the first data set of inflation series. The first model seasonal ARIMA(1, 1, 1)(0, 0, 1)12 was selected 
using the H-K Algorithm developed by Hyndman and Khandakar (2008) and 3-factor GARMA from both 
spectral density graph and further analysis of the residuals from the 3-factor Gegenbauer model. The in-sample 
characteristics such as log-likelihood, Akaike Criterion, Schwarz, Hannan-Quinn, and S.D. of innovations 
following estimation show that the ARIMA(1, 1, 1)(0, 0, 1)12 and outperforms the 3-factor GARMA model. The 
second data set (preserved) was used for out-of-sample forecasting and the forecast evaluation statistics such as 
the MSE, RMSE, and Theil’s U suggest that the 3-factor GARMA model outperforms the seasonal ARIMA(1, 1, 
1)(0, 0, 1)12 model in out-of-sample forecasting. Our results indicated that inflation in Gambia is stationary with 
long-memory behavior at three distinct frequencies. We also found that the k-factor GARMA outperforms the 
seasonal ARIMA in out-sample forecasting which may be ascribed to the forecast horizon been large and series 
strongly long-range dependent. 
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It is important to note that the SARIMA methodology has certain limitations. For instance, it requires large 
number of observations for model identification and sometimes estimation and selection involves some form of 
art. Also, differencing the series in the case of nonstationarity may reduce the available information set. However, 
the model is parsimonious with respect to the coefficients and good in providing unconditional forecasts. 

Note also that the number of peaks to be chosen in the spectral density for the Gegenbauer model remains 
unclear and must be investigated. 
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Appendix A 
Softwares Used in the Study. 

Matlab, R software, Stata, Spss, Gretl. 
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