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Abstract 
We attempt to forecast inflation and output gap of Pakistan using Bayesian VARs. We implement three different 
priors for this purpose. Analysis in this paper is conducted using Monetary Aggregates and Credit macro 
variables in order to forecast Output Gap and CPI Index based measure of Inflation. Output Gap used in our 
analysis is estimated in a State–Space framework using Kalman filter. Literature suggests that Bayesian 
shrinkage is an appropriate tool for forecasting using large number of Macro Economic variables. In addition, 
appropriate Prior selection is fundamental to robust forecasting in Bayesian VARs; in this backdrop, the 3 types 
of Priors implemented in our analysis are; 1: Minnesota Priors, 2: Independent Normal–Wishart Priors and 3: 
Independent Minnesota–Wishart Priors. Estimation and forecasting is conducted in conformity with Koop and 
Korobilis (2009). Diagnostics of Bayesian VAR models and robustness of forecast estimates show that Bayesian 
VARs provide robust forecasts and have suitable structural interpretation. This conclusion is especially relevant 
considering that Bayesian methods provide inherent solution to circumvent the problem of multicollinearity and 
over parameterization. 
Keywords: Bayesian VAR, forecasting, monetary VAR, Kalman Filter 

1. Introduction 
Linear stochastic difference equations or commonly Vector Auto Regression are standard tools at the disposal of 
macro econometric researcher for forecasting and analysis. VARs provide both flexibility of model elicitation 
and the ability to capture intricate data linkages and relationships. This ease of model representation involves 
probable presence of model misspecification, multicollinearity, over parameterization, loss of degrees of freedom. 
In order to circumvent these issues VARs are generally implemented in a parsimonious variables setting. 

Recently the use of Bayesian methods in time series has heralded in a new era of robust estimation, structural 
analysis and modeling complex inter-linkages. Litterman (1979) presented a new and revolutionary method of 
VAR specification. Litterman (1979) proposed biased estimation of VARs in order to avoid the problems of large 
sampling errors and the problem of multicollinearity (see also Doan, Litterman, & Sims, 1984; Litterman, 1986a). 
He introduced a method similar to Ridge regression (Hoerl & Kennard, 1970); Stein rule estimators (Stein, 1974), 
whereby prior information is incorporated in the model estimation. He argues that this may be interpreted as a 
form of Bayesian estimation, which entails incorporation of prior distribution for parameters for which the 
biased estimators (like Minnesota Priors) represent the posterior mean. Colloquially this VAR representation can 
be understood as one that uses prior information along with the data for robust estimation. See the next section 
for a detailed presentation. 

Litterman’s implementation of Bayesian methods to VAR representation has been interpreted in literature to be 
Quasi-Bayesian as he assumes the variance of the parameters to be known. This methodology greatly simplifies 
the task of estimation, as Bayesian estimation is notoriously hard and time intensive, consider for example a 
situation where analytical joint posteriors of the parameters are not available, in this case inference is carried out 
by first integrating out the conditional posteriors of all the parameters and then using a sampling technique, like 
importance sampler, particle sampler, Metropolis-Hastings Algorithm, Gibbs sampler, etc for drawing inference. 

With the advent to fast computing hardware and software, Bayesian methods have gained popular use in all 
fields of study, particularly in Economics, see Hamilton, J. D. (2006). A vast range of priors can now be 
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implemented for estimation and structural analysis based on researcher’s prior knowledge and research needs. 

In out paper we implement 3 different priors for forecasting inflation and Output gap in Bayesian VAR 
methodology. Out of the three prior methods the latter two have complex posterior forms; i.e. analytical 
posteriors for Independent Normal–Wishart priors and Independent Minnesota–Wishart Priors are not available. 
We therefore utilize a Gibbs sampler consistent with Koop and Korobilis (2009) for obtaining inference. 

The discussion on forecast results shows that our methodology and in-sample forecasts are robust. Finally, we 
discuss model diagnostics for comparison of the three models and conclude there from.  

The paper is structured as follows; next section discusses the relevant literature on Bayesian methods in VARs, 
section 3 discusses the model as well as prior elicitation, along with the information about the use of data sets for 
the study while section 4 concludes by stating the model findings, results and interpretation. 

2. Literature Review 
Linear stochastic difference equations or common acronym Vector Auto Regression (VAR) specifications mainly 
suffer from the caveat of probable presence of multicollinearity and over parameterization (Litterman, 1979). 
This problem which impacts the model specification as well as forecast accuracy is exacerbated in the presence 
of data set which is characterized by low range. Earliest Bayesian VAR specifications are based on theory 
compliant with Ridge regressions (Hoerl & Kennard, 1970), Stein Rule estimators, see Stein (1974), and 
ridge-type estimators in uni-variate autoregressive context as Swamy and Rappaport (1975). These studies 
demonstrate that they generate biased estimators which possess statistically smaller Mean Squared Errors (MSEs) 
than OLS estimates. 

Ridge estimators are argued to overcome large sampling error problem generally associated with 
multicollinearity by adding prior information to the existing data that; larger coefficients signify that they are 
more unreasonable, thereby implying that inherently ridge regression aims to penalize the unreasonably large 
estimation coefficients by “shrinking” then towards zero. Therefore this class of estimators is also called 
Shrinkage estimators and the respective priors are termed as “Shrinkage Priors”. 

Litterman (1979) and Litterman (1980) argue that each of the above stated estimators have Bayesian 
interpretation, whereby the researcher specifies the prior distribution for the parameters of interest and the 
posterior mean based on the priors can be interpreted as posterior biased with respect to priors. Essentially these 
procedures imply estimates based on data as well as researcher’s prior beliefs on the subject matter. 

Collectively Ridge estimators or Stein rule estimators are analogous in their treatment of multicollinearity and 
large sampling estimation errors by incorporating prior information in the regression equation; however they 
differ in the metrics through which the ‘shrinkage’ is applied. Below we present the various ridge regression 
methods along with the one implemented by Litterman(1979) in his novel study. 

The normal linear model can be stated as; ܻ ൌ ߚܺ ൅ ,ሺ0ܰ~ߝ ,ߝ  ଶሻ                                (1)ߪ
Ridge estimators can be expressed as; ߚ∗ ൌ ሺܺᇱܺ ൅ ܭ ሻିଵܺᇱܻ, Whereܫܭ ൐ 0                         (2) 

These estimators may be classified as posterior means corresponding to priors illustrated in the representation; ߚ ൌ ܰሺ0, ܭ ሻ, withܫଶߣ ൌ ଶߪ ⁄ଶߣ ; where ߪଶ and ߣଶ are assumed to be known. 

Stein class of estimators is similar to ridge estimators and can be stated as; ߚ∗ ൌ ሺܺᇱܺ ൅ ܭ ᇱܺሻିଵܺᇱܻ, Whereܺܭ ൐ 0                          (3) 

Where the prior is assumed to be defined as; ߚ ൌ ܰሺ0,  ଶሺܺᇱܺሻሻߣ

Initial application of Bayesian VARs or Bayesian VARs implementing the Minnesota / Litterman priors are in 
essence similar to a related and similar type of Stein estimators given by Leamer (1972). Where Leamer (1972) 
He considers a geometrically decaying response pattern in the model below; ܻ ൌ ߙ ൅ ଴ܺ௧ߚ ൅ ଵܺ௧ିଵߚ ൅ ଶܺ௧ିଶߚ ൅ ⋯ ൅  ௡்ܺ                        (4)ߚ

Where; ܧሺߙሻ ൌ ௜ሻߚሺܧ ,଴ߙ ൌ ሻߙሺݎܸܽ ,௜ݎ݉ ൌ ௝൯ߚ௜ߚ൫ݒ݋ܥ ,ଶܽߣ ൌ  ሺ௜ା௝ିଶሻݎሺ௜ି௝ሻݓଶߣ
Litterman (1979) simplified the task of computation and specification of priors by deriving the matrix of 
coefficients through Bayesian methods while he assumed constant variance of the coefficients which is also 
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assumed to be known, thereby drastically decreasing the task of computation. The above treatment of shrinkage 
priors proposed by Litterman (1979) in essence of Leamer (1972), implies that as lag length increases the 
coefficients of these lags are scaled to have tight marginal distributions around zero, in effect the farther the lag, 
the least its explanatory weight in the VAR regression equation. Leeper, Sims and Zha (1996), Sims and Zha 
(1998) and Robertson and Tallman (1999) implement Bayesian VARs similar to Litterman (1986a and 1986b), 
they conclude that such priors can be used effectively to circumvent typical problems with VARs, also Bayesian 
VARs exhibit robust forecast performance. 

The assumptions of Litterman have since 1970a been developed and expanded in many directions. Kadiyala and  

Marta B., Domenico G., & Lucrezia R. (2008), Koop and Korobilis (2009) extend the initial Litterman’s Priors 
by relaxing the assumption of a known diagonal error variance-covariance term. 

Kadiyala and Karlsson (1993, 1997) are of particular importance as they consider 4 different classes of 
distributions used to parameterize the prior beliefs. Particularly Kadiyala and Karlsson (1997) conclude that the 
priors based on Normal-Wishart priors and the Minnesota Priors exhibit robust forecasting performance. 

Karlsson S. (2012) and Koop and Korobilis (2009) provide extensive and concise representation of a host of 
prior selection, computation, forecasting and model diagnostics. 

Further developments on prior elicitation include examples like Giannone, Lenza and Primiceri (2012) and 
George, Sun and Ni (2008) these papers illustrate hierarchical priors, i.e. prior based on a prior; this is a prior 
structure which is influenced by the data, thereby providing “objective” selection procedure for prior selection. 

As argued earlier, incase both the coefficients and their variances are assumed to be unknown, then the 
researcher has to specify probability distributions of both coefficients and their variances, the same holds for 
posterior distribution and for forecasting. With the introduction of fast computing hardware and software at 
researcher’s disposal a lot of head way has been achieved in economic structural analysis and forecasting. 

3. Methodology, Data and Estimation 
Relevant literature for Bayesian VARs identify a wide set of priors methodologies available for implementation 
in various scenarios. Assumptions for probability distribution, hyper-parameters and posterior sapling methods 
differentiate one BVAR method from another. In this essence we perform a structural exercise on the impact of a 
Monetary Policy shock from a Monetary Aggregates channel on Output Gap and Inflation, in line with Marta, 
Domenico and Lucrezia (2008). In all we utilize three types of Priors for estimation and forecasting of Inflation 
and Output Gap. 

Output Gap estimates are obtained using State-Space framework for quarterly total Output series and then using 
cubic-spline interpolation method for obtaining output gap for Pakistan economy on monthly basis (see 
Appendix 1).  

Monetary and Credit variables used in the BVARs are ordered as follows; Discount Rate (Policy rate set by the 
Central Bank of Pakistan i.e. State Bank of Pakistan (SBP)), Reserve Money (M0), Broad Money (M2), Public 
Sector Borrowing (PSB), Private Sector Credit (PSC), Output Gap and CPI Inflation. All variables are used on 
monthly frequency and used at level. This paper implements the statement methodology for VARs from Koop 
and Korobilis (2009) and Lutkepohl (2007). 

The main rationale for implementing this methodology using monetary aggregates is to access the dynamic 
relationship of discretionary Monetary policy in controlling inflationary tendencies in Pakistan. Discount rate is 
assumed to curb inflationary pressures though monetary aggregates, which are assumed to impact the credit 
appetite of the Government borrowing (PSB) leading to increase of decrease in credit off take by the private 
sector (PSC), which ultimately translates in changes in Aggregate Demand (Output Gap), leading to changes in 
CPI inflation. 

1: Minnesota Priors; 

2: Independent Normal - Wishart Priors; 

3: Independent Minnesota–Wishart Priors. 

We elaborate first the VAR notation methodology to simplify the BVAR elicitation. VAR with p number of lags 
can be denoted as; ݕ௧ ൌ ܽ௢ ൅ ∑ ௧ି௝ݕ௝ܣ ൅  ௧                                  (5)ߝ

Where; 
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ݐ ௧: Forݕ ൌ 1, … , ܶ is a ܯ ൈ 1 vector of observations about M number of variables. ܽ௢: ܯ ൈ 1 vector of intercepts; ܣ௝: ܯ ൈ ܯ :௧ߝ ;matrix of coefficients ܯ ൈ 1 vector of errors assumed to be ݅݅݀~ܰሺ0, Σሻ; 

We can write the VAR in matrix notation following the convention in Canova (2007), i.e. let ܻ be a ܶ ൈ  ܯ 
matrix which stacks the ܶ observations on the ܯ variables in columns next to each other, let ݔ௧ ൌ ሺ1, ௧ିଵᇱݕ , … , ௧ି௣ᇱݕ ሻ                                  (6) ܺ ൌ ሺݔଵ, ,ଷݔଶݔ … ,  ሻᇱ                                  (7)்ݔ

Note that, if we let ܭ ൌ  1 ൅  ܭ ݔ ܶ be the number of coefficients in each equation of the VAR; ܺ is a ݌ܯ 
matrix. Also let, ܣ ൌ ሺߙ଴ ܣଵ … ߙ ௣ሻ′ andܣ ൌ ൈ ܯܭ ሻ therefore isܣሺܿ݁ݒ  1 matrix which stacks all the VAR 
coefficients and the intercept into a vector; therefore we can write the VAR as; ܻ ൌ ܣܺ ൅  ܧ

Or,  ݕ ൌ ሺܫ ⊗ ܺሻߙ ൅  (8)                                    ߝ

Where ε is ݅݅݀~ܰሺ0, Σሻ, Likelihood function can be derived from the sampling density ܲሺߙ|ݕ, Σሻwhich can be 
solved as one distribution for ߙ given Σ another where Σିଵ has a Wishart distribution. ߙ|Σ, ,ොߙሺܰ~ݕ Σ ⊗ ሺܺ′ܺሻିଵሻ                                (9) 

And; Σିଵ|ݕ~ܹሺܵିଵ, ܶ െ ܭ െ ܯ െ 1ሻ                            (10) 

Where; ߙො ൌ መܣ መ൯ andܣ൫ܿ݁ݒ ൌ ሺܺ′ܺሻିଵܺ′ܻ and ܵ ൌ ൫ܻ െ መ൯′൫ܻܣܺ െ  መ൯ܣܺ

3.1 Minnesota Priors 

Economists at the University of Minnesota and the Federal Reserve Bank of Minneapolis in 1980s laid the 
foundations for great simplification in prior elicitation and evaluation (for reference in great detail see Doan, 
Litterman, & Sims (1984); Litterman, 1986b). The simplification sighted is that in the case of replacing Σ with 
an estimate Σ෠ doing so greatly reduces the computational burden as in this case analytical posterior and 
predictive densities are available for further analysis and forecasting. In the context of Bayes’ Theorem, It can be 
seen that the task of estimation is much simplified as there only remains prior elicitation for the case of α. For 
more information and examples of implementation of BVAR analysis in a Minnesota Prior setup refer to 
Banbura et al. (2010), Koop and Korobilis (2009) for excellent discussion. The original Minnesota Priors (see 
Doan, Litterman, Sims (1984) simplify the task of selection of an appropriate Σ෠ by choosing the matrix Σ from 
an OLS estimate. Banbura et al. (2010) conclude that implementation of Minnesota Priors in BVARs leads to 
robust forecasts, even in the scenario of large number of variables in the VAR. In its essence Minnesota Priors 
(Litterman (1986)) assume all VAR equations to be “centered” i.e. following random walk with drift; ௧ܻ ൌ ܿ଴ ൅ ௧ܻିଵ ൅  (11)                                    ߤ

Meaning that, in the VAR connotations, individual elements of coefficient matrix converge or “Shrink” towards 
1 (Note 1). Technically utilizing a suitable Σ෠ the diagonal elements of coefficient matrix A୨ are shrunk towards 
one and the off diagonal elements are sought to be shrunk towards zero, doing so is advantageous in two major 
aspects; 

1: Shrinking diagonal elements to 1 would lead to own lags to exhibit more explanatory power in VAR. 

2: The impact of recent lags gets more weight in explanation of the dependent variable of the VAR. 

The above objective is achieved by utilizing the following methodology;  
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    Figure 1a. Predictive density for output gap             Figure 1b. Predictive density for inflation 

Nov-2013, Minnesota priors                       Nov-2013, Minnesota priors 

௞ሻ௜௝൧ܣሺൣܧ  ൌ ൜ߪ௜,      ݆ ൌ 1, ܭ ൌ  (12)                               ݁ݏ݅ݓݎ݄݁ݐ݋           ,10

VൣሺA୩ሻ୧୨൧ ൌ ۔ە
௔భ௥మۓ ,ݎ ݈݃ܽ ݊ݓ݋ ݊݋ ݏݐ݂݂݊݁݅ܿ݅݁݋ܿ ݎ݋݂        , ݎ ݁ݎ݄݁ݓ ൌ 1, … , ௔మఙ೔೔௥మఙೕೕ                        ݌ ݆ ݈ܾ݁ܽ݅ݎܽݒ ݂݋ ݎ ݈݃ܽ ݊݋ ݏݐ݂݂݊݁݅ܿ݅݁݋ܿ ݎ݋݂       , ് ݅, ݎ ݎ݋݂ ൌ 1, … ,   (13)                                                                                ݏ݈ܾ݁ܽ݅ݎܽݒ ݏݑ݋݊݁݃݋ݔ݁ ݎ݋݂       ,௜௜ߪଷܽ݌

Prior elicitation for the case of ߙ is illustrated below, let; ߙ ~ ܰሺߙெ௡, ெܸ௡ሻ                                   (14) 

The Minnesota priors therefore simplify the task of specification of matrix ܸ by choosing three scalars ܽଵ, ܽଶ, ܽଷ . The above specification allows for coefficient shrinkage towards zero and hence circumvents the 
over-specification or over-fitting problem of VARs with more than 3 or 4 variables. In this manuscript we use the 
following values in the BVAR methodology; ܽଵ ൌ 0.9, ܽଶ ൌ 0.5, ܽଷ ൌ 100                            (15) 

Moving on the next step is the posterior formulation; One of the major advantages of Minnesota priors is that 
posterior inference involves only Normal Distribution, thus we can state; ݕ|ߙ ~ ܰሺߙெ௡, ܸெ௡ሻ                                 (16) 

Where; ܸெ௡ ൌ ቂV୑୬ିଵ ൅ ቀΣ෠ିଵ ⊗ ሺX′Xሻቁቃିଵ                          (17) 
α୑୬ ൌ V୑୬ቂ ெܸ௡ିଵ. ெ௡ߙ ൅ ൫Σ෠ିଵ ⊗ X൯ᇱݕቃ                         (18) 

Using the monthly data at hand on the 7 variables described earlier we evaluate the BVAR with Minnesota priors, 
as with most VAR analyses the coefficients are not of primary concern, so we present here only the one period 
ahead forecast performance, see Table 1 and Figures 1a and 1b for details. For discussion on the results see 
Results section below. 

3.2 Independent Normal-Wishart Prior and 3.3 Independent Minnesota-Wishart Priors 

Development of Independent Normal-Wishart prior first appeared in the work of Zellner (1971) in the context of 
Seemingly Unrelated Regression Models, where he showed that marginal posterior for the matrix of coefficients 
can be expressed in a bi-modal stricture of Normal and Student’s t distribution. 

Let us express the advantages of implementing an independent prior setup as compared with a conjugate prior 
selection method. Natural Conjugate Priors impose an important restriction of dependence of probability 
distributions, doing so restricts the VARs to contain the exact same number of variables and lags, also, in Natural 
conjugate priors the prior covariance of the coefficients in any two equations is proportional to one another. 
However, Independent Normal-Wishart priors assume that VAR coefficients and the error covariance matrix to 
be “independent” of one another. This would lead to allow for the researcher to implement another variation of 
Priors i.e. Independent Minnesota-Wishart Priors. Theoretical underpinnings of the Independent Normal-Wishart 
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priors can be stated below. As we allow for VAR equations to contain different coefficients, we must change the 
notation pertaining to the VAR framework, following Koop and Korobilis (2009) and Karlsson (2012), 

Here let ߚ be the matrix of VAR coefficients such that; ݕ௠௧ ൌ ௠௧ᇱݖ ௠ߚ ൅  ௠௧                                   (19)ߝ

Where; ݕ௠௧: Is the ݐ௧௛ observation on the ݉௧௛ variable. ݖ௠௧ᇱ : Is the vector of dimensions ݇݉ ൈ 1 containing the ݐ௧௛ observation of explanatory variables for the ݉௧௛ variable. ߚ௠: Is the vector of dimensions kmx1 containing the coefficients conformable to ݖ௠௧. 

Allowing for VARs with variable number of explanatory variables allows the researcher to impose automatic 
restrictions and also to allow for the desirable property of shrinkage of coefficients to zero. This is the major 
advantage of Independent Normal-Wishart Prior method over the Natural Conjugate priors. Moving on, we can 
thus write; 

 

 
    Figure 2a. Predictive density for output gap             Figure 2b. Predictive density for inflation 

Nov-2013, independent normal-Wishart priors         Nov-2013, independent normal-Wishart priors 

௧ݕ  ൌ ሺݕଵ௧, … ௧ߝ ௠௧ሻᇱ                                   (20)ݕ ൌ ሺߝଵ௧, … , ߚ ெ௧ሻ′                                  (21)ߝ ൌ ሺߚଵ, … , ெሻ௞௫ଵᇱߚ                                  (22) 

ܼ௧ ൌ ൦ݖଵ௧ᇱ0⋮0
…⋰ଶ௧ᇱݖ0

⋯⋱⋱0
ெ௧ᇱݖ0⋮0 ൪

ெ௫௞
                               (23) 

Where; ݇ ൌ ∑ ௝݇ெ௝ୀଵ , We can therefore write the VAR (which may possible be implemented in a restricted form) 
as; ݕ௧ ൌ ܼ௧ߚ ൅  ௧                                  (24)ߝ

Where; ݕ௧ ൌ ሺݕଵ, … , ߝ ,ሻᇱ , also்ݕ ൌ ሺߝଵ, … , ܼ ሻᇱ , including்ߝ ൌ ሺܼଵ, … , ்ܼሻᇱ 
And finally; ݕ ൌ ߚܼ ൅ ,ሺ0ܰ~ߝ ,ߝ ܫ ⊗ Σሻ                            (25) 

Utilizing the above notation that allows for VARs to be stated in the form of Restricted VARs we can now state 
the methodology for the Independent Normal-Wishart priors, Let; ݌ሺߚ, Σିଵሻ ൌ  ሺΣିଵሻ                           (26)݌ሻߚሺ݌ 

Distributed as; ߚ~ܰ ቀߚ,  ఉܸቁ and Σିଵ~ܹሺܵିଵ,  .ሻݒ

It is interesting to note here that we implement in our analysis two types of versions of the prior 
variance-covariance matrix ఉܸ; 
Independent Normal–Wishart Priors we utilize the following convention; ఉܸ ൌ  . ௄ெܫ10
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Independent Minnesota–Wishart Priors we implement the Minnesota Prior for ߙ (see equations 11–18). 

Inference in Independent Normal-Wishart Priors and Independent Minnesota-Wishart Priors is computationally 
demanding as the joint posterior densities are not analytical and the inference must be carried out by first 
analytically integrating the conditional posterior distributions ݌ሺݕ|ߚ, Σିଵሻ  and ݌ሺΣିଵ|y, βሻ  and thereafter 
using a type of Metropolis-Hasting algorithm, in this manuscript we implement a Gibbs sampler to draw 
inference of the Joint posterior densities. The Gibbs sampler used here is referenced in Koop, G. & Korobilis, D 
(2009). In order for Gibbs sampler to draw from the conditional distributions we specify them as; 

A: Conditional distribution for ݌ :ߚሺݕ|ߚ, Σିଵሻ; ݕ|ߚ, Σିଵ~ܰሺߚ, ܸఉሻ                                (27) ܸఉ ൌ ൣ ఉܸି ଵ ൅ ∑ ܼ௧ᇱΣିଵܼ௧௧்ୀଵ ൧ିଵ
ߚ (                               ൌ ܸఉ ቂ ఉܸି ଵߚ ൅ ∑ ܼ௧ᇱΣିଵݕ௧௧்ୀଵ ቃ                           (29) 

B: Conditional Distribution for Σିଵ: ݌ሺΣିଵ|y, βሻ; Σିଵ|ݕ, ܹ~ߚ ቀܵିଵ,  ቁ                               (30)ݒ

Where; ݒ ൌ ܶ ൅ ܵ (31)                                    ݒ ൌ ܵ ൅ ∑ ሺݕ௧ െ ܼ௧ߚሻሺݕ௧ െ ܼ௧ߚሻᇱ௧்ୀଵ                         (32) 

From here on a Gibbs sampler (Note 2) is used to draw sequentially from the Normal ݌ሺݕ|ߚ, Σିଵሻ and Wishart ݌ሺΣିଵ|y, βሻ. A Gibbs sampler is used to draw 10000 samples for the posterior distribution; the first 2000 are 
discarded as burn-in draws in conformation with relevant econometrics literature. In order to arrive at a point 
forecast; Predictive mean is used here. ܲ݊ܽ݁ܯ ݁ݒ݅ݐܿ݅݀݁ݎ ; ఛ|ܼఛሻݕሺܧ ൌ ∑ ܼ௧ߚሺ௥ሻோ௥ୀଵ ܴ⁄                       (33) 

 

 
    Figure 3a. Predictive density for output gap             Figure 3b. Predictive density for inflation 

Nov-2013, independent Minnesota-Wishart priors    Nov-2013, independent Minnesota-Wishart priors 

 

For Predictive mean of one period ahead forecast of Potential Output and Inflation, and their standard deviation 
please refer to Figure 2a, 2b, 3a and 3b and Table 1 and 2. 

4. Results and Discussion 
The results described in the following Tables 1 and 2 are based on predictive draws estimated by the Gibbs 
sampler implemented for the three different priors. The forecasting exercise and the results thereof are conducted 
in sample, i.e. we use monthly sample of the range 1991M01–2013M11 for the seven variables in order to 
forecast the values of inflation and Output gap for the month of December 2014. 

As discussed above, implementation of Minnesota prior simplifies the computational process whereby 
effectively the researcher only specifies the priors on the matrix of coefficients. Therefore the Minnesota prior 
representation of Bayesian VAR has analytical posterior and predictive densities. The posterior density in this 
prior setup effective comprises 500000 draws, whose mean represents the equivalent of point estimate for 
Bayesian analysis. See Table 1 and 2. 
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The last two Bayesian VARs based on Independent Normal-Wishart Priors and Independent Minnesota Wishart 
Priors are computationally demanding as described earlier. We therefore use a Gibbs sampler to obtain posterior 
densities for these two priors. The Gibbs sampler is programmed to draw 10000 draws from the predictive 
density, and in accordance with the literature first 2000 draws are discarded as burn-in draws. 

Figures 1, 2 and 3 represent the predictive mean or Bayesian forecast for inflation and Output gap for the month 
of November 2013. All three methods yield reasonable and acceptable magnitude of forecast error (see Tables 
below). Where Bayesian VAR incorporating Independent Normal-Wishart Priors yields the least MSFE among 
the three methods proposed here. 

 

Table 1. CPI inflation forecast (YOY) for Nov–2013 using data range Jan–1991 to Sep–2013 

Priors 
Lag 

Length 

CPI Inflation Forecast 

for Nov–2013 

Actual Value 

for Nov–2013
MSFE MAE 

Log Predictive 

Likelihood 

Minnesota Priors 5 11.7 10.9 0.57 -0.76 -44.90 

Independent Minnesota Wishart Priors 5 11.7 10.9 0.72 -0.85 -42.86 

Independent Normal Wishart Priors 5 11.1 10.9 0.06 -0.24 -41.96 

 

Output gap forecast from the three Bayesian VARs also yield robust predictive densities, signified by the 
relatively tight distribution of draws and the low magnitude of standard deviation (see Figures 1, 2, 3). Although 
all three VAR methods exhibit good overall performance, MSFE of Independent Minnesota-Wishart Priors 
appears to be least, which signifies this prior as a better candidate for forecasting in the horizon ahead. 

Concluding we can observe from Table 1 and 2 that Bayesian VARS based on Independent Normal Wishart 
priors and Independent Minnesota-Wishart Priors perform better in comparison with Minnesota prior based 
VAR. 

This is exemplified by the Log Predictive Likelihood, the value of the former two models is significantly better 
than the corresponding value of the Minnesota prior based Bayesian VAR. 

 

Table 2. Output gap forecast for Nov–2013 using data range Jan–1991 to Sep–2013 

Priors 
Lag 

Length 

CPI Inflation Forecast 

for Nov–2013 

Actual Value 

for Nov–2013
MSFE MAE 

Log Predictive 

Likelihood 

Minnesota Priors 5 -8.23 -5.60 6.94 -2.63 -44.90 

Independent Minnesota Wishart Priors 5 -5.99 -5.60 0.15 -0.39 -42.86 

Independent Normal Wishart Priors 5 -8.57 -5.60 8.80 -2.97 -41.96 
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Notes 

Note 1. For more explanation on coefficient “Shrinkage” see Litterman (1986a). 

Note 2. For details on Gibbs sample utilized in the current analysis see appendix and for further reference Koop, 
G., & Korobilis D (2009). 

Note 3. Abdullah Tahir (2014). Estimating the Output Gap of Pakistan on Quarterly frequency using Structural 
Methods. International Journal of Economics and Finance, Vol. 6, No. 5. 233–243. 

Note 4. Quarterly estimates of real GDP are obtained using temporal disaggregation of annual real GDP using 
quarterly LSM index series as described in Enrique Q. (2005) and the accompanying Euro Trim software library. 
In all 5 different methods of temporal disaggregation of annual real GDP are implemented and simple average of 
the estimates from these 5 methods at each point in time is used for further analysis in the Bayesian VARs. 

Note 5. YoY : Year on Year; 

MSFE: Mean Squared Forecast Error; 

MAE: Mean Absolute Error. 
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Appendix A 
We implement a typical State Space representation utilizing real GDP (RGDP) and Inflation as observed 
variables and model RGDP as comprising a trend and cycle. Implementing standard assumptions on polynomials 
of lags in trend and cycle of real GDP series; trend is assumed to be modeled as ܴܣሺ1ሻ, while cyclical 
component is modeled as ܴܣሺ2ሻ. A typical Phillips curve equation is also included in the estimation. This 
representation is estimated by means of Kalman filter (Note 3). ௧ܻ ൌ ௧ܻ௧௥௘௡ௗ െ ௧ܻ௖௬௖௟௘                                 (34) ௧ܻ௧௥௘௡ௗ ൌ ௧ܻିଵ௧௥௘௡ௗ ൅ ௧ିଵߤ ൅ ߳௧                             (35) ௧ܻ௖௬௖௟௘ ൌ ߬ଵ ௧ܻିଵ௖௬௖௟௘ ൅ ߱௧                               (36) ߤ௧ ൌ ௧ିଵߤ ൅ ߰௧                                   (37) ߨ௧ ൌ ߬ଶߨ௧ିଵ ൅ ߬ଶߨ௧∗ ൅ ߬ଷ ௧ܻିଵ௖௬௖௟௘ ൅ ߮௧                         (38) 
Where ߳௧, ߰௧, ߱௧, ߮௧ are Gaussian white noise terms with variances ߜఢଶ, టଶߜ , ఠଶߜ , ఝଶߜ  respectively. 

௧ܻ is real GDP, ௧ܻ௧௥௘௡ௗ is trend component of real GDP, ௧ܻ௖௬௖௟௘is cyclical component of real GDP, ߨ௧ is CPI 
Inflation, ߨ௧∗ is the target level of Inflation. 

The methodology adopted here is consistent with that in Harvey (1985), Watson (1986) Vineet (2004), Michal 
Anderle (2013) (Note 4). 
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