
International Journal of Economics and Finance; Vol. 16, No. 4; 2024 

ISSN 1916-971X   E-ISSN 1916-9728 

Published by Canadian Center of Science and Education 

45 

 

Volatility of Precious Metals: The Case of Platinum and Palladium 

Ioannis Karakostas
1
, Ioannis Papanastasiou

1
, Simeon Papadopoulos

1
 & Dimitrios Giantsios

1 

1
 School of Accounting and Finance, University of Macedonia, Thessaloniki, Greece 

Correspondence: Ioannis Karakostas, School of Accounting and Finance, University of Macedonia, Thessaloniki, 

Egnatias 156, Thessaloniki 546 36, Greece. E-mail: karakostasgr@gmail.com 

 

Received: January 10, 2024         Accepted: February 29, 2024         Online Published: March 5, 2024 

doi:10.5539/ijef.v16n4p45          URL: https://doi.org/10.5539/ijef.v16n4p45 

 

Abstract 

This paper investigates the relationship between the returns and their volatilities for Platinum and Palladium, by 

applying the known long-memory Fractionally Integrated-GARCH models. The SKEWED-FIAPARCH 

(1,d,1)-C seems to be the most suitable for modeling the volatility of Platinum’s and Palladium’s returns since 

we find that the returns of both metals are persistent processes over time. Our analysis suggests that the volatility 

of one metal negatively affects the returns of the other metal, while positive spillovers exist between them. It is 

also apparent that the effect of the volatility of platinum returns on the volatility of palladium returns is greater. 

Keywords: volatility, returns, GARCH models, precious metals 

1. Introduction 

In modern economies, precious metals (e.g., Gold, Silver, Platinum, and Palladium) are considered viable 

investment alternatives for asset allocations (Folger, 2021). The investment community usually classifies 

precious metals as commodities whose prices are determined by the market’s forces of demand and supply since 

they are assets with similar physical production and storage processing to broader commodity sectors such as 

energy, agriculture, and base metals. Unlike commodities, however, they also tend to act as currencies. 

Macroeconomic and monetary factors such as interest rates, exchange rates, and inflation affect their prices in 

the market (Vigne, Lucey, O’Connor, & Yarovaya, 2017). These distinctive properties make them an asset class 

separate from base commodities (Baur & Lucey, 2010). 

In this paper, we investigate the volatility of Platinum and Palladium. Platinum is traded 24 hours a day on 

global commodity markets and is usually more expensive than Gold because of its scarcity. Many factors affect 

its price, but the most important is the concentration of its mines in South Africa and Russia (Baur & Lucey, 

2010). These areas have a relatively high political risk, affecting its international supply and, therefore, its price. 

Platinum is mainly used as a catalyst in car manufacturing, with the demand from the automobile industry 

amounting to approximately 41% of its international production. It is also used in jewelry manufacturing. 

Platinum’s use in coinage and investment accounts amounts to approximately 11% of its international production 

(Rand, 2021). Investing in Platinum can be achieved by buying/selling Platinum futures or by purchasing shares 

of ETFs. 

Palladium is a lesser-known metal with a plethora of industrial uses. It is used at several stages of manufacturing 

processes, particularly for electronic and industrial products. Most of the world’s metal supply comes from mines 

in the USA, Russia, South Africa, and Canada (Vesborg & Jaramillo, 2012). Demand is a critical factor that 

affects its price in international markets (McVey, 2018). The price of Palladium reached a 17-year high in 2017, 

surpassing even the price of Platinum for the first time since 2001. Investors can invest in it by buying or selling 

shares of Palladium-focused ETFs. 

Many academic studies have been motivated by the need to produce trustworthy estimates of correlations among 

financial variables (Engle, 2002). Some standard methods for estimating correlations are the rolling average 

historical correlations and the correlation produced by the exponential smoothing approach. The multivariate 

generalized autoregressive conditional heteroscedasticity approach (GARCH) and the stochastic volatility 

approach are modern and more advanced techniques used widely in the econometric literature (Engle, 2002). 

Existing literature has focused on the temporal variation in financial markets’ volatility (Bollerslev, 1986). The 

two most essential parameterizations that prevailed in it were the Generalized ARCH (GARCH) developed by 

Bollerslev (1986) and the Exponential GARCH (EGARCH) introduced by Nelson (1991). However, this 
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literature provides limited information regarding the variables that should be considered in determining the 

observed time variation in the conditional variances (Bollerslev, 1986). Especially for precious metals, their price 

volatility is influenced by several variables that are still less studied and understood. In contrast, the research 

concerning the factors affecting the pair-wise correlation of their prices is sparse (Zhang, Chang, Saliba, & 

Hasnaoui, 2022). This paper tries to fill this gap in the literature by investigating the relationship between the 

return and volatility of Platinum and Palladium. This study is among the first to model the volatility of these 

metals’ returns using long-memory Fractionally Integrated-GARCH models. This is an essential element because 

the accurate estimation of the return and volatility features of Platinum’s and Palladium’s returns is crucial since 

alterations in their time-series structures can lead investors to great economic exposure (Diaz, 2015).     

In the following section, we review the existing literature, while in Section 3, we describe our sample and 

present the results of statistical tests for modeling the volatility of the returns of these metals. In section 4, we 

describe our methodology, and in section 5, we analyze our results. Finally, in the last section, we present our 

conclusions. 

2. Literature Review 

Modeling and predicting financial data volatility has become increasingly popular recently (Zakaria & Winker, 

2012). Volatility estimations are essential in a plethora of economic and financial applications, including 

portfolio management, risk management, asset pricing, and investing in general (Niyitegeka & Tewar, 2013; 

Zakaria & Winker, 2012; Parvaresh & Bavaghar, 2012). For example, volatility estimations are an indispensable 

prerequisite in derivatives instrument pricing or in estimating the hedging ratio of hedge funds in the market 

(Engle, 2002). Stock market investors are also interested in analyzing information and obtaining knowledge 

about the nature of stock market volatility. Excessive volatility can entail enormous losses or gains and 

increasing uncertainty (Parvaresh & Bavaghar, 2012). 

Since the early 1980s, many models that estimate the conditional volatility of financial assets have been 

developed (Zakaria & Winker, 2012). The generalized conditional heteroscedastic models are the most popular 

(Zakaria & Winker, 2012). The Autoregressive Conditional Heteroscedasticity (ARCH) model, introduced by 

Engle (1982), was used in analyzing and simulating financial time series with time-varying conditional variance. 

Bollerslev (1986) improved and extended this model and introduced the generalized ARCH model (GARCH). 

Since the development of ARCH and GARCH models, there have been several empirical applications for 

modeling the volatility of financial time series. However, the standard GARCH models, when utilized with 

skewed data, could lead to misleading findings (Salisu & Fasanya, 2012). Therefore, new variants of these 

models appeared in the literature (e.g., GJR-GARCH, EGARCH) to alleviate this problem (Aliyev, Ajayi, & 

Gasim, 2020). 

The majority of the empirical applications of these GARCH-type models concern the prediction of the volatility 

of the daily stock returns (Niyitegeka & Tewar, 2013; Peters, 2001; Karmakar, 2005; Banumathy & Azhagaiah, 

2013; Zakaria & Winker, 2012; Abd El Aal, 2011; Parvaresh & Bavaghar, 2012; Md. Qamruzzaman, 2015). 

Some of these models, especially GARCH (1,1), GARCH-M (1,1), exponential GARCH (1,1), threshold 

GARCH (1,1), and power GARCH (1,1), seem to be more frequently applied among all the GARCH family 

models (Ahmed & Naher, 2021). This is attributed to the fact that GARCH (1, 1) and GARCH-M (1, 1) are 

models that indicate the symmetry of previous shocks. In contrast, the other two models represent asymmetrical 

effects (Ahmed & Naher, 2021).  

Precious metals have gained increasing interest over the last few years. The possible effects of the globalization 

of the precious metals markets drew researchers’ attention to better understand the predictability and asymmetric 

volatility properties of platinum and palladium (Diaz, 2016). Its price volatility and the continuous rise of prices 

tend to entice individual and corporate investors (Zhang et al., 2022). Volatility in the prices of those metals is 

the outcome of the volatility of their demand in the market (Zhang et al., 2022). Therefore, proper forecasting is 

crucial since it can affect policy decision-makers and entrepreneurs’ current and future investment and 

production choices (Bernard, Khalaf, Kichian, & Mcmahon, 2008). 

Hammoudeh and Yuan (2008) found that short-term interest rates affect precious metals’ return and volatility. 

According to Batten and Vo (2015), macroeconomic factors, including the business cycle, the monetary 

environment, and market sentiment, affect Palladium’s price more than other precious metals. Using data from 

China and India, Mo, Gupta, Li, and Singh (2018) concluded that factors such as GDP and inflation rate tend to 

affect the precious metals market positively. Using the ARCH method, Zhang et al. (2022) examined the price 

volatility of precious metals between 2012 and 2020, including the incredibly unexpected and unstable 

COVID-19 pandemic era. They concluded that Palladium prices are most likely to be affected by adverse shocks.   



ijef.ccsenet.org International Journal of Economics and Finance Vol. 16, No. 4; 2024 

47 

Liberda (2017) indicates that financial variables such as interest rates, exchange rates, stock returns, and crude 

oil returns significantly impact precious metal markets more than macroeconomic variables such as GDP growth, 

inflation, and industrial production. The equity indexes negatively influence metals’ returns (Zhang et al., 2022). 

Moreover, financial variables explain the fluctuation of Platinum and Palladium prices better than that of Gold 

and Silver (Liberda, 2017). 

Recently, an increasing number of studies (e.g., Klein, 2017; Klein & Walther, 2022) have explored the influence 

of adverse events like the European Debt Crisis or the 9/11 terrorist attack on the correlation among the returns 

of precious metals. The Gold/Silver pair seems to respond quite differently than that of Palladium/Platinum to 

market shocks, whereas Platinum acts as a temporary haven during market uncertainty (Zhang et al., 2022; Klein 

& Walther, 2022). 

3. Data 

The data set includes the daily closing prices of Platinum and Palladium from January 5, 1977, to October 15, 

2021, in order to calculate their respective daily returns. Consequently, 11, 249 daily returns for each of Platinum 

and Palladium are included in our sample. In Table 1, we present the descriptive statistics for the daily returns of 

the two precious metals. Platinum has an average daily return of about 0.02%, while Palladium has a daily return 

of about 0.03%. The Jarque-Bera (JB) test statistic provides evidence for rejecting the null hypothesis of 

normality for the return distributions of the two metals and favoring a skewed, heavy-tailed distribution for the 

metals’ returns. 

 

Table 1. Descriptive statistics of daily returns 

 PLATINUM PALLADIUM 

 Mean 0.000 172 0.000 329 

 Median 0.000 584 0.000 656 

 Maximum 0.111 762 0.229 381 

 Minimum -0.123 158 -0.238 152 

 Std. Dev. 0.016 043 0.020 237 

 Skewness -0.267 925 -0.249 116 

 Kurtosis 6.790 578 10.241 90 

 Jarque-Bera 6869.211 24 697.78 

 Probability 0.000 000 0.000 000 

 Sum 1.936 511 3.701 772 

 SumSq. Dev. 2.894 806 4.606 439 

 Observations 11 249 11 249 

Note. This table includes average statistics for the daily returns of the two metals. 

 

Figure 1 depicts the prices and the daily returns of Platinum and Palladium. Both metals fluctuate substantially 

over time. Platinum peaked in the second half of the 2000s, while Palladium did so recently. 

 

Figure 1. Time series plots of prices and daily returns for Platinum and Palladium (5/01/1977-15/10/2021) 
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To check for autocorrelation in our sample, we also performed the Box-Pierce and Ljung-Box statistic tests. 

More accurately, the Q-statistic for these two tests is estimated for 5, 10, 20, and 50-time lags. The results of 

these tests are shown in Tables 2 and 3, respectively. According to our findings, the null hypothesis of 

uncorrelated price changes for both metals is rejected. Evidence of no autocorrelation at 50-time lags is only 

present for Platinum.    

 

Table 2. Box-Pierce Q-Statistic 

LAGS PLATINUM PALLADIUM 

5 16.3883   [0.005 818 5] 92.0668   [0.000 000 0] 

10 23.6878   [0.008 473 7] 100.156   [0.000 000 0] 

20 36.1387   [0.014 813 5] 112.766   [0.000 000 0] 

50 56.6447   [0.240 981 1] 155.631   [0.000 000 0] 

Note. This table includes the results from Box-Pierce statistic for the metals’ returns using 5, 10, 20, and 50 lags. Probability values are inside 

the brackets. 

 

Table 3. Ljung-Box Q-Statistics 

LAGS PLATINUM PALLADIUM 

5 2521.59   [0.000 000 0] 28.6313   [0.000 027 4] 

10 4286.28   [0.000 000 0] 30.3474   [0.000 751 4] 

20 6869.98   [0.000 000 0] 41.9141   [0.002 837 8] 

50 12 597.0   [0.000 000 0] 71.1328   [0.026 359 3] 

Note. This table includes the results from the Ljung-Box statistic for the metals’ returns using 5, 10, 20, and 50 lags. Probability values are 

inside the brackets. 

 

Long memory is a common feature of financial variables. Since any evidence of long memory would support the 

use of long memory-based volatility models, testing for long memory qualities is crucial. As a result, we 

conducted the Hurst exponent (1951) and Lo (1991) tests to check for the presence of long memory components 

in these precious metals’ daily returns. The results of these tests are shown in Table 4, suggesting that metals’ 

returns are persistent processes, and that small shocks tend to influence future returns for a long time. 

 

Table 4. Long Memory Tests 

 PLATINUM PALLADIUM 

Hurst exponent 0.552 67    [0.008 234 8] 0.570 66   [0.009 136 0] 

Generalized Hurst exponent 0.553 473 [0.008 132 08] 0.570 265 [0.009 068 19] 

Lo R/S test (q=1) 1.3179 1.37882 

Lo R/S Test Critical Values:  90%[0.861, 1.747], 95% [0.809, 1.862], 99% [0.721, 2.098] 

Note. This table includes the results of the Hurst, Generalized Hurst exponent, and Lo R/S long memory tests for the metals’ returns. 

Probability values are inside the brackets. In the last row, confidence intervals are in the brackets.  

 

The findings presented in Tables 5 and 6 are consistent with volatility persistence for both metals’ returns. As a 

result, this empirical study is in favor of predicting the volatility of metal returns using ARCH-based models. 

 

Table 5. F-Tests 

LAGS PLATINUM PALLADIUM 

1-2 582.43 [0.0000] 429.01 [0.0000] 

1-5 320.17 [0.0000] 222.68 [0.0000] 

1-10 185.32 [0.0000] 164.84 [0.0000] 

Note. This table includes the results of the F-test for the two metals. Probability values are inside the brackets. 

 

Table 6. Box-Pierce Q-Statistics on Squared data 

LAGS PLATINUM PALLADIUM 

5 2521.59   [0.0000] 92.0668   [0.0000] 

10 4286.28   [0.0000] 100.156   [0.0000] 

20 6869.98   [0.0000] 112.766   [0.0000] 

50 12 597.0   [0.0000] 155.631   [0.0000] 

Note. This table includes the results of the Box-Pierce Q-Statistics on squared data for the two metals. Probability values are inside the 

brackets. 



ijef.ccsenet.org International Journal of Economics and Finance Vol. 16, No. 4; 2024 

49 

In Tables 7-9, we conduct unit root tests for stationarity. The results for the Augmented Dickey-Fuller test (ADF) 

are summarized in Table 7. We perform the test both for the prices and for the logarithmic returns of the two 

metals, both with a constant and with a linear time trend. The processes of the metals’ prices are not stationary at 

the 5% level; therefore, we cannot reject the null hypothesis of the unit root existence. However, both metals’ 

return time series are stationary. The same conclusions are reached by applying the Phillip-Perron (PP) and the 

Kwiatkowski–Phillips–Schmidt–Shintest (KPSS) tests for stationarity. 

 

Table 7. ADF Tests 

PRICES PLATINUM PALLADIUM 

Constant -1.915 043 [0.3256] 0.332 888 [0.9800] 

Constant and Linear trend -2.472 032 [0.3422] -1.130 102 [0.9226] 

RETURNS PLATINUM PALLADIUM 

Constant -70.863 40 [0.0001] -97.065 01[0.0001] 

Note. This table includes the results of the Augmented Dickey-Fuller test (ADF) for the prices and returns of the two metals. Probability 

values are inside the brackets. 

 

Table 8. PP Tests 

PRICES PLATINUM PALLADIUM 

Constant -1.930 124 [0.3256] 0.309 285 [0.9788] 

Constant and Linear trend -2.500 933 [0.3277] -1.187 760 [0.9120] 

RETURNS PLATINUM PALLADIUM 

Constant -101.7817 [0.0001] -96.934 51 [0.0001] 

Note. This table includes the results of the Phillip-Perron (PP) test for the prices and returns of the two metals. Probability values are inside 

the brackets. 

 

Table 9. KPSS Tests 

PRICES PLATINUM PALLADIUM 

Constant 8.595 631 [< 0.01] 7.375 878 [< 0.01] 

Constant and Linear trend 1.036017 [ < 0.01] 1.438 593 [ < 0.01] 

RETURNS PLATINUM PALLADIUM 

Constant 0.107 921 [> 0.1] 0.052 959 [> 0.1] 

Note. This table includes the results of the Kwiatkowski–Phillips–Schmidt–Shintest (KPSS) test for the prices and returns of the two metals. 

Probability values are inside the brackets. 

 

4. Methodology 

In this section, we present some fractionally integrated GARCH-type volatility models to examine whether a 

long memory exists in the daily volatility of these metals’ returns. Then, these volatility models are ranked 

according to the information criteria of Akaike (AIC), Shibata (SIC), and Hannan–Quinn (HQC). Also, the 

log-likelihood value is used for the same purpose. 

In the following volatility models, we assume that the mean process for the metals’ return has the following 

form: 

                                                                                𝑟𝑡 = 𝜇𝑡 + 𝜀𝑡                                      (1) 

where  𝑟𝑡  is the metals’ return at time t, 𝜇𝑡  is the conditional mean of 𝑟𝑡 , and 𝜀𝑡  are identically 

normally-distributed residuals with zero-mean and time-dependent variances.  

We initially used the Fractionally Integrated GARCH model (FIGARCH-BBM) introduced by Bailiie, Bollerslev, 

and Mikkelsen in 1996. Under the FIGARCH(1,d,1)-BBM approach, the conditional variance of 𝜀𝑡 in equation 1 

is modeled as:   

        𝜎𝑡
2 = 𝜔 + 𝛽1𝜎𝑡−1

2 + ,1 − 𝛽1𝐿 − (1 − 𝜙1𝐿)(1 − 𝐿)𝑑-𝜀𝑡
2                    (2) 

where 𝐿 is a lag operator and 0 ≤ 𝑑 ≤ 1 is the fractional differencing parameter.   

According to Chung (1999), the method of parameterization of the FIGARCH model of Baillie et al. (1996) has 

a specification problem, among other weaknesses. So, we also used Chung’s specification of the FIGARCH 
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model [FIGARCH (1, d, 1)-C] in order to model the conditional variance of the  𝜀𝑡 in equation 1. The 

conditional variance of 𝜀𝑡 is written as: 

                         𝜎𝑡
2 = (1 − 𝛽)𝜎2 + 𝛽1𝜎𝑡−1

2 + ,1 − 𝛽1𝐿 − 𝜙1𝐿*1 + 𝑙𝑛( 𝛼)(1 − 𝐿)𝑑+-(𝜀𝑡
2 − 𝜎2)          (3) 

where 𝐿 is a lag operator and 0 ≤ 𝑑 ≤ 1 is the fractional differencing parameter. The 𝜎2 is the unconditional 

variance of 𝜀𝑡. 

The idea of fractional integration has been extended to other GARCH types of models, including the Fractionally 

Integrated EGARCH (FIEGARCH) of Bollerslev and Mikkelsen (1996), the Fractionally Integrated APARCH 

(FIAPARCH-BBM) of Tse (1998), and the FIAPARCH-C of Chung (1999).The conditional variance of 

𝜀𝑡  according to the FIEGARCH (1, d, 1) model is given by: 

       𝑙𝑛( 𝜎𝑡
2) = 𝜔 + 𝛽1 𝑙𝑛( 𝜎𝑡−1

2 ) + ,1 − 𝛽1𝐿 − (1 − 𝜙1𝐿)(1 − 𝐿)𝑑-,𝛾1𝜀𝑡−1 + 𝛾2(|𝜀𝑡−1| − 𝐸|𝜀𝑡−1|)-        (4) 

where 𝐸|𝜀𝑡−1| represents the expected value of the residuals at time t-1 and |𝜀𝑡−1| the absolute value of the 

residuals at time t-1. L again is a lag operator and 0 ≤ 𝑑 ≤ 1 is the fractional differencing parameter. 

According to the FIAPARCH-BBM (1, d, 1) model, the conditional variance of 𝜀𝑡 is given by: 

 𝜎𝑡
𝛿 = 𝜔 + 𝛽1𝜎𝑡−1

𝛿 + ,1 − 𝛽1𝐿 − (1 − 𝜙1𝐿)(1 − 𝐿)𝑑-(|𝜀𝑡| − 𝛾𝜀𝑡)𝛿              (5) 

and the variance dynamics according to FIAPARCH-C model are:  

                       𝜎𝑡
𝛿 = 𝛽1𝜎𝑡−1

𝛿 + 𝜎2(1 − 𝛽1) + ,1 − 𝛽1𝐿 − (1 − 𝛼1𝐿)(1 − 𝐿)𝑑-,(|𝜀𝑡| − 𝛾𝜀𝑡)𝛿 − 𝜎2)         (6) 

where in equations 5 and 6, the parameter 𝛾 is the asymmetry coefficient, and δ is the power term of the 

long-memory persistence. 𝐿 is a lag operator and 0 ≤ 𝑑 ≤ 1 is the fractional differencing parameter. The 𝜎2 is 

the unconditional variance of 𝜀𝑡.We also estimated the previous FIAPARCH-C model by assuming that the 

residuals 𝜀𝑡 follow the skewed Student’s t-distribution (SKEWED-FIAPARCH (1, d, 1)-C model).        

Davidson (2004) extended the conditional variance of the FIGARCH model by introducing weights to the 

difference operator (HYGARCH), and we used this approach for our volatility modeling. Thus, the conditional 

variance of the residuals  𝜀𝑡  according to the HYGARCH (1, d, 1) model is: 

𝜎𝑡
2 = 𝜔 + 𝛽1𝜎𝑡−1

2 + ,1 − 𝛽1𝐿 − 𝜙1𝐿*1 + 𝑙𝑛( 𝛼)(1 − 𝐿)𝑑+-𝜀𝑡
2                     (7) 

𝑤ℎ𝑒𝑟𝑒 𝐿 is a lag operator and 0 ≤ 𝑑 ≤ 1 is the fractional differencing parameter. 

Next, we estimate the following linear equations to examine the relation between the volatility of Platinum and 

Palladium’s returns. The equations are written as: 

  𝑉𝑃𝐿𝑡 = 𝑐1 + 𝑏1𝑉𝑃𝐴𝑡 + 𝑢1,𝑡                                  (8) 

𝑉𝑃𝐴𝑡 = 𝑐2 + 𝑏2𝑉𝑃𝐿𝑡 + 𝑢2,𝑡
                             (9) 

where 𝑉𝑃𝐿𝑡 and 𝑉𝑃𝐴𝑡are the volatilities of Platinum and Palladium’s returns at time t respectively. The 

𝑢1,𝑡   and 𝑢2,𝑡 are the zero-mean expected residuals of equations 8 and 9 respectively.  

To further examine the possibility of spillover effects, equations 8 and 9 are extended by taking into account the 

ARCH effects for the residuals. We also include the squared residuals of the SKEWED-FIAPARCH-C model as 

an explanatory variable. Thus, our models’ metals’ returns are written as: 

𝑅𝑃𝐿𝑡 = 𝑐1 + 𝑏1𝑅𝑃𝐴𝑡 + 𝜁1𝑒𝐴,𝑡
2 + 𝜀1,𝑡 

                                                   𝜎1,𝑡
𝛿1 = 𝜔1 + 𝛽1𝜎1,𝑡−1

𝛿1 + 𝜙1(|𝜀1,𝑡−1| − 𝛾1𝜀1,𝑡−1)
𝛿1

+ 𝜓1𝑒𝐴,𝑡
2                  (10) 

𝑅𝑃𝐴𝑡 = 𝑐2 + 𝑏2𝑅𝑃𝐿𝑡 + 𝜁2𝑒𝐿,𝑡
2 + 𝜀2,𝑡 

    𝜎2,𝑡
𝛿2 = 𝜔2 + 𝛽2𝜎2,𝑡−1

𝛿2 + 𝜙2(|𝜀2,𝑡−1| − 𝛾2𝜀2,𝑡−1)
𝛿2

+ 𝜓2𝑒𝐿,𝑡
2                   (11) 

where 𝑅𝑃𝐿𝑡 and 𝑅𝑃𝐴𝑡 are the Platinum and Palladium’s returns at time t respectively while 𝑒𝐴,𝑡 and 𝑒𝐿,𝑡 are 

the Platinum and Palladium residuals from the SKEWED-FIAPARCH-C model respectively at time t. The 

entities 𝜀1,𝑡 and 𝜀2,𝑡 are the zero-mean expected error terms for equations 10 and 11 respectively. 

Finally, a multivariate model is estimated to investigate the covariance between the volatilities of the two metals’ 

returns. More specifically, the multivariate VARFIMA (1,d,1)-FIAPARCH(1,d,1)-DCC model is used. The 

model may be written as: 

(1 − 𝐿)(1 − 𝐿)𝑑1(𝑦𝑡 − 𝜇) = (1 − 𝐿)𝜀𝑡      

  𝜀𝑡   = 𝛨𝑡
1/2

𝑧𝑡                                       (12) 

where ty is the vector of daily returns of the metals, 𝜇 is the vector of the conditional means of ty , 𝜀𝑡  is an error 
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vector with zero mean, 𝛨𝑡  is the conditional variance-covariance matrix, and 𝑧𝑡 is a vector of t-distributed 

random variables with zero mean and identity variance-covariance matrix. The conditional variance-covariance 

matrix can be split as 𝛨𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡 , where 𝑅𝑡 is the conditional correlation matrix, and 𝐷𝑡  is a diagonal 

matrix with its diagonal elements being the standard deviations ℎ𝑖𝑡
1/2

obtained from the FIAPARCH(1,d,1) model: 

                                              𝜎𝑡
𝛿 = 𝜔 + 𝛽1𝜎𝑡−1

𝛿 + ,1 − 𝛽1𝐿 − (1 − 𝜙1𝐿)(1 − 𝐿)𝑑-(|𝜀𝑡| − 𝛾𝜀𝑡)𝛿             (13)
 

Engle (2002), based on the cross products of the standardized residuals 𝜂𝑡 = 𝐷𝑡
−1(𝑦𝑡 − 𝜇), suggests that the most 

common Dynamic Conditional Correlation (DCC) representation is: 

𝑄𝑡 = (1 − 𝛼 − 𝛽)𝑄̄ + 𝛼𝜂𝑡−1𝜂𝑡−1
′ + 𝛽𝑄𝑡−1                      (14) 

where 𝑄𝑡  is the conditional correlation matrix and is assumed to be a positive definite matrix with unit elements 

along the main diagonal, whereas the two scalar parameters satisfy a stability constraint of the form 𝛼 + 𝛽 <
1.Finally, the sequence  𝑄𝑡  drives the dynamics of the conditional correlations.

 
5. Results 

The results from the information criteria and that of the log-likelihood function concerning the fitting of the 

fractionally integrated extended memory volatility models described in the previous section are summarized in 

Tables 10 and 11. Table 10 contains the results for the volatility of Platinum’s return, while Table 11 contains the 

results for the volatility of Palladium’s return. According to our findings, the SKEWED-FIAPARCH (1, d, 1)-C 

model best fits the description of the volatility of the returns for both metals. The diagnostic tests of this best 

fitting model appeared analytically in the appendix, both for Platinum and Palladium.  

 

Table 10. Information criteria for the long-memory volatility models of Platinum’s return 

MODEL log-likelihood SIC HQC AIC 

FIGARCH (1, d, 1)-BBM 32 257.656 5.7302 5.7328 5.7341 

FIGARCH (1, d, 1)-C 32 257.042 5.7301 5.7327 5.7340 

FIEGARCH (1, d, 1) 32 252.697 5.7277 5.7311 5.7329 

 FIAPARCH (1, d, 1)-BBM 32 267.784 5.7304 5.7338 5.7356 

 FIAPARCH (1, d, 1)-C 32 267.846 5.7304 5.7338 5.7356 

SKEWED-FIAPARCH (1, d, 1)-C 32 286.152 5.7353 5.7379 5.7392 

HYGARCH (1, d, 1) 32 261.430 5.7301 5.7331 5.7346 

Note. This table includes the results for various information criteria for the long-memory volatility models of Platinum’s return. 

 

Table 11. Information criteria for the long-memory volatility models of Palladium’s return 

MODEL log-likelihood SIC HQC AIC 

FIGARCH (1, d, 1)-BBM 29 761.815 5.2865 5.2891 5.2904 

FIGARCH (1, d, 1)-C 29 762.612 5.2866 5.2892 5.2905 

FIEGARCH (1, d, 1)* - - - - 

 FIAPARCH (1, d, 1)-BBM 29 764.386 5.2853 5.2887 5.2905 

 FIAPARCH (1, d, 1)-C 29 769.131 5.2861 5.2896 5.2913 

SKEWED-FIAPARCH (1, d, 1)-C 29 775.482 5.2864 5.2903 5.2923 

HYGARCH (1, d, 1) 29 765.768 5.2864 5.2894 5.2909 

Note. This table includes the results for various information criteria for the long-memory volatility models of Palladium’s return. The * 

means that the estimation failed to converge. 

 

The estimated coefficients of the best-fitted model [SKEWED-FIAPARCH (1, d, 1)-C] appear in Table 12, while 

its diagnostic tests appear in the Appendix of this paper. As shown, the fractional coefficient 𝑑 value indicates a 

high persistence level for the conditional variance of both metal returns. Also, in Figures 2 and 3, we plot the 

estimated values of the conditional volatilities of the returns for Platinum and Palladium, respectively. 
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Table 12. SKEWED-FIAPARCH (1, d, 1) model estimated with Chung’s Method 

 PLATINUM PALLADIUM 

c 0.000 110  [0.3370] 0.000 253  [0.0726] 

𝜔 1.044 485  [0.0667] 0.552 870  [0.1889] 

𝑑 0.478 662  [0.0000] 0.397 048  [0.0000] 

𝜑 0.371 519  [0.0000] 0.288 549  [0.0002] 

𝛽 0.738 064  [ 0.0000] 0.474 450  [0.0000] 

𝛾 -0.129 736  [0.0000] -0.051 386  [0.0176] 

𝛿 2.044 068  [0.0000] 2.148 733  [0.0000] 

Asymmetry -0.089 559  [0.0000] -0.045 120  [0.0003] 

Tail 7.003 952  [0.0000] 5.564 351  [0.0000] 

Note. This table contains the coefficient estimates for the SKEWED-FIAPARCH (1, d, 1) model for Platinum and Palladium. Probability 

values are inside the brackets. 

 

 

Figure 2. Estimated conditional volatility of the return of the Platinum according to the SKEWED-FIAPARCH 

(1, d, 1)-C model 

 
Figure 3. Estimated conditional volatility of the return of the Palladium according to the SKEWED-FIAPARCH 

(1, d, 1)-C model 

 

Table 13 displays the OLS estimations of equations 8 and 9, respectively. In Equations 8 and 9, the coefficients 

for  𝑏1 and 𝑏2 are statistically significant, implying an interaction between the two volatilities. According to 

these findings, a unit change in the volatility of Palladium’s return causes a change of approximately 0.44 units 

in Platinum’s return. However, the effect of the volatility of Platinum’s return on the volatility of Palladium’s 

return is more significant since a standard deviation change in the volatility of Platinum’s return causes a 0.81 

standard deviation change in the volatility of Palladium’s return.     
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Table 13.Estimation of regression equations 8 and 9 

Dependent Variable 𝑐𝑖 𝑏𝑖 

𝑉𝑃𝐿 0.006 664 [0.0000] 0.436 907 [0.0000] 

𝑉𝑃𝐴 0.006 854 [0.0000] 0.808 311 [0.0000] 

Note. This table describes the estimation results for the regressions in equations 8 and 9. The index i under each estimate takes the values 1 

and 2. 

 

We also perform Granger-casualty tests to determine whether one metal’s return may be an estimator for the 

other and vice versa. The results of the Granger causality tests are summarized in Table 14. As we can see, the 

volatility of Palladium’s return Granger causes the volatility of Platinum’s return. At the same time, the volatility 

of Platinum’s return also Granger causes the volatility of Palladium’s return. Therefore, the results suggest a 

mutual volatility spillover effect between the returns of Platinum and Palladium.  

 

Table 14. Granger Causality F Tests 

Lags:2 Test 

𝑉𝑃𝐴 does not Granger Cause𝑉𝑃𝐿 4.129 59 [0.0161] 

𝑉𝑃𝐿 does not Granger Cause𝑉𝑃𝐴 46.8751 [0.0000] 

Note. This table includes the results of Granger Causality F Tests. Probability values are inside the brackets.  

 

The estimated coefficients of models 10 and 11 are given in Table 15 below. There is a negative relationship 

between the volatility of each metal and the return of the other one: Palladium’s volatility of return strongly 

affects Platinum’s return, and vice versa. This is likely attributed to investors trying to exploit the fluctuations 

occurring in each metal. They move invested funds from the less volatile metal to the other in order to take 

advantage of higher returns. This may trigger a demand fall for the less volatile metal and its corresponding 

return. Also, we notice positive volatility spillover effects between the volatility of the returns of the two metals. 

 

Table 15.Estimates of Equations 10 and 11 

Coefficients Equation 9 (PLATINUM) Equation 10(PALLADIUM) 

𝐶𝑖 0.000 278 [0.0039] 0.000 305 [0.0114] 

𝑏𝑖 0.440 198 [0.0000] 0.698 597 [0.0000] 

𝜁1 -0.970 036 [0.0000] -1.404 606 [0.0000] 

𝜔𝑖 0.000 083 [0.1512] 0.00002 [0.1576] 

𝛽1 0.931 796 [ 0.0000] 0.758 146 [0.0000] 

𝜙1 0.068 670 [0.0000] 0.166 088 [0.0000] 

γ -0.083 091[0.0621] -0.066 964 [0.0143] 

δ -0.089 559 [0.0000] 1.791 638 [0.0000] 

𝛹𝑖 0.134 849 [0.0000] 0.157 298 [0.0479] 

Note. This table gives the coefficient estimates of equations 10 and 11 for Platinum and Palladium. Probability values are inside the brackets. 

Index i takes the values 1 and 2 for Platinum and Palladium respectively. 

 

The estimates of the system of equations 12 and 13 are presented in Table 16. Most coefficient estimators for 

Platinum are statistically significant, while those for Palladium are not. Parameter δ is significant for both 

metals.  

 

Table 16. Estimated Multivariate Model for Metal Returns 

Coefficients PLATINUM PALLADIUM 

𝜇 0.000 119  [0.3645] 0.000 354  [0.0105] 

𝑑1 0.056 282  [0.0003] -0.015 599  [0.3164] 

AR(1) 0.919 116  [0.0000] 0.074 450  [0.4595] 

MA(1) -0.946 035  [0.0000] -0.001 776  [0.9852] 

𝜔 1.031 496  [0.1024] 0.926 900  [0.1115] 

𝑑2 0.429 602  [0.0000] 0.336 887  [0.0000] 

𝜙1 0.414 443  [0.0000] 0.261 486  [0.1552] 

𝛽1 0.721 493  [0.0000] 0.396 825  [0.0471] 

𝛾 -0.059 090  [0.0506] -0.015 805  [0.5373] 

𝛿 2.049 957  [0.0000] 2.111 693  [0.0000] 

Note. This table gives the coefficient estimates for the multivariate model in equation 12 both for Platinum and Palladium. Probability values 

are inside the brackets. 
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An estimation of the DCC part derived from the multivariate model is shown in Table 17. The dynamic 

correlation coefficient is statistically significant at the 1% level (p<0.05) and takes a relatively high value. 

Therefore, we can conclude that a robust dynamic correlation between the metals’ returns is present despite the 

dynamic correlation coefficient being highly volatile over time (Figure 4). There are also positive spillover 

effects between the volatilities of the two metals since the dynamic correlation coefficient remains positive 

(Figure 4).  

 

Table 17. DCC- Estimation of conditional correlation 

𝜌 𝛼 𝛽 df 

0.591 03  [0.0000] 0.009 486  [0.0000] 0.989 240  [0.0000] 6.477 044  [0.0000] 

Note. This table includes the estimates for the DCC model of conditional correlation. Probability values are inside the brackets. 

 

 
Figure 4. The estimated dynamic correlation coefficients throw the time horizon 

 

6. Conclusions 

In this study, we examine the presence of spillover effects among the returns and volatilities of Platinum and 

Palladium. A SKEWED-FIAPARCH (1, d, 1)-C model was estimated and applied for daily data for more than 24 

years. According to our findings, there is a high level of persistence for the conditional variance of both metals’ 

returns. Additionally, we observed the existence of significant interrelationships between the two metals’ 

volatilities. 

This study contributes to academic literature by providing evidence that the volatilities of Platinum’s and 

Palladium’s returns are highly persistent and there are positive spillover effects between these volatilities. 

Interchangeability in particular industrial applications is the first factor to consider when attempting to 

understand the significant spillover impact between Platinum and Palladium. As such, a spillover effect triggered 

by fluctuations in a metal’s return might affect the demand for the other and vice versa. Both metals share similar 

mining processes and are found in the same geographical areas, which supports our findings of spillover effects.  

The leading cause, though, might be found in investors’ sentiments and speculations, just as in market dynamics. 

The fact that most investors deal in both metals and the precious metals market is small may explain the seeming 

strong link. The tendency for one metal’s higher volatility to have a negative spillover effect on the returns of the 

other metal while there are positive spillovers for volatility may eventually, to some extent, deconstruct the 

positions of the investors.   
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Appendix 

Diagnostic tests of SKEWED- FIAPARCH (1, d, 1)-C model for Platinum and Palladium 

PLATINUM 

Q-Statistics on Standardized Residuals 

Q(  5) =  22.8846  [0.000 355 2]** 

Q( 10) =  30.7825   [0.000 637 3]** 

Q( 20) =  43.0818   [0.001 994 0]** 

Q( 50) =  77.6456   [0.007 369 1]** 

Q-Statistics on Squared Standardized Residuals 

Q(  5) =  6.523 27  [0.088 749 2] 

Q( 10) =  15.2917   [0.053 716 5] 

Q( 20) =  19.7217   [0.348 701 7] 

Q( 50) =  52.7453   [0.295 709 4] 
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ARCH 1-2 test:    F(2,11 242)=    2.5528 [0.0779] 

ARCH 1-5 test:    F(5,11 236)=    1.3118 [0.2556] 

ARCH 1-10 test:   F(10,11 226)=   1.5009 [0.1319] 

Joint Statistic of the Nyblom test of stability: 3.516 79 

Individual Nyblom Statistics: 

Cst(M)                           0.257 28 

Cst(V) x 10^4                     0.135 53 

d-Figarch                         0.712 55 

ARCH(Phi1)                      0.328 54 

GARCH(Beta1)                    0.571 82 

APARCH(Gamma1)                0.598 80 

APARCH(Delta)                   0.419 95 

Asymmetry                       0.262 99 

Tail                             1.057 51 

Asymptotic 5% critical value for individual statistics = 0.47 

Adjusted Pearson Chi-square Goodness-of-fit test 

Cells(g)     Statistic        P-Value(g-1)       P-Value(g-k-1) 

40       37.8735         0.521 151          0.153 025 

50       59.0674         0.153 638          0.026 417 

60       62.4855         0.353 503          0.110 666 

PALLADIUM 

Q-Statistics on Standardized Residuals 

Q(  5) =  75.2871  [0.000 000 0]** 

Q( 10) =  77.4572   [0.000 000 0]** 

Q( 20) =  87.6947   [0.000 000 0]** 

Q( 50) =  124.189   [0.000 000 0]** 

Q-Statistics on Squared Standardized Residuals 

Q(  5) =  5.744 26  [0.124 737 3] 

Q( 10) =  11.1097   [0.195 560 2] 

Q( 20) =  19.3852   [0.368 474 8] 

Q( 50) =  46.9857   [0.514 371 4] 

ARCH 1-2 test:    F(2,11 242)=     0.044 378 [0.9566] 

ARCH 1-5 test:    F(5,11 236)=     1.1556 [0.3285] 

ARCH 1-10 test:   F(10,11 226)=    1.1391 [0.3280] 

Joint Statistic of the Nyblom test of stability: 7.24604 

Individual Nyblom Statistics: 

Cst(M)                              1.136 55 

Cst(V) x 10^4                         0.194 08 

d-Figarch                            3.762 51 

ARCH(Phi1)                         3.125 44 

GARCH(Beta1)                       3.415 29 

APARCH(Gamma1)                   0.719 54 

APARCH(Delta)                      0.642 08 

Asymmetry                          1.009 64 

Tail                                 0.477 29 

Asymptotic 5% critical value for individual statistics = 0.47 

Adjusted Pearson Chi-square Goodness-of-fit test 

Cells(g)     Statistic      P-Value(g-1)        P-Value(g-k-1) 

40       76.8387         0.000 285          0.000 006 

50       83.5407         0.001 528          0.000 066 

60       79.1376         0.041 211          0.005 389 

Cells(g)     Statistic      P-Value(g-1)        P-Value(g-k-1) 

40       76.8387         0.000 285          0.000 006 

50       83.5407         0.001 528          0.000 066 

60       79.1376         0.041 211          0.005 389 
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