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Abstract 

The paper investigates the link between systematic risk and corporate business performance, represented mainly 

by the degree of operative and financial leverage. Although theoretical contributions link the value of the 

common stock to corporate performance, CAPM does not identify a satisfactory relation between the latter and β, 

setting aside the relation to the corporate capital structure. A detailed analysis of CAPM highlights two relevant 

anomalies: short sales and 𝑅2 low values explaining the fundamental relation between stock and stock market 

excess return. Using an alternative approach, we highlight how CAPM, on one side, can be an incomplete theory 

to explain the stock returns and, on the other side, that the portfolio risk could be equivalent to the underlying 

corporate businesses portfolio, filtered by the feedback effect of the stock market. The empirical evidence 

descending from the analysis of several portfolios with an increasing number of stocks belonging to the S&P 500 

Index reveals that the optimisation process leads to progressively higher β paired with a simultaneous 𝑅2 

deterioration; furthermore, β appears subject to sudden oscillations. Overall, β does not adequately represent the 

relation between stock risk and return. The integration of the joint performance of the stock market and corporate 

business in an MLR relation leads to a clear improvement in 𝑅2 thanks to the surfacing of the correlation 

between these two explanatory variables, a condition entirely ignored by CAPM. 
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1. Introduction 

The present paper investigates the relation between systematic risk and its underlying determinants. Systematic 

or non-diversifiable risk derives from CAPM theory, developed mainly by Sharpe (1964) and Lintner (1965a). 

CAPM identifies a primary relation between the stock excess return, compared to the risk-free asset return, and 

the stock market excess return through a variable named β, specific to the common stock, which measures its 

risk compared to the market portfolio, even if at the outset such a risk was related only to the portfolio to be 

optimised. 

From the ensuing CAPM developments, numerous studies have examined the empirical evidence, the theoretical 

implications, and multiple practical applications related to the cost of equity and the impact of the capital 

structure on systematic risk and capital budgeting, to list a few. 

CAPM is undoubtedly the most famous and used corporate financial theory, but it has always generated heated 

debate between its proponents and detractors. It gave rise to doubts about its validity as the empirical evidence 

did not fully support its theoretical conclusions (Jensen, 1972). Other doubts arise from the absence or 

tenuousness of the link between β and its underlying determinants, primarily related to corporate business since 

the relation with the capital structure is due to Hamada (1972) and Rubinstein (1973). The essay by Mandelker et 

al. (1984) represents the only significant exception. The present paper builds on this essay and attempts to verify 

the relation between the degree of operative and financial leverage on one side and the systematic risk and stock 

return on the other.  

The paper presents three main Sections, each divided into several subsections. Section 2 defines the degree of 

operative and financial leverage and recalls their importance as measures of corporate performance. The 

contribution by Mandelker et al. (1984) is analysed, together with the approach by Miller et al. (1961), in 

determining the relation between corporate performance and stock values and returns. 

In Section 3, referring to the essays by Lintner (1965a) and Merton (1972), we recap the concepts of efficient 

frontier and portfolio optimisation. We will subsequently analyse two of CAPM’s questionable issues: the role of 
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short sales and the inability to explain a significant fraction of the stock return variability. Such topics offer the 

opportunity to propose an alternative approach to explain stock returns determined by the stock market’s and 

corporate business’s joint performance. The portfolio risk originates from the mutual combination of the 

underlying corporate businesses, filtered by the stock market feedback effect, highlighting the correlation 

between these two explanatory variables, a condition entirely ignored by CAPM. From this perspective, CAPM 

could prove to be an incomplete theory of stock returns, considering that returns are assumed to be exogenous 

data. 

Section 4 analyses CAPM’s asset allocation and security market line using 100 stocks of the S&P 500 Index in 

the 1991-2020 timespan without using homogeneous stock portfolios. Subsequently, we shall conduct an 

integration test of the joint performance of the stock market and the corporate business to evaluate the 

goodness-in-fit of an MLR relation in explaining the stock return variability. 

Conclusions follow in Section 5. 

2. Mandelker–Ghon Rhee and Modigliani-Miller Contributions 

2.1 The Relation between the DOL-DFL Nexus and Corporate Performance 

What role do DOL and DFL play in explaining corporate performance? If we define the degree of operating and 

financial leverage, namely DOL and DFL, in the following way: 

DOLt =  
%EBITt

%St
                                       (1) 

DFLt =  
%πt

%EBITt
                                       (2) 

%πt =
πt

πt-1

− 1 = DOLt ∗ DFLt ∗ %St = DTLt ∗ %St                     (3) 

where π states the corporate net profit, Δ%St and Δ%EBITt represent the percentage change of Revenue and 

EBIT between two consecutive periods. 

For more details on the definitions, determinants, and impact of DOL and DFL, please refer in full to the essays 

by Paganini (2019, 2021). 

2.2 The Mandelker-Ghon Rhee Equation 

The essay by Mandelker et al. (1984) represents a starting point for deriving a link between the risky asset β and 

the underlying corporate business. Starting from the β classic definition as the ratio over a given timespan 

between the covariance Cov(Ri, RP) of common stock and portfolio returns on one side and the portfolio 

variance 𝑃
2  on the other, through a series of algebraic steps, the authors determine its equivalence with two 

measures of corporate performance, DOL and DFL and an intrinsic β; the equation is the following: 

βi=
𝐶𝑜𝑣(𝑅𝑖,𝑅𝑃) 

𝑃
2 = 𝐷𝑂𝐿 ∗ 𝐷𝐹𝐿 ∗ β𝑖

𝑜                                (4)
 

where β𝑖
𝑜 definition is the following: 

β𝑖
𝑜 =

𝐶𝑜𝑣(
π

it-1
S
it-1

∗
Sit

E
it-1

,RP)

𝑃
2                                     (5) 

where: 

π
it-1

S
it-1

 = net profit margin of the period t-1; 

Sit

E
it-1

 = equity turnover for the period from t-1 to t. 

β𝑖
𝑜 measures the intrinsic business risk of common stocks, magnified by the appropriate DOL and DFL based on 

management decisions to impact systematic risk βi. Equation (4) is an alternative risk decomposition to the 

Hamada (1972) and Rubinstein (1973) relations.  

The appeal of their paper lies in the emphasis placed on the joint role played by DOL and DFL on the systematic 

risk measured by β. The income statement and the capital structure impact systematic risk, and equation (4) 

provides the transmission mechanism. By studying the empirical evidence, their paper suggests that DOL and 

DFL influence a relevant share of β change. It also has two distinctive features: 

1) They do not consider DOL and DFL as random variables. 

2) Consequently, they conceive β in a limited period. 
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Suppose we drop hypothesis 2 and calculate β over a long timespan: hypothesis 1, that DOL and DFL are not 

random variables, would fail, with the unfortunate consequence that equation (4) would cease to have cogent 

validity. Mandelker et al. consider β a measure of systematic risk limited to a narrow, if not instantaneous, period, 

as Black (1972).  

Undoubtedly, the systematic risk formalized by β is relative to a limited period of three to five years, though not 

necessarily short. Thinking that β is constant outside the timespan from t-n to t is equivalent to maintaining that 

the market trend is perfectly cyclical; in such a hypothesis, the t-n return would be replaced by an identical t+1 

return, leaving the ratio between covariance and variance unchanged over time in this and each subsequent 

period of the rolling timespan. Since the financial market is not cyclical, β is bound to change over time: even 

when we divide the timespan into two or more periods, it changes. Consequently, remaining within the timespan 

from t-n to t, we can cast doubt on whether to consider β a constant measure of systematic risk and their 

determinants DOL, DFL, and β𝑖
𝑜 as well. 

Let us consider the return Ri of the i
th

 common stock; based on the classic definition of its return, we can 

compute it as the asset appreciation increased by the dividends paid on the common stock compared to its value 

at the beginning of the timespan. 

The equation is the following: 

Ri =
Vt+Dt+Vt-1

Vt-1

= (
Vt

Vt-1

− 1) +
Dt

Vt-1

= cgt + dt                         (6) 

from which we obtain a breakdown of the common stock return into a capital gain rate and a dividend rate. We 

report this distinction in the systematic risk definition: 

βi=
𝐶𝑜𝑣(𝑅𝑖,𝑅𝑃) 

𝑃
2 =

Cov(cgt+dt,RP)

𝑃
2 =

Cov(cgt,RP)

𝑃
2 +

Cov(dt,RP)

𝑃
2 = βcg+βd                  (7) 

From the classic definition of the common stock β, we have obtained its decomposition into a β ascribable to the 

capital gain rate and the dividend rate of the asset. If the covariance of the dividend rate to the portfolio return 

were relatively low or zero, the common stock β would be mainly, if not entirely, ascribable to the capital gain 

rate. In this way, the linkage between corporate performance and systematic risk disappears. What initially 

looked promising, on a closer investigation, turns out to be disappointing. Assuming the payout ratio t, the link 

between corporate performance and systematic risk could take the following form: 

Ri = cgt + dt = cgt +
t∗πt-1∗(1+DOLt∗DOLt∗%St)

Vt-1

                      (6 bis) 

by using equation (3) in the following form: 

πt = πt-1 ∗ (1 + DOLt ∗ DOLt ∗ %St)                         (3 bis) 

If the correlation and covariance between the dividend rate and the portfolio return are very low or negligible, 

the explicit link between corporate performance and systematic risk is severed. Consequently, the linkage 

between DOL, DFL and β, reflected in the capital gain rate, becomes invisible in the hypothesis that such a link 

exists. 

2.3 The Modigliani-Miller Equation 

Fortunately, the essay by Miller et al. (1961), even if dated, can help us to untangle what has arisen around the 

risky asset return, apparently independent of corporate performance. Equation [5] of such a paper allows us to 

determine the stock value at time t based on the net profit πt and the investment needs It to increase the 

corporate physical capital. From this relation, we obtain the following equation: 

Ri = (
Vt+πt−It

Vt-1

− 1) = (
Vt

Vt-1

− 1) + (
πt−It

Vt-1

) = cgt + cft                    (6 ter) 

since the difference between the net profit and the asset increase can be considered an approximate measure of 

the corporate cash flow cft, before any intervention in the capital structure. 

From this relation, Miller et al. (1961) derive the well-known theorem that the stock value is a function of its 

current net profit πt, its growth rate k, the rate of return r and the market rate R: 
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Vt =
πt∗(1−𝑘)

R - k*r
                                      (8) 

This conclusion is adopted in a different form by Fama et al. (2015) in their paper “Five-factor asset pricing 

model”. 

The other conclusion Miller et al. (1961) reached is the role of dividends: the dividend is considered a financial 

illusion. Therefore, the value of the firm and its common stock are determined exclusively by business 

considerations and not by the method of packaging and distributing the fruits deriving from the income capacity. 

What matters is the income capacity of corporate assets and its investment policy. Therefore, these factors are 

reflected in the stock return, even if not easily visible. 

At this point, it is evident that the corporate value is determined, in summary, by extracting net profit from the 

current and future assets, the latter determined by the investment policy. We can identify these factors in equation 

(3 bis), which describes the corporate economic and financial dynamics. Such dynamics depend on the initial 

situation, represented by the net profit πt-1 in the previous period t-1, and on how the business evolves in period 

t, based on the sales growth, DOL and DFL. The Modigliani-Miller equation (8) provides the fundamental 

insight that stock return and net profit are interdependent. 

It would be very intriguing and powerful to link corporate performance to systematic risk analytically, but the 

characteristics of the equations examined up to now do not allow for an explicit, simple, and linear relation 

among stock return, systematic risk, and corporate performance. 

2.4 The Dilution 

Another element that plays a crucial role in determining the profitability of a common stock, which influences 

EPS, is the number of shares outstanding or dilution. This element operates exclusively at the price and return 

level of the common stock. It is possible that when the corporate daily management fails to produce an EPS level 

considered satisfactory, the Board of Directors could use the dilution to achieve the EPS target, provided the 

financial resources are available without any legal obstacle to implementing such a program. After all, a 

temporary reduction in the outstanding shares could also be a good business for the firm. 

Moving from net profit to EPS, equation (3 bis) changes to the following form to consider the dilution: 

EPSt =
EPSt-1∗(1+DOLt∗DOLt∗%St)

1+%Nt
                           (3 ter) 

where %Nt is the percentage change in the shares outstanding between periods t-1 and t. 

A decrease in dilution leads to an increase in EPS, other conditions being equal; the reduction of the outstanding 

shares certainly impacts DFL, partially offsetting the dilution effect and making the equity contraction perhaps 

less favourable. 

3. Critical Review of CAPM 

3.1 CAPM Based on Lintner and Merton Contributions 

The two seminal papers by Sharpe (1964) and Lintner (1965a) laid the foundation for the CAPM. In particular, 

the latter allows us to systematize simultaneously and analytically the following topics: 

1) the role of short sales; 

2) the role of risk-free assets; 

3) the optimal mix of investments in risky assets, with and without short sales; 

4) the portfolio risk; 

5) the risky asset contribution to the portfolio risk. 

The essay is much richer in additional information than those mentioned above, such as the market price 

implications of portfolio optimisation, corporate capital budgeting, and corporate project portfolio optimisation. 

The optimal portfolio investment mix in risky assets is determined, in the mean-standard deviation plane, 

through a tangent line to the efficient frontier of the portfolio of risky assets and intercept on the ordinates equal 

to the return of the risk-free asset RF
̅̅ ̅. The procedure followed by Lintner maximizes the slope θ of the market 

opportunity line by setting its partial derivative to the weight assumed by the i
th

 risky asset equal to zero. We do 

not know whether Lintner realized that the efficient frontier of the portfolio of risky assets in the mean-standard 

deviation plane was a shifted hyperbola: Lintner (1965b) stated such a frontier as an envelope. The analytical 

determination of this frontier was developed by Merton (1972) and published about seven years after Lintner ’s 
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paper. The critical difference between Lintner’s and Merton’s approach concerns the valuation of short sales: for 

Lintner, going short on a risky asset is an investment like going long, while for Merton, a short position needs 

offsetting with more long positions. In fact, for Lintner, the sum of the percentage weights of investments in 

individual risky assets is equal to 1 only if assumed in absolute value, as in equation (9), while it is always equal 

to 1 for Merton, as in equation (10): 

∑ |Lwi| = 1𝑚
𝑖=1                                      (9) 

∑ Mwi = 1𝑚
𝑖=1                                     (10) 

The immediate consequence of such a difference could involve a translation of Lintner’s conic section compared 

to Merton’s towards the southwest along the market opportunity line with slope θ and intercept RF
̅̅ ̅. The 

translation along the abscissa is equal to: 

𝑥 = MxPT ∗ (∑ Lwi − 1) 
𝑚

𝑖=1
                              (11) 

where: 

MxPT = point of tangency of the market opportunity line with Merton’s conic section; 

Lwi = Lintner’s weight in the i
th

 risky asset. 

With short sales, the sum of Lintner’s weights Lwi is always less than one, and consequently, the translation 𝑥 

on the abscissa of Lintner’s point of tangency is negative. The market opportunity line, with intercept RF
̅̅ ̅ and 

slope θ, will have the following equation: 

RP = RF
̅̅ ̅ + 𝜃 ∗ P                                   (12) 

where the slope θ is: 

𝜃 = √𝐵 + RF
̅̅ ̅ ∗ (𝐶 ∗ RF

̅̅ ̅ − 2𝐴)                              (13) 

while A, B and C are the parameters of the Merton conic: 

𝐴 = 𝟏T−1𝑹                                    (14) 

𝐵 = 𝑹T−1𝑹                                    (15) 

𝐶 = 𝟏T−1𝟏                                    (16) 

where: 

𝑹 = column vector of m risky asset returns 

−1 = inverse of the covariance matrix of m risky asset returns 

1 = unit column vector of size m. 

Matrices and vectors are in boldface, while the superscript T indicates the transposed matrix/vector. 

Merton’s conic section linking the return RP to the standard deviation P of the portfolio of m risky assets in 

the mean-standard deviation plane is the following: 

RP = 𝑅𝑃 ± √
𝐷

𝐶
(𝑃

2 − 𝑉𝑃)                              (17) 

where: 

𝑅𝑃 = minimum portfolio return, equal to the A/C ratio (minimum of the efficient frontier) 

𝑉𝑃 = minimum portfolio variance, equal to 1/C 

𝐷 = BC – A
2
 

The equation (17), with only the positive radical, represents the portfolio efficient frontier. 

We can locate the point of tangency of Merton’s conic section with the market opportunity line as a simple 

geometric problem of a line passing through RF
̅̅ ̅ tangent to a given conic. In contrast, the conic descends from 

an optimisation procedure to minimize the portfolio variance as a measure of risk. The point of tangency MxPT 

of Merton’s conic with the market opportunity line is equal to the standard deviation resulting from the following 

equation: 

MxPT =
𝜃∗(𝐶∗RF̅−𝐴)

𝐷−𝐶∗𝜃2                                (18) 

The points of tangency of Merton’s and Lintner’s conics overlap if there are no short sales; they differ in the 

opposite case, but both are tangent to the same straight line. Such conics are hyperbolas with different geometric 

centres but the same shape. The matrix representation of conic sections is the reference for more details. 
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The geometric translation of Lintner’s hyperbola is due to the peculiar assessment adopted with equation (9) for 

short positions. This difference has no significant impact if we can borrow or lend at the same interest rate equal 

to RF
̅̅ ̅. The investor can choose the final mix of his portfolio between risky and risk-free assets, determining his 

position on the market opportunity line based on personal preferences or utility curves. Since Lintner’s optimal 

portfolio positions are southwest of Merton’s, the former portfolio may generate more debt than the latter, 

notwithstanding its overinvestment required by the presence of short positions. Lintner’s assessment of short 

sales seems orthodox from an economic perspective, and it should be more advisable than the Merton solution, 

which is algebraically simpler due to relation (10). 

If we need to get Merton’s weights directly (Nocedal et al., 1999), we must set the following system of 

equations: 

* −𝑨𝑇

𝑨 𝟎
+ *

Mw
𝝀𝒎

+ = 𝑲 *
Mw
𝝀𝒗

+ = [
𝒁

RP

1
]                           (19) 

where: 

  = m x m covariance matrix of risky asset returns 

 A = 2 x m Jacobian matrix of constraints (risky asset returns and unit weights)  

 Mw = column vector of m Merton’s weights 

 𝝀𝒗 = column vector of the 2 Lagrangians 

 Z = zero column vector of m first-order necessary condition 

 RP = scalar of the target portfolio return 

 1 = scalar of the sum of the stock weights in the portfolio 

From this system of equations, we can obtain Merton’s weights Mw, and the Lagrangians 𝝀𝒗 by solving: 

𝑲−1 [
𝒁

RP

1
] = *

Mw
𝝀𝒗

+                                (19 bis) 

Using equations (12), (13), and (18), we obtain the optimal portfolio return RM, given the risk-free rate RF
̅̅ ̅. By 

entering the RM value as the RP target, we get Merton’s weights of the optimal portfolio, while by inserting 

any other figure, we obtain the corresponding mix of the portfolio frontier, efficient or not. 

Interestingly, Lintner (1965a) does not use the β definition in his paper, resorting to an alternative measure λ, 

defined below: 

λ =
∑ 𝑤𝑖

𝑚
𝑖=1 (Ri−RF̅̅̅̅ )

∑ ∑ 𝑤𝑖𝑤𝑗𝐶𝑜𝑣(Ri,Rj)
𝑚
𝑗=1

𝑚
𝑖=1

=
RM−RF̅̅̅̅

𝑀
2                             (20) 

The subscript M to the portfolio return and variance indicates that it is optimised. We get used to the following 

formulation: 

Ri − RF
̅̅ ̅=βi ∗ (RM − RF

̅̅ ̅)                               (21)   

Lintner limits himself to writing the first three members of the following equation that correspond, after a series 

of transformations, to the fifth member, undoubtedly equivalent to the second member of (21): 

Ri − RF
̅̅ ̅ = 𝑧𝑖𝑖

2 + ∑ 𝑧𝑗𝑖𝑗𝑗 = λw𝑖𝑖
2 + ∑ λw𝑗𝑖𝑗𝑗 =λ (w𝑖𝑖

2 + ∑ w𝑗𝑖𝑗𝑗 ) =λ*Cov(Ri, RP)       (21 bis)   

The relation (21 bis) is the necessary and sufficient condition to obtain the weights 𝑤𝑖  that guarantee a single 

solution at the maximum of θ to 𝑤𝑖 . Lintner interprets the riskiness of an asset within a portfolio based on its 

variance and covariance with all the other stocks in the portfolio, not based on the standard deviation of its 

returns. Therefore, λ represents the return/risk required by the investor to maintain a position on the i
th

 asset 

within the portfolio for any stock, given its risk represented by Cov(Ri, RM); such a risk, therefore, changes 

according to which stocks are held in the portfolio since it is not an absolute measure of asset riskiness. The 

required return/risk λ to keep an asset is the same for all stocks in the portfolio but is conceptually different from 

θ that determines the investment size in the optimal portfolio and risk-free assets.  

For reasons we will explain in subsection 4.6, relation (21) is exclusively valid ex-post; therefore, we will never 

use the expression expected returns. 

The CAPM standard formulation is extremely assertive in believing that the return of a risky asset is due to its 

risk profile measured by β. In fact, from (21), we see that the stock excess return is commensurate with the 

optimal portfolio excess return, considered equivalent to the market portfolio (Fama et al., 1973), through a 
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specific β. This armoured relation does not leave much room for the fundamental determinants of the common 

stock risk. It is worth reiterating that (21) is a portfolio equilibrium condition of a non-deterministic nature. 

3.2 Flaws in CAPM Theoretical Framework 

CAPM standard configuration presents some theoretical inconsistencies. The most significant is the role of short 

positions within the optimal portfolio. Lintner notices this inconsistency and identifies an alternative solution, 

constraining the portfolio positions to be exclusively equal to or greater than zero through the KKT condition 

(Kuhn et al., 2013; Nocedal et al., 1999; Ghojogh et al., 2021). However, such a solution may be suboptimal 

compared to the optimised portfolio. How do we reconcile the optimised portfolio that needs short sales with the 

market portfolio that only has long positions? Now, as the number m of risky assets in the portfolio increases, 

two crucial phenomena occur: 

1) the short positions progressively increase towards 50%; 

2) some stock weights become extreme, both in long and short positions. 

Levy et al. (2001) treat such an issue theoretically, concluding that the characteristic that makes an asset good in 

a sizeable portfolio, even with only 100 risky assets, is not quickly evident. The negative weights that generate 

short sales depend on the values assumed by z𝑖, that is, the sum of all the stock excess returns multiplied by the 

corresponding element v𝑖𝑗 deriving from the inverse of the covariance matrix: 

𝑤𝑖
𝑜 =

𝑧𝑖
𝑜

𝜆𝑜 =
∑ (Rj−RF̅̅̅̅ )v𝑖𝑗

𝑚
𝑗=1

𝜆𝑜                                    (22) 

Given that 𝜆𝑜 is positive and common to all assets, even assuming that all excess returns are positive, a negative 

value of 𝑤𝑖
𝑜 in the optimal portfolio depends on the v𝑖𝑗 values in the inverse matrix in correspondence with the 

asset column considered. If the sum of these values based on the excess returns of all m stocks in the portfolio is 

negative, then we have a short sale. Thus, the specific characteristics of the risky asset do not necessarily 

determine its positive or negative weight, mainly depending on the property of the inverse matrix. The particular 

asset combination determines the covariance matrix, and its inverse establishes the weight sign. 

Furthermore, we must consider that each row of the covariance matrix is orthonormal to each column of its 

inverse matrix and vice versa. Given that its product is 1 when i=j and 0 when i≠j, even starting from a matrix 

with positive covariances, it is inevitable that many v𝑖𝑗 elements outside the main diagonal are negative, 

determining the almost automatic presence of negative weights originating short sales. As the number of 

common stocks in the portfolio increases, the appearance of negative v𝑖𝑗 is physiological as the number of 

elements below the main diagonal (while those above the diagonal are the transposition of those below, being the 

matrix symmetric) is preponderantly compared to those on the diagonal. Such a property seems unrelated to any 

economic explanation of what stocks are short-sold. 

If we wish to go deeper into the topic, it would be necessary to examine the essay by Stevens (1995) that takes 

its cue from Anderson et al. (1981). All the elements of each specific row of the inverse matrix are the ratio 

between the same denominator 𝑖
2(1 − 𝐷𝑖) and a numerator based on −β𝑖𝑗 when i≠j and 1 when i=j; through 

a few algebraic steps, (22) becomes the following: 

𝑤𝑖
𝑜 =

1

𝜆𝑜

[(Ri−RF̅̅̅̅ )−∑ (Rj−RF̅̅̅̅ )β𝑖𝑗
𝑛
𝑗=2 ]

𝑖
2(1−𝐷𝑖)

                         (22 bis) 

where: 

𝐷𝑖 =
.𝑖

T 𝑛−1
−1  .1

𝑖
2  = 𝑅2 of the multiple regression between the i

th
 asset and the other n-1 assets 

𝜷T = .𝑖
T 𝑛−1

−1  = vector of multiple regression coefficients β𝑖𝑗  of the i
th

 asset to the other n-1 assets  

 𝑛−1
−1 = inverse matrix of the n-1 assets obtained by discarding the row and column containing the i

th
 asset 

 .1= column vector of the n-1 covariances obtained by discarding the variance 𝑖
2 of the i

th
 asset 

From (22 bis), we see that the optimal weight 𝑤𝑖
𝑜 will be positive only when the excess return of the i

th
 asset 

exceeds the mean of the excess returns of the other n-1 assets weighted on the specific multiple regression 

coefficients β𝑖𝑗  between the i
th

 asset and the other n-1 assets: 
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(Ri − RF
̅̅ ̅) > ∑ (Rj − RF

̅̅ ̅)β𝑖𝑗
𝑛
𝑗=2   

The result obtained with (22 bis) allows us to understand the sign of the weight in the optimal portfolio: if the 

stock excess return is not high enough and is correlated positively with the other n-1 stocks with high excess 

returns through a high β𝑖𝑗  coefficient, then its weight could be negative. Conversely, a low-excess return asset 

negatively correlated to the other n-1 stocks could have a positive weight. Lintner (1965a) also reaches the same 

conclusion logically. In short, the positive correlation between two common stocks, high excess return and a high 

β𝑖𝑗  coefficient to the i
th

 asset leads to a decrease in the optimal weight 𝑤𝑖
𝑜 of the i

th
 stock. If the number of 

combinations of this kind is high enough, the weight will become negative, and such a change of state occurs 

faster the lower the excess return of the i
th

 asset is. 

Eventually, Levy et al. (2001) observe that the Sharpe ratio tends to halve by banning short sales, implying a 

high implicit cost for the investor. 

The price adjustment process of risky assets is not understandable before a significant discrepancy between the 

weight assumed in an optimal and the market portfolio, if not a generic down or upward pressure for 

excess/deficient assets held compared to the optimal portfolio. We will see the implications of asset pricing with 

empirical evidence. 

This perspective leads to a further consideration: Lintner’s analysis of the optimal portfolio concerns m assets 

with m, which need not necessarily tend to infinity. The number of common stocks does not necessarily have to 

equal the market portfolio. If we limit ourselves to an analysis of m risky assets of which we know the returns, 

variances and covariances deriving from their time series, we obtain some critical information: 

1) the risk-free return RF
̅̅ ̅ is a datum of the moment in which we carry out the ex-post analysis of the times 

series; it is an element not entirely extraneous to the computation of β as long as RM is the return on the 

optimised portfolio of m risky assets. 

2) The β weighted mean of the m risky assets always equals 1. 

3) The α weighted mean of the m risky assets always equals 0. 

4) The regression 𝑅2
 of each stock against the optimal portfolio build with the same m assets is relatively low. 

5) The t-stat measurements confirm the null hypothesis for α and the alternative for β. 

6) By increasing the number and frequency of the observations, there is no significant improvement in 𝑅2. 

We must assess F and t-stat with caution for the reasons stated in subsection 4.3. 

Comparing m risky asset returns to a market index return, such as the S&P 500 Index, we get the same 

conclusions as in points 4, 5 and 6 above. Conclusions 1, 2, and 3 are not necessarily valid when the benchmark 

index is not coming from the optimised portfolio for the reasons we will see in subsection 3.3; for the moment, it 

is enough to observe that these are pure algebraic consequences of having chosen a regression where the 

explanatory variable, the return on the optimised portfolio, descends from the variable we would explain. 

Conclusions from 4 to 6 above rely on the hypothesis that the stock return distribution is normal despite showing 

“fatter tails”. 

The present paper fully shares the observations by Roll and Ross, separately and jointly, expressed in their 

multiple essays about CAPM at the level of individual risky assets, which we can summarize: 

1) The linearity relation between return and β holds regardless of the chosen market portfolio or a set of m 

stocks, whether efficient or not (Roll, 1977); the efficiency of the market portfolio and CAPM are 

equivalent (Ross, 1977). 

2) CAPM is not testable without knowing the proper market portfolio mix (Roll, 1977; Roll et al., 1994). 

Shifting to a market index, we cannot improve its testability; 

3) Given the previous points above, the theory is not testable (Roll, 1977; Gibbons et al., 1989) at the risk of 

turning out to be a tautology; 

4) CAPM’s ability to explain stock price changes is modest (Roll, 1988). 

Roll (1988) argues that the 𝑅2 regression of the monthly returns of single assets, not a homogeneous asset 

portfolio in terms of risk, to a market index does not deviate much from 0.30. Adding a sector factor, we reach 

0.35, thus leaving 65% of the variance of this return completely unexplained. 
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We recall that 𝑅2 equals: 

𝑅2 = 𝜌2(RiRM) =
[Cov(Ri,RM)]2

𝑖
2𝑀

2 = 𝛽𝑖
2 𝑀

2

𝑖
2                             (23) 

Consequently, the share of the Ri variance unexplained equals: 

1 − 𝑅2 = 1 − 𝛽𝑖
2 𝑀

2

𝑖
2 =

𝑖
2−𝛽𝑖

2
𝑀

2

𝑖
2                               (24) 

while the Ri variance unexplained equals: 

𝜀
2 = 𝑖

2 − 𝛽𝑖
2

𝑀

2
                                   (25) 

For a demonstration, see Appendix B.2 by Ciech (2016). The i
th

 stock variance 𝑖
2 is due to a component linked 

to systematic risk and a residual component ε unrelated to the market return. Suppose now that there exists a 

fictitious variable X, uncorrelated to the return of the market portfolio RM, such that it can explain the residual 

variance 𝜀
2; we can then write the following relation: 

𝑖
2 = (𝛽𝑖

𝑀𝑀)2 + (𝛽𝑖
𝑋𝑋)2                          (25 bis) 

Since the share of systematic risk is lower than the unexplained one, we can write the following relation: 

(𝛽𝑖
𝑋𝑋)2 > (𝛽𝑖

𝑀𝑀)2                                (26) 

from which we get the following condition: 

𝜌2(XRi) > 𝜌2(RiRM)                                (27) 

It follows that CAPM is unable to explain most of the common stock risk, essentially the correlation between Ri 

and RM is not adequate to explain the variability of the former; it can identify the non-diversifiable part of the 

risk but leaves the diversifiable part unexplained without explaining to what the first risk component is 

ascribable. This issue has already been addressed by Lintner (1965b) when he deals with the advantage deriving 

from diversification: in the case in which all the covariances of the assets are zero, all the risk would be 

non-systematic, and the benefit of diversification would be substantial; in the opposite case, all the residual 

variances would be zero; consequently, all the asset returns would be perfectly correlated with each other, and 

diversification would cease to have effects. Portfolio diversification takes advantage of assets correlated 

negatively with other common stocks and, above all, from residual variances greater than zero with consequent 

imperfect correlations between assets. 

A polynomial may explain a larger share of common stock return variability. The Mandelker-Ghon Rhee and 

Modigliani-Miller equations, already mentioned, provide clues that a multiple regression equation like this 

perhaps is needed: 

Ri = α𝑖 + 𝛽𝑖
𝑀 ∗ RM + 𝛽𝑖

𝜓
∗ ψi                              (28) 

where ψi is a corporate performance measure, 𝛽𝑖
𝑀 and 𝛽𝑖

𝜓
 are the stock market and corporate performance 

coefficients or regressors linking the stock market and corporate performance variables to the common stock 

return. 

CAPM’s worth lies in the ability to select an optimal portfolio starting from m risky assets and maximizing the 

utility to risk-averse investors, given their indifference curves and the return of the risk-free asset. In essence, 

CAPM states the best risky asset portfolio to invest in and how intensively to use it by combining it with 

risk-free assets.  

Again, Lintner (1965 b) is illuminating: “The goal of diversification is not to avoid or minimize risk per se but to 

select the best portfolio, i.e., the best combination of risk and expected return from the portfolio mix”. 

If we want to have an explanation of the behaviour of the risk/return ratio of single assets, we must look 

elsewhere. 

3.3 An Alternative Approach: A Model Under Certainty Conditions 

Let us imagine for simplicity that we have a common stock whose variance is intelligible at 100% using the 

following equation: 

Ri = 𝑎𝑖 + 𝑏𝑖RP + 𝑐𝑖𝜓𝑖                                 (29) 

where the coefficients 𝑎𝑖 , 𝑏𝑖 , and 𝑐𝑖  are not regressors, at least for the time being. The stock market 

performance RP as well as the corporate performance ψi explain the stock return. The variance of the common 

stock with these characteristics will be the following: 

𝑖
2 = 𝑏𝑖

2𝑃
2 + 𝑐𝑖

2𝜓
2 + 2𝑏𝑖𝑐𝑖Cov(ψi, RP)                        (30) 
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where: 

Ri = i
th

 common stock return 

RP = stock market return 

ψi = corporate performance related to the i
th

 common stock 

𝑥
2  = X variance operator 

Cov(X,Y) = X and Y covariance operator 

Suppose we have a portfolio made up of m risky assets with the same algebraic characteristics as the previous 

common stock; the mean and the variance of the portfolio return will vary according to the weight assumed by 

the investment 𝑤𝑖  in every single asset of the portfolio: 

RP = ∑ 𝑤𝑖
𝑚
𝑖=1 R𝑖 = ∑ 𝑤𝑖

𝑚
𝑖=1 𝑎𝑖 + ∑ 𝑤𝑖

𝑚
𝑖=1 𝑏𝑖RP + ∑ 𝑤𝑖

𝑚
𝑖=1 𝑐𝑖ψi                    (31) 

𝑃
2 = ∑ 𝑤𝑖

𝑚
𝑖=1 𝑏𝑖𝑃

2 + ∑ 𝑤𝑖
𝑚
𝑖=1 𝑐𝑖Cov(ψi, RP)                          (32) 

From the previous two equations, we obtain the following: 

RP =
∑ 𝑤𝑖

𝑚
𝑖=1 𝑎𝑖+∑ 𝑤𝑖

𝑚
𝑖=1 𝑐𝑖ψi

1−∑ 𝑤𝑖
𝑚
𝑖=1 𝑏𝑖

                                 (33) 

𝑃
2 =

∑ 𝑤𝑖
𝑚
𝑖=1 𝑐𝑖Cov(ψi,RP)

1−∑ 𝑤𝑖
𝑚
𝑖=1 𝑏𝑖

                                  (34) 

Suppose, by reducing to absurd, that both ψi and Cov(ψi, RP) are null, what would happen to such a system? 

Equation (32) would become: 

𝑃
2 = ∑ 𝑤𝑖

𝑚
𝑖=1 𝑏𝑖𝑃

2                                (32 bis) 

from which we can obtain, dividing the portfolio variance by itself, that: 

𝑃
2

𝑃
2 =

∑ 𝑤𝑖
𝑚
𝑖=1 𝑏𝑖𝑃

2

𝑃
2 = ∑ 𝑤𝑖

𝑚
𝑖=1 𝑏𝑖 = 1                           (35) 

What happens in CAPM doing the same operation? Let us examine the portfolio variance 𝑃
2 : 

𝑃
2 = ∑ ∑ 𝑤𝑖

𝑚
𝑗=1 𝑤𝑗

𝑚
𝑖=1 Cov(R𝑖 , Rj) = ∑ 𝑤𝑖

𝑚
𝑖=1 Cov(R𝑖 , RP)                    (36) 

Dividing both members of (36) by the portfolio variance 𝑃
2  we obtain: 

1

𝑃
2 ∑ 𝑤𝑖

𝑚
𝑖=1 Cov(R𝑖 , RP) = ∑ 𝑤𝑖

𝑚
𝑖=1

Cov(R𝑖,RP)

𝑃
2 = ∑ 𝑤𝑖

𝑚
𝑖=1 

𝑖
= 1                           (37) 

The above condition occurs when the weight of each asset is constant across the timespan analysis, i.e., when RP 

is endogenous to the model.  

If this occurs, the following condition occurs: 

∑ 𝑤𝑖
𝑚
𝑖=1

Cov(R𝑖,RP)

𝑃
2 =

Cov( ∑ 𝑤𝑖
𝑚
𝑖=1 R𝑖,RP)

𝑃
2 =

Cov(RP,RP)

𝑃
2 =

𝑃
2

𝑃
2 = 1               (37 bis) 

from which we also get the following: 

∑ 𝑤𝑖
𝑚
𝑖=1 𝛼𝑖 = ∑ 𝑤𝑖

𝑚
𝑖=1 (1-

𝑖
)RF
̅̅ ̅ = RF

̅̅ ̅ ∑ 𝑤𝑖
𝑚
𝑖=1 (1-

𝑖
) = RF

̅̅ ̅(∑ 𝑤𝑖
𝑚
𝑖=1 − ∑ 𝑤𝑖

𝑚
𝑖=1 

𝑖
) = 0        (38) 

Therefore, in CAPM asset allocation, the weighted means of α and β must necessarily converge towards 0 and 1, 

respectively, and this occurs only when the search for both the regressors refers to the portfolio of m risky assets 

because the mean portfolio return RP is endogenous to the model. If, on the other hand, we compute the 

regression against a market index, there is no guarantee that the weight of each asset is constant over time; on the 

contrary, precisely the opposite occurs without paying attention to the weight of each stock within the market 

portfolio. In this context, an average weight for the whole period is meaningless. Consequently, both α and β 

weighted means may diverge from their theoretical values of 0 and 1. Empirical tests should take it into account. 

Such a result does not depend on the certainty conditions of the hypothesized system; it is a general conclusion 

that is also valid for CAPM. 

We must go back to equation (35): in the hypothesis that all the weights of each asset of (35) coincide with those 

of (37), we can conclude that: 

𝑏𝑖 = 
𝑖
 

It follows that assuming that both ψi and Cov(ψi, RP) are null, equations (31) and (32) could be compatible 

with CAPM. However, in such a system, the portfolio return would be infinite as the denominator of (33) would 
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collapse to zero. Indeed, the denominator of (34) would also collapse to zero, like its numerator, leaving the 

portfolio variance undetermined. In this system, both ψi and Cov(ψi, RP) cannot, by definition, be null. 

In short, if we ignore both ψi and Cov(ψi, RP), we create an incomplete system. Hence, CAPM, interpreted 

through (21), implicitly assumes no relation between the portfolio return and the corporate performance of the 

risky assets held in the portfolio, so the covariance between these variables is null. The asset returns, variances 

and covariances are exogenous market variables. Indeed, the approach that CAPM has been adopting over time 

would appear rudimentary. 

3.4 Further Development Under Certainty Conditions  

At this point, we can take a further step forward. If we perfect the equation (34) by inserting the equation (33) in 

place of RP in Cov(ψi, RP), we get the following result: 

𝑃
2 =

∑ 𝑤𝑖
𝑚
𝑖=1 𝑐𝑖Cov(ψi,RP)

1−∑ 𝑤𝑖
𝑚
𝑖=1 𝑏𝑖

=
∑ ∑ 𝑤𝑖

𝑚
𝑗=1 𝑐𝑖

𝑚
𝑖=1 𝑤𝑗cjCov(ψi,ψj)

(1−∑ 𝑤𝑖
𝑚
𝑖=1 𝑏𝑖)2                     (39) 

In the system we are illustrating, the portfolio variance 𝑃
2  is determined by the ratio between: 

a. the double summation of the corporate performance covariances weighted both on the weight 𝑤𝑖  assumed 

by each asset in the portfolio and the coefficient 𝑐𝑖 which measures the transferability of the corporate 

performance on the asset return; 

b. the square of the difference between 1 and the weighted mean transferability coefficient 𝑏𝑖 of the stock 

market performance on the asset return based on the weight assumed by each asset in the portfolio. 

To fully understand the meaning of equation (39), one last algebraic transformation is needed; exchanging the 

denominator of the second member with the first member, we obtain: 

(1 − ∑ 𝑤𝑖
𝑚
𝑖=1 𝑏𝑖)

2 =
∑ ∑ 𝑤𝑖

𝑚
𝑗=1 𝑐𝑖

𝑚
𝑖=1 𝑤𝑗cjCov(ψi,ψj)

𝑃
2                         (40) 

from which we get: 

∑ 𝑤𝑖
𝑚
𝑖=1 𝑏𝑖+ [

∑ ∑ 𝑤𝑖
𝑚
𝑗=1 𝑐𝑖

𝑚
𝑖=1 𝑤𝑗cjCov(ψi,ψj)

𝑃
2 ]

1

2

= ∑ 𝑤𝑖
𝑚
𝑖=1 𝑏𝑖 +

*∑ ∑ 𝑤𝑖
𝑚
𝑗=1 𝑐𝑖

𝑚
𝑖=1 𝑤𝑗cjCov(ψi,ψj)+

1/2

𝑃
= 𝑀𝑅 + 𝐹𝑅 = 1   (41) 

where: 

MR = share of portfolio risk arising from the stock market 

FR = share of the portfolio risk coming from the joint risk of the corporate businesses 

Equation (41) represents the breakdown of portfolio risk in the mean-standard deviation plane between the share 

ascribable to stock market risk and the residual share from the joint corporate business performance. Therefore, 

for each portfolio of m risky assets, we can decompose its risk into a share relating to the stock market and the 

residual share deriving from corporate performance, the one not explained by CAPM. 

CAPM assumes that risky asset returns are exogenous data, showing which is the optimal way of building the 

portfolio, but is unable to explain in depth the asset returns due to its essential incompleteness: the absence of a 

formalized link between corporate performance ψi and Ri makes it disputable. Instead, CAPM introduces a 

feedback effect of the stock market on the common stock returns, which we must carefully evaluate to 

understand the portfolio risk measured by its standard deviation 𝑃, easily derivable from (39): 

𝑃 =
*∑ ∑ 𝑤𝑖

𝑚
𝑗=1 𝑐𝑖

𝑚
𝑖=1 𝑤𝑗cjCov(ψi,ψj)+

1/2

1−∑ 𝑤𝑖
𝑚
𝑖=1 𝑏𝑖

=
*∑ ∑ 𝑤𝑖

𝑚
𝑗=1 𝑐𝑖

𝑚
𝑖=1 𝑤𝑗cjCov(ψi,ψj)+

1/2

1−𝑀𝑅
               (39 bis) 

The feedback effect comes into play with the denominator of (39 bis), exactly as in a closed-loop system whose 

operation we will mention in subsection 3.5. We will see later what kind of operation we can obtain with such a 

denominator; for the time being, we observe that the closer the risk share of the stock market 𝑀𝑅 = ∑ 𝑤𝑖
𝑚
𝑖=1 𝑏𝑖 

approaches 1, the greater the system instability will be. The meaning of the numerator of (39 bis) is simply the 

square root of the risk deriving from the covariance matrix of corporate performance multiplied by the column 

vector obtained with the product of the weight 𝑤𝑖  assumed by the i
th

 asset in the portfolio by the transferability 

coefficient 𝑐𝑖 of the corporate performance, multiplied again by the transposition of the same column vector. 

The stock portfolio risk derives essentially from the joint corporate portfolio businesses, suitably filtered by the 

feedback effect of the stock market. The effort, which is not entirely trivial, will be to search for the transfer 

function of corporate performance on the common stock returns, while CAPM provides a bright explanation of 



ijef.ccsenet.org International Journal of Economics and Finance Vol. 15, No. 12; 2023 

129 

the feedback transfer function. Another issue is that the equation system (29), (30), (33) and (39) allows multiple 

solutions. 

It is necessary to quantify the corporate performance ψi  and the parameter 𝑐𝑖  that allows the corporate 

performance transferability on the stock return to understand the transfer function. All this for every single asset 

in the portfolio, a gigantic task since it is not predictable a priori which process conveys the corporate 

performance ψi nor the transferability parameter 𝑐𝑖. 

3.5 Closed-Loop System 

In subsection 3.4, we realized a topic underestimated in CAPM, if not completely ignored: the impact each stock 

in the portfolio has on the portfolio itself and the feedback effect of the latter on any asset in the portfolio. In 

CAPM Rp and Ri are independent, thanks to the fact that their values are exogenous variables. In the real stock 

market Ri influences Rp and CAPM theorizes the feedback of Rp on Ri through equation (21). 

In closed-loop system theory, the output signal yt, for control purposes, is the input, via the β stage, into the 

mixer, which adds or differs from the input signal xt. In the case under analysis, the signal is added to the input 

signal, originating positive feedback, as in Figure 1: 

 

 

Figure 1. Closed-loop system 

 

The algebraic relations in such a system are the following: 

et = xt + βyt                                    (42) 

yt = Aet = 𝐴(xt + βyt)                                (43) 

yt(1 − 𝐴𝛽) = Axt                                 (44) 

From equation (44) arises the following relation, which typifies the ratio between the output and the input signal: 
yt

xt
=

𝐴

1−𝐴𝛽
                                     (45) 

A and β are the transfer functions (Millman et al., 1972). We can point out that the system shows a strong 

discontinuity if Aβ is equal or close to 1. Typically, a system of this kind is an oscillator characterized by intrinsic 

instability, just the opposite of systems in which the output signal subtracts from the input signal. An oscillating 

system is not necessarily unstable: if it simply oscillated between two predetermined states, it would be 

considered stable. The stock market fluctuates for several reasons: the stream of news relating to the firms, the 

industries in which firms operate, macroeconomic and political information, and, in general, all the information 

relevant to the firm participating in the stock market. There is no guarantee that the stock market is stable, and it 

is difficult to determine the conditions for stabilizing it, provided it is functional. 

It follows that, as in closed-loop systems, it is perfectly useless to continuously examine the progress of a signal, 

i.e., instant by instant, being able to obtain the same result with an appropriate sampling of the input signal and 

predict the behaviour of the output signal based on the knowledge of the transfer functions. From this point of 

view, corporate finance is still an immature theory as the transfer function β, which does not coincide with 

systematic risk, appears sufficiently clear and studied by CAPM, while the transfer function A has not been well 

turned inside out or does not have a universally accepted and shared solution. 

The second members of equation (45) and (39 bis) are very similar; first, the denominator represents the 

feedback effect while the numerator represents the transfer function A, which, in the case of a risky asset, links 

the corporate performance xt to the return yt of the specific asset. The feedback effect acts on the corporate 

performance, adding βyt as portfolio return, and giving rise to the signal et which, suitably transformed, 

allows us to obtain the return yt. Mutatis mutandis, no logical difference can be deduced by replacing an 

electrical signal with economic-financial information relating to risky assets, the stock market and corporate 

performance. 
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3.6 Incompleteness Consequences 

We have already examined how the 𝑅2 achievable with CAPM is low enough, leaving much of the risky asset 

return variability unexplained. Furthermore, CAPM does not allow us to decompose systematic risk into a share 

ascribable to the stock market and corporate performance. CAPM’s supposed incompleteness causes both such 

problems and has some operational implications. In a context where equations (29) and (30) represent the asset 

return, try to estimate the parameters 𝑎𝑖 and 𝑏𝑖, completely ignoring the existence of a second variable and its 

parameter 𝑐𝑖, leads to serious estimation errors, downloading the value of the latter parameter on the former two. 

Let us examine the error that occurs in the estimation of 
𝑖
 defined in a classical way as the ratio between the 

covariance Cov(Ri, RP) of the risky asset and portfolio returns and the portfolio variance 𝑃
2 . We identify this 

estimator with 
𝑖

̂ , assuming we know the true ₂𝛽𝑀 obtainable with precision through a multiple regression or 

MLR in which 𝑅2 is equal to 1. We can obtain this value of ₂𝛽𝑀 analytically through the MLR regressor and 

subtract 
𝑖

̂  from it, we get the following error: 

₂𝛽𝑀 − 
𝑖

̂ =
𝜌2(RPψi)[𝑖

̂ −
Cov(ψi,Ri)

Cov(ψi,RP)
]

1−𝜌2(RPψi)
                           (46) 

where: 

₂𝛽𝑀 =
ψi

2 Cov(Ri,RP)−Cov(ψi,RP)Cov(ψi,Ri)

𝑃
2ψi

2 −[Cov(ψi,RP)]2  = stock market performance regressor 

Now, this error tends to zero in two conditions, assuming that MLR allows us to reach an 𝑅2 equal to 1: 

1) when the correlation between the stock market and corporate performance is zero or 

2) when the estimator 
𝑖

̂  is equal to the ratio of the covariances of corporate performance to stock return and 

stock market performance. 

Both these two conditions seem unfeasible; therefore, ignoring the existence of Cov(ψi, Ri) implies the 

presence of an error in 
𝑖

̂  estimation: the higher the correlation between the stock market and corporate 

performance, the higher the error. 

Such an error reverberates in the intercept estimation 𝛼𝑖̂, resulting in the following error: 

α𝑖 − 𝛼𝑖̂ = −(₂𝛽𝑀 − 
𝑖

̂ )(RP) − ₂𝛽𝜓(ψi)                        (47) 

where: 

₂𝛽𝜓 =
𝑃

2 Cov(ψi,Ri)−Cov(ψi,RP)Cov(Ri,RP)

𝑃
2ψi

2 −[Cov(ψi,RP)]2  = corporate performance regressor 

Also, for the intercept, we can point out that the error would tend to zero only if the correlation between the 

stock market and corporate performance is null, a condition that is not impossible but not readily achievable. 

The errors represented by equations (46) and (47) appear large enough to justify a poor result of 𝑅2 . 

Furthermore, this result should direct research towards a better understanding of the stock return pattern. 

The fourth point concerns the 𝑅2 partitioning of the MLR regression or commonality analysis (Nathans et al., 

2012). We should ask ourselves whether and how 𝑅2 can be broken down into shares of the explanatory 

variables RP and ψi of the asset return. If we now compare the 𝑅2 of the simple regressions of RP and ψi 

against Ri, 𝑅𝑀
2  and 𝑅𝜓

2  respectively, with the MLR 𝑅𝑀+𝜓
2 , we realize that their difference will hardly be zero 

and will give rise to an overlap or bridge effect, depending on whether the sign is positive or negative: 

𝑅𝑀
2 + 𝑅𝜓

2 − 𝑅𝑀+𝜓
2 = 𝑂𝐿𝑀+𝜓                             (48) 

From relation (48), we can obtain the net contribution of the variables RP e ψi on 𝑅2, respectively 𝑅𝑀
2  and 

𝑅𝜓
2 , with the overlap/bridge effect 𝑂𝐿𝑀+𝜓: 

𝑅𝑀+𝜓
2 = (𝑅𝑀

2 − 𝑂𝐿𝑀+𝜓) + (𝑅𝜓
2 − 𝑂𝐿𝑀+𝜓) + 𝑂𝐿𝑀+𝜓 = 𝑅𝑀

2 + 𝑅𝜓
2 + 𝑂𝐿𝑀+𝜓 = 𝑅𝑀

2 + 𝑅𝜓
2 − 𝑂𝐿𝑀+𝜓  (49) 

Here, it is not as essential to establish how relevant the net contribution or the overlap of the explanatory 

variables is as to note that 𝑅2 could be the result of the effect of a ghost variable that does not appear in the 

OLS regression. Determining the net and overlapping effects of the explanatory variables on 𝑅2 is complex as 

many variables impact the risky asset return Ri, many of which are entirely unknown: even the MLR with three 

or four regressors fails to reach an 𝑅2 equal to 100%. First, it is necessary to resort to 𝑅2̅̅̅̅ , an adjusted measure 
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of 𝑅2, every time the number of regressors increases. Consequently, already with a single regressor, it is 

convenient to use immediately 𝑅2̅̅̅̅  to put the first two explanatory variables on the same level of importance, 

regardless of which of the two we use first; otherwise, the arbitrary choice of the first regressor can pollute the 

result. 

The overlap effect can be determined, as we have already seen, in a simple way as the difference between the 

sum of the 𝑅2̅̅̅̅  of the two OLS regressions and that coming from the MLR; analytically, the following equation 

represents the overlap: 

𝑂𝐿𝑀+𝜓 =
𝑀

2 (𝛽𝑀
2 −₂𝛽𝑀

2 )+𝜓
2 (𝛽𝜓

2 −₂𝛽𝜓
2 )−2₂𝛽𝑀₂𝛽𝜓Cov(RP,ψi)

𝑖
2                       (50) 

The overlap depends on the correlation between the two explanatory variables RP e ψi. Indeed, the coefficients 

of the multiple regressions ₂𝛽𝑀 and ₂𝛽𝜓 in the case of covariance Cov(RP, ψi) = 0, collapse on the simple 

regressors 𝛽𝑀 and 𝛽𝜓, making the overlap null. Consequently, the greater the correlation ρ(RPψi), the greater 

the overlap is. 

We do not know the overlap effect of a second explanatory variable from the CAPM empirical evidence. CAPM 

ignores such a problem. Consequently, Roll’s estimate that CAPM can explain only 30% of a stock return 

variability could depend on an omitted variable with a substantial overlap effect. 

The results are even more complicated to understand because, in CAPM empirical evidence, common stocks are 

combined in portfolios to avoid EIV problems. We will deal with this issue in subsection 4.5. 

The fifth problem concerns the transition from analysing a portfolio of m risky assets to a market portfolio in 

which the mix changes over time. This assessment will result in the following: 

1) A market portfolio return 𝑅𝑃
∗  different from the optimised portfolio return RM. 

2) A variable market portfolio mix 𝑤𝑖
∗ different from the constant and optimised portfolio mix 𝑤𝑖 . 

Using the OLS regression of 𝑅𝑃
∗  against Ri, we reach α and β estimates different from those achievable with an 

optimised portfolio, where the weights 𝑤𝑖  are constant all along the timespan. 

3.7 Summary of CAPM Incompleteness 

We try to summarize what has been highlighted so far by a simple comparison between a two-variable model to 

CAPM, essentially based on the optimised or market portfolio return as the only explanatory variable of the risky 

asset return: 

1) The 𝑅2 achievable with CAPM is too modest; clearly, there is an external explanatory variable to CAPM 

that justifies the remaining risky asset return variability, but for now, we do not know what it is. 

2) The systematic risk may be ascribable to corporate performance risk rather than stock market risk: CAPM 

can provide limited clues about such a decomposition, mainly due to the corporate capital structure. 

3) Each asset influences the portfolio or the market portfolio return, and the latter affects the former through a 

feedback effect, with undeniable oscillating consequences. 

4) The α and β descending from risky assets and optimal portfolio return regression are not free to assume a 

correct value since their weighted mean must be constrained to 0 and 1, respectively. The market portfolio 

does not make this fluctuation unrestrained; on the contrary, it soils it. 

5) MLR highlights overlap effects that we can conveniently anatomise to determine the impacts of two or 

more explanatory variables on 𝑅2̅̅̅̅ . This effect depends on the existence of a correlation between the 

explanatory variables. CAPM could reach a modest 𝑅2 also thanks to this overlap effect. So, there are one 

or more ghost variables that limit the CAPM explanatory power on one side and the other the 𝑅2 obtained 

may not be ascribable to CAPM due to such omitted variables. 

6) The market portfolio is very different from the Lintner or Merton optimised portfolio. Several essays by 

Roll (1977, 1988), Ross (1977), and Roll et al. (1994) are enlightening. Even replacing the return of the 

optimised portfolio of m risky assets with the market portfolio return, albeit represented by a primary 

market index, does not add more sharpness to CAPM’s significance. 

CAPM is an essential corporate finance theory, but we should take for what it is worth: 

a. To determine the efficient frontier of the portfolio of m risky assets with the return vector 𝑹 and the 

covariance matrix . 
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b. To determine the portfolio’s optimal mix, given the current level of risk-free asset return RF
̅̅ ̅. 

c. To evaluate the distance between the current portfolio and the optimal one. 

d. To evaluate the distance between the optimal portfolio and the market one. 

e. To define a different investment allocation by borrowing or lending sums at the RF
̅̅ ̅ rate. 

In the absence of better or equally simple alternatives, CAPM can provide captivating explanations of the stock 

market operations, even if not always accurate or validated by empirical evidence. Therefore, CAPM is a theory 

that links the portfolio of m risky assets and allows us to determine the optimal portfolio’s correct risk/return 

profile, given a set of ex-post information, which means the vector of risky assets returns 𝑹 and their 

covariances matrix . 

Given the risk-free asset return RF
̅̅ ̅ at time t, the previous set of information allows us to determine the optimal 

portfolio with the investment share for every single risky asset that allows maximizing the investor utility, who 

will be able to adjust the risk/return profile of the overall portfolio by borrowing or lending at the rate RF
̅̅ ̅, even 

if this is not strictly necessary due to the presence of the orthogonal portfolio. In this regard, see Black (1972). 

How close or far the stock market is from an optimal condition can be assessed by comparing the mix of the 

optimised portfolio with the market portfolio. Some common stocks in the current portfolio will be in excess 

compared to the optimal portfolio mix and will be sold to invest in stocks that will appear in shortage. These 

movements will generate price and return changes, which will again modify the optimal portfolio, perhaps 

accompanying this movement with sensitive changes in the RF
̅̅ ̅ rate. 

4. Empirical Evidence 

4.1 Objectives of the Analysis 

Having concluded the CAPM theoretical examination, the time has come to analyse empirically some essential 

topics highlighted in Section 3. 

First, the strategy is to verify the asset allocation of 100 common stocks included in the S&P 500 Index in May 

2022. We started with creating a 10-stock portfolio with no short sales, gradually expanding the portfolio to 25, 

50, 75 and 100 stocks, both with and without short sales, getting nine optimised portfolios, correlating them with 

the performance of the S&P 500 Index. We shall track and explain the trends of some CAPM parameters of the 

optimised portfolios and their single common stocks. 

Later, the analysis focused on the security market line or β, using the 30-year time series of monthly returns over 

5, 10 and 30-year timespan and relating them to the return of the S&P 500 Index as a proxy of the market 

portfolio. For each common stock compared to the S&P 500, we present the 5-year rolling β for each month 

from January 1992 to December 2020. 

Lastly, to explain stock return, we shall integrate into an MLR the S&P 500 Index return and the corporate 

performance measurable by a sufficiently large set of business variables, notably some DOL and DFL variables. 

We shall present the outputs from these test batteries and draw some preliminary considerations. 

4.2 Empirical Evidence Data 

To empirically verify the previous three topics, i.e., asset allocation, security market line, and integration of stock 

market return with corporate performance, we use multiple sources of information, easily accessible to even 

non-professional investors, as CAPM prescribes. 

First, we select the 100 nonfinancial risky assets from those in the S&P Index in May 2022, representing over 50% 

of the index mix. 

The monthly market prices of the 100 common stocks and the value of the S&P 500 Index come from Yahoo! 

Finance. We limit the analysis to 30 years, from January 1991 to December 2020. The S&P 500 Index and 68 

stocks are present in each of the 360 months of such a timespan, while the remaining 32 stocks progressively 

join as they land on the stock exchange. The prices need adjustments for dividend payouts, splits, and other 

equity operations. Based on these quotations, we computed the monthly returns of 100 risky assets and the 

market index; we compared such data with those coming from Portfolio Visualizer, not detecting significant 

differences in terms of mean returns but only modest differences between the monthly returns caused primarily 

by the presence of dividends. 

For the optimised portfolios computation, we used both the tout-court and the lognormal returns, i.e., 𝑙𝑛(1 + Ri), 

without highlighting appreciable or significant differences in the final outputs. Consequently, we use the 

lognormal return for the asset allocation, while for the subsequent analyses, we use the return tout-court. 
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Concerning the financial statements and outstanding shares, we used Bloomberg data and the annual reports 

(form type 10-K) available on the Security and Exchange Commission’s EDGAR website. Bloomberg data are 

not ideally suited to the purposes of this study as the time series available often include ex-post adjustments. 

Regarding comparability, Bloomberg’s work is impeccable, but we prefer to use the original financial statements 

without any ex-post adjustments for the current analysis. We use Yahoo! Finance, Bloomberg and EDGAR for 

dividends, splits, and other equity adjustments, correcting them when and where necessary. When deemed 

necessary, we resort to the dividend and stock split histories published directly by the companies. 

4.3 Distribution of Stock Returns  

For the distribution of stock returns, we refer to the essays by Mandelbrot (1963), Fama (1963), Fama (1965) and 

Officer (1972). Briefly, stock prices follow a random-walk behaviour based on two assumptions: 

1) successive price changes are independent and 

2) they conform to some probability distribution. 

While there are no doubts regarding the first point relating to the independence of successive price changes, the 

distribution does not appear to be perfectly described by a Gaussian; Mandelbrot’s hypothesis seems more fitting. 

In particular, the study by Officer (1972) believes that a symmetric stable class of distributions better describes 

the distribution of returns due to tails that are fatter than the Gaussian but with properties inconsistent with the 

stable hypothesis, such as the behaviour of the sample standard deviation. 

Fame et al. (1973), based on the results of Fama (1965) and Blume (1970), believe that the interpretation of t-stat, 

valid for normal distributions, applied to the distribution of stock returns leads to overestimate probabilities and 

significance levels. The values of F, t-stat and P-Value presented in the following subsections must take this topic 

into account even though Fama et al. (1973) write that “as one is not concerned with precise estimates of 

probability levels, interpreting t-statistics in the usual way does not lead to serious errors”. 

4.4 Asset Allocation 

The first objective was to verify the behaviour of the optimised portfolios’ main parameters as the number of 

stocks increases, correlating them with single common stocks and the S&P 500 Index return. The analysis starts 

with a set of ten common stocks to avoid short sales without constraints, and we progressively increase the 

number of stocks to 25, 50, 75 and 100, first with and then without short sales. We show the data collected from 

the nine portfolios in Table 1. 

Table 1 allows us to observe the following topics as the number of risky assets in the portfolio increases: 

1) The return and the standard deviation of the optimised portfolio decrease while in the optimised portfolio 

sine, without short sales, decreases mainly only the standard deviation. 

2) Both the slope θ of the market opportunity line and the return/risk parameter λ of the portfolio increase; it 

means that the standard deviation is declining faster than the portfolio return, at least; 

3) With short sales, the number of active stocks is always equal to the number of selected stocks, while the 

number of stocks sold short progressively increases up to 46%. 

4) Without short sales, not all the selected stocks are active; indeed, the percentage of inactive stocks 

proliferates. 

5) Lintner’s conic sections differ from Merton’s when short sales are involved. 

6) The market opportunity line is always tangent to Merton’s and Lintner’s conic sections, with and without 

short sales, but the portfolio optimal mix with the KKT condition active does not lie on the market 

opportunity line. 

7) The A, B, C and D parameters of the conic sections progressively increase in value; they indicate 

non-degenerate conics and are shifted hyperbolas. We can refer to the matrix representation of conic 

sections for more details. 

8) The centres of Merton’s conic sections always have standard deviations equal to zero, but returns seem 

roughly constant. 

9) The centres of Lintner’s conic sections with short sales show a progressive reduction in the abscissa and 

ordinate; the abscissa is always negative, while the ordinate becomes negative as the number of common 

stocks increases. Since the centre on the ordinates of each conic corresponds to its minimum point 𝑅𝑃, 

Lintner’s conic section overflows more into the second Cartesian quadrant, generating a portfolio with zero 
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standard deviation and return lower than risk-free assets. Hence, this portfolio lies below the market 

opportunity line. 

10) The orthogonal portfolios always lie on the inefficient part of Merton’s conic sections. 

 

Table 1. Comparison of the main portfolio parameters: Lintner’s weights with short sales 

Item Parameters 

Stocks in Portfolio 

Base With Short Sales Without Short Sales 

10 25 50 75 100 25 50 75 100 

Portfolio 

Data 

Lwi 100.000% 69.956% 31.665% 25.456% 17.442% 100.000% 100.000% 100.000% 100.000% 

M 3.952% 2.402% 1.108% 0.855% 0.557% 3.411% 3.078% 2.850% 2.738% 

RM 1.278% 0.849% 0.531% 0.464% 0.367% 1.181% 1.246% 1.184% 1.201% 

RF 0.0075% 0.0075% 0.0075% 0.0075% 0.0075% 0.0075% 0.0075% 0.0075% 0.0075% 

 32.145% 35.026% 47.196% 53.344% 64.569% 34.390% 40.237% 41.294% 43.612% 

 8.134 14.585 42.583 62.381 115.921 10.081 13.071 14.491 15.931 

Matrix Precision 0.000E+00 0.000E+00 -2.887E-15 5.329E-15 8.771E-15 0.000E+00 -2.887E-15 5.329E-15 8.771E-15 

Stocks # 10.00 25.00 50.00 75.00 100.00 25.00 50.00 75.00 100.00 

Active Stocks 10.00 25.00 50.00 75.00 100.00 16.00 17.00 22.00 29.00 

Short Sales 0.00 5.00 21.00 32.00 46.00 0.00 0.00 0.00 0.00 

Data Monthly Monthly Monthly Monthly Monthly Monthly Monthly Monthly Monthly 

Start Jan-91 Jan-91 Jan-91 Jan-91 Jan-91 Jan-91 Jan-91 Jan-91 Jan-91 

End Dec-20 Dec-20 Dec-20 Dec-20 Dec-20 Dec-20 Dec-20 Dec-20 Dec-20 

Months 360 360 360 360 360 360 360 360 360 

Conic 

Section 

A 8.202 10.320 13.635 16.086 20.449 10.320 13.635 16.086 20.449 

B 0.105 0.124 0.225 0.287 0.420 0.124 0.225 0.287 0.420 

C 902.796 1,557.086 2,008.177 2,751.865 3,065.779 1,557.086 2,008.177 2,751.865 3,065.779 

D 27.127 86.924 265.489 530.914 869.352 86.924 265.489 530.914 869.352 

Merton 

Version 

minimum Rp 0.908% 0.663% 0.679% 0.585% 0.667% 0.663% 0.679% 0.585% 0.667% 

minimum 
p 0.111% 0.064% 0.050% 0.036% 0.033% 0.064% 0.050% 0.036% 0.033% 

minimum p 3.328% 2.534% 2.232% 1.906% 1.806% 2.534% 2.232% 1.906% 1.806% 

=m 32.145% 35.026% 47.196% 53.344% 64.569% 35.026% 47.196% 53.344% 64.569% 

MxPT 3.952% 3.433% 3.500% 3.359% 3.193% 3.433% 3.500% 3.359% 3.193% 

MyPT 1.278% 1.210% 1.659% 1.799% 2.069% 1.210% 1.659% 1.799% 2.069% 

MxC 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 

MyC 0.908% 0.663% 0.679% 0.585% 0.667% 0.663% 0.679% 0.585% 0.667% 

Lintner 

Version 

minimum Rp 0.908% 0.302% -0.450% -0.751% -1.035% 0.663% 0.679% 0.585% 0.667% 

minimum 
p 0.111% 0.023% 0.000% 0.004% 0.007% 0.064% 0.050% 0.036% 0.033% 

minimum p 3.328% 1.503% -0.160% -0.598% -0.830% 2.534% 2.232% 1.906% 1.806% 

=m 32.145% 35.026% 47.196% 53.344% 64.569% 35.026% 47.196% 53.344% 64.569% 

LxPT 3.952% 2.402% 1.108% 0.855% 0.557% 3.433% 3.500% 3.359% 3.193% 

LyPT 1.278% 0.849% 0.531% 0.464% 0.367% 1.210% 1.659% 1.799% 2.069% 

LxC 0.000% -1.031% -2.392% -2.504% -2.636% 0.000% 0.000% 0.000% 0.000% 

LyC 0.908% 0.302% -0.450% -0.751% -1.035% 0.663% 0.679% 0.585% 0.667% 

Orthogonal 

Portfolio 

Rz 0.00750% 0.00750% 0.00750% 0.00750% 0.00750% 0.00750% 0.00750% 0.00750% 0.00750% 


z 0.38092% 0.14113% 0.08390% 0.05360% 0.04796% 0.14113% 0.08390% 0.05360% 0.04796% 

z 6.17187% 3.75679% 2.89654% 2.31514% 2.18990% 3.75679% 2.89654% 2.31514% 2.18990% 

 

According to the Lintner and Merton methodologies to assess weights, we have traced in Figure 2 the three 

primary conic sections, one with the 10-stock portfolio and the others with two 100-stock portfolios. Apart from 

the southwest shift of Lintner’s conic section compared to Merton’s, already mentioned, we can note that the 

conic section tends to move west as the number of stocks in the portfolio increases, with a marked enlargement 

of the shape, which allows it to have a higher return for the same standard deviation. Consequently, the market 

opportunity line must have a steeper slope, allowing for intercepting higher indifference curves. 

We can see the trajectories of the following points: 

1) Merton’s point of tangency (squared indicator): it moves west and then heads north; this movement 
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indicates a return increase with the same portfolio risk. 

2) Lintner’s point of tangency (round indicator): moves in a westerly and slightly southerly direction; such a 

movement indicates a progressive portfolio risk reduction joint to a less than proportional reduction in the 

portfolio return. 

3) The optimal point with short sales constraints due to the KKT condition (triangle-shaped): it moves 

westward and is always suboptimal compared to Merton’s and Lintner’s point of tangency, given that they 

coincide in the absence of short sales; this shift indicates a progressive reduction of the risk with an almost 

constant portfolio return. 

4) The minimum point of Merton’s conic section (diamond shape): it moves westward and slightly southward, 

indicating a reduction in portfolio risk with roughly the same return. 

The main conclusion is that by expunging short sales through the KKT condition, the optimal portfolio does not 

lie on the market opportunity line and, therefore, must be considered suboptimal. Secondly, whenever the 

number of common stocks in the portfolio increases, it is necessary to have a growing share of stocks sold short; 

the market portfolio, to be efficient, should have a negative quotation for many stocks listed on the stock 

exchange. Since this cannot happen, the market portfolio is not as efficient as an optimised portfolio: better, the 

market portfolio is neither efficient nor optimal, and the alleged syllogism that the market portfolio is efficient is 

not confirmed. Thirdly, even having expunged short sales, the optimised portfolio sine has a limited set of active 

common stocks compared to those selected from the stock market index: more than 70% of the stocks do not 

enter the 100-stock optimised portfolio sine. See Levy (1983) for such an issue. Finally, we can point out that the 

increase in the number of stocks entails an appreciable risk reduction and a modest return increase. So, the 

100-stock optimised portfolio sine indicates diversification’s true potential: risk reduction with substantial return 

stability. 

 

 

Figure 2. Conic sections, market opportunity lines and trajectories 

 

4.4.1 Optimised Portfolios and S&P 500 Index 

A legitimate question arises: how can we consider the market portfolio efficient if it includes risky assets that 

investors should not purchase to maximize θ? 
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Table 2. Regression between optimised portfolio against S&P 500 Index returns 

Portofolio against 

S&P 500 Returns 

Stocks in Portfolio 

Base With Short Sales Without Short Sales 

10 25 50 75 100 25 50 75 100 

#Records 360 360 360 360 360 360 360 360 360 

#Empty Records 0 0 0 0 0 0 0 0 0 

Mean 0.675% 0.675% 0.675% 0.675% 0.675% 0.675% 0.675% 0.675% 0.675% 

Variance 0.179% 0.179% 0.179% 0.179% 0.179% 0.179% 0.179% 0.179% 0.179% 

STD Deviation 4.227% 4.227% 4.227% 4.227% 4.227% 4.227% 4.227% 4.227% 4.227% 

Covariance 0.126% 0.075% 0.026% 0.017% 0.009% 0.115% 0.101% 0.095% 0.091% 

OLS Intercept -0.004 -0.004 -0.004 -0.004 -0.004 -0.005 -0.007 -0.007 -0.008 

OLS Slope  0.805 1.306 2.113 2.292 2.844 0.985 1.066 1.173 1.210 

Correlation vs. RM 75.291% 74.215% 55.414% 46.371% 37.478% 79.485% 77.649% 79.046% 78.348% 

R2 vs. RM 56.687% 55.079% 30.707% 21.502% 14.046% 63.179% 60.294% 62.483% 61.385% 

R2 Adj. vs. RM 56.566% 54.953% 30.514% 21.283% 13.806% 63.076% 60.183% 62.378% 61.277% 

Standard Error 0.028 0.028 0.035 0.038 0.039 0.026 0.027 0.026 0.026 

F 468.547 438.949 158.649 98.065 58.501 614.262 543.634 596.223 569.092 

P-Value 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 

SIG? True True True True True True True True True 

 Standard Error 0.002 0.002 0.002 0.002 0.002 0.001 0.002 0.001 0.002 

t-stat -2.289 -2.728 -2.163 -1.721 -1.487 -3.398 -4.302 -4.813 -5.132 

P-Value 1.133% 0.334% 1.560% 4.309% 6.897% 0.038% 0.001% 0.000% 0.000% 

SIG? True True True True False True True True True 

Standard Error 0.037 0.062 0.168 0.231 0.372 0.040 0.046 0.048 0.051 

t-stat 21.646 20.951 12.596 9.903 7.649 24.784 23.316 24.418 23.856 

P-Value 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 

SIG? True True True True True True True True True 

 

We try to answer this question by correlating the nine optimised portfolio returns against the S&P 500 Index 

return. We show the results in Table 2. In this analysis, the independent variable is the optimised portfolio return. 

Since the index mix has changed over the 30 years while the optimised portfolio has a fixed structure, the 

correlation will be less than 100%. We also recall the 68 stocks over thirty years in the optimised portfolios, and 

the remaining 32 stocks included progressively over the next 23 years. We could have performed the asset 

allocation only over the last seven years, but with only 84 monthly observations, we would have had a 

covariance matrix with rank 83, which would have allowed us to create an optimised portfolio of only 83 stocks; 

alternatively, we should have shifted to weekly observations, but this would not have allowed us to compare 

these analyses with the subsequent ones. 

If we focus on the correlation index and 𝑅2, it appears that short sales constraint allows the return of the 

optimised portfolio sine to be more correlated to the S&P 500 Index return, while the 𝑅2 allows explaining 

more than 60% of the latter variance with the former. This element collapses rapidly as the number of stocks and 

short sales increase. Over 41% of the investment in the 100-stock portfolio is due to short sales for 46 stocks, 

while long positions are less than 59% of the investment for 54 stocks. Its 𝑅2 is only 14%. 

Market portfolio and optimal portfolios are strongly correlated only without short sales. Nevertheless, even 

without short sales, we can see that the market portfolio return is lower with a higher standard deviation than the 

100-stock optimised portfolio sine. Comparing the θ of the latter portfolio, we can see from Table 1 that it is 

worth 43.6% against 15.8% of the former. This comparison also demonstrates that the market portfolio is 

suboptimal to the optimised portfolio sine. However, there is more: as the number of stocks in the portfolio 

increases, θ increases steadily. If we had included all the S&P 500 stocks in the portfolio, we might have gotten 

an even higher θ. We have already seen that over 70% of stocks are inactive; this percentage could rise further 

with a 500-stock portfolio, just as it has steadily risen from 25 stocks (with 36% of inactive stocks) to 100 stocks 

(71 % inactive). Indeed, the portfolio mix weighs heavily on this result. 

4.4.2 β Behaviour with Short Sales 

A fundamental point is missing to complete the asset allocation analysis: how do the common stock βs behave 

within the optimised portfolios? 
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We will first analyse the β behaviour of the optimised portfolio with short sales. The fundamental point is that 

100% of the stocks are active; consequently, when the stocks increase from m to n, we witness homogeneous 

behaviour of all the m stocks already in the portfolio: all the βs increase homogeneously (see Figure 3 on the left), 

and such growth is related to the trend of the portfolio excess return, RM − RF
̅̅ ̅ = XM. We analyse the β 

percentage change of a generic stock, exploiting CAPM equilibrium relations, through a few algebraic passages 

we obtain: 

%𝛽𝑖 =
𝛽𝑖

𝑛

𝛽𝑖
𝑚 − 1 =

%Cov(Ri,RM)−%𝑀
2

1+%𝑀
2 =

−%XM

1+%XM
                        (51) 

where: 

1 + %XM =
𝑅𝑀

𝑛 −RF̅̅̅̅

𝑅𝑀
𝑚−RF̅̅̅̅

=
𝑋𝑀

𝑛

𝑋𝑀
𝑚                           (52) 

The facts are as follows: 

1) The β of all common stocks increases as the number of stocks in the portfolio rises; 79 of the 100 stocks in 

the portfolio have a β greater than two, while only four stocks have a β less than one. 

2) The portfolio excess return XM trend involves such an increase, which, as we have seen, decreases as the 

number of stocks in the portfolio grows, and this does not depend on the absolute risk level of the single 

stock. 

3) Consequently, the increase is homogeneous for all common stocks. 

  
Figure 3. β trends inside five optimised portfolios: Lintner’s weights on the left and Merton’s on the right 

 

The β continuous increase can only come from reducing the optimised portfolio variance faster than the 

covariance of the stock return compared to the portfolio return. As the number of stocks grows, both θ and λ 

increase; if they do not increase, the incremental stock should have zero weight. To keep constant the stock 

excess return to RF
̅̅ ̅, the more λ increases, the more the covariance Cov(Ri, RM) must decrease. But the 

optimised portfolio variance shrinks even more, and this leads to the β increase, an increase measurable more 

simply employing the percentage change of the portfolio excess return %XM. Although β is a measure of the 

risk of the common stock compared to the optimised portfolio, its dynamic depends on the %XM trend via λ.  

What happens if we base the portfolio weights on Merton’s method instead of Lintner’s? Relations (51) and (52) 

are still valid, but using Merton’s conic section, there is a tendency to increase the portfolio return with equal 

standard deviation, implying that β must decrease. With a 100-stock portfolio, the contraction is so powerful that 

only one of the β exceeds 1.0: see Figure 3 on the right. Such a trend, apparently illogical from an economic 

perspective, leads us again to favour Lintner’s assessment of the portfolio weights. Certainly, Merton’s 

evaluation is more valuable in the optimisation stage but less economically understandable. 

At this point, it is unclear why we observe β, a specific indicator of common stock, instead of watching λ, 

common to all stocks in the portfolio. By precisely defining the market portfolio mix and size, it would be easy 

to verify its optimisation to discover that the market is perhaps not as optimised as we usually consider it, even if 

it remains an excellent tool for sharing and containing risks (Lintner, 1970). 

Furthermore, the β weighted mean of the optimised portfolio equals one due to many negative weights, just as 

the α weighted mean is null. These topics are sufficiently substantiated and highlight the characteristics the stock 

β should have if the market portfolio were optimised: a very high β, even though their weighted mean is 1. 
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4.4.3 β Behaviour without Short Sales 

What characteristics must stocks possess to have a positive or negative weight? Observing the covariance matrix, 

its inverse, and the stock excess return Xi, it does not appear at first sight identifiable what characteristic 

determines its sign and value. As already extensively treated in subsection 3.2, everything depends on the v𝑖𝑗 

elements of the inverse matrix. 

 

Table 3. Common stock layers in optimised portfolio sine 

Layer Stocks in Portfolio 10 25 50 75 100 

1 10 10 9 7 6 6 

2 +15 - 7 4 3 3 (+1-1) 

3 +25 - - 6 6 7 (+1-1) 

4 +25 - - - 7 7 (+1-1) 

5 +25 - - - - 6 

 Total 10 16 17 22 29 

 

The last issue introduces the β behaviour in the optimised portfolio sine. Even for the latter, it is not easy to 

understand the characteristics that the common stocks excluded must have since it is not sufficient to have a 

negative weight in the optimised portfolio with short sales to be a candidate for taking on a zero weight in the 

optimised portfolio sine. The zero-weight choice mainly depends on a nonlinear system where even the v𝑖𝑗 

elements of the inverse matrix do not play an explanatory role. 

 

  
Figure 4. β trends inside five optimised portfolios sine: on the left, stocks included, and on the right, the excluded 

ones 

 

Having said all this, let us see the behaviour of the stocks in the portfolio sine. First, we focus on the dynamic of 

inclusions and exclusions. From Table 3, it is possible to examine the stratification of the stocks in the five 

portfolios sine; from 10 to 75 stocks, the dynamic presents exclusively stopping stocks, while moving from 75 to 

100 stocks appear assets not previously selected. 

In Figure 4 on the left, we can examine the overall β dynamics, assuming that their value nullifies when they 

leave the portfolio so as not to pollute the overall picture. We will exclude or include stocks from the analysis as 

they leave or enter the portfolios. Also, in the optimised portfolios sine, we have homogeneity in the β dynamics, 

which remains confined between 0.3 and 1.8, with some oscillations, without a decisive and constant increase as 

in the optimised portfolios with short sales. Determining the β dynamic appears problematic as we initially 

witness a stopping and rising dynamic altogether, subsequently mixed up by repechages of excluded stocks. 

The βs follow the same dynamic already highlighted by equation (51). All this is for the stocks included in the 

portfolio. Therefore, the relative β constancy follows the same dynamics of the portfolio excess returns: the 

portfolio variance shrinks while its return is relatively constant.  

Considering that the portfolios sine are sub-optimised compared to those with short sales, it follows that low βs 

are typical of a sub-optimised stock market. 

What happens to the βs of the excluded stocks? From Figure 4 on the right, we can examine such trends. They 

present the most disparate dynamics; they have no connection with the portfolio return trend or each other. Their 

values are lower than those of the optimised portfolio with short sales. Apart from one stock, the other 70 stocks 

show values between 0.50 and 1.90. We must ask ourselves the meaning of common stock βs in a non-optimised 



ijef.ccsenet.org International Journal of Economics and Finance Vol. 15, No. 12; 2023 

139 

portfolio or for stocks excluded stricto sensu from the portfolio, even the market portfolio. 

4.4.4 Correlation and Determination Indices 

The last issue concerns the trend of the correlation and determination indices of single stock returns compared to 

the optimised portfolio return. Again, we examine the relations between these indices in a portfolio of n stocks 

starting from a portfolio of m stocks with n > m. The relation for the correlation index is as follows: 

%𝜌 =
𝜌𝑖𝑀

𝑛

𝜌𝑖𝑀
𝑚 − 1 =

%Cov(Ri,RM)−%𝑀

1+%𝑀
                            (53) 

From this, we can conclude that in an optimised portfolio of any kind, the correlation between stock and 

portfolio returns tends to decrease as the covariance reduction exceeds the reduction of the portfolio standard 

deviation. Although the covariance and standard deviation dynamics depend on the weight assessment by Lintner 

or Merton, this cannot influence the correlation between the common stock and optimised portfolio returns. As 

we have already seen above, the equilibrium relation requires that when the number of common stocks in the 

portfolio increases, there is an inverse relation between the covariance Cov(Ri, RM) and λ: the former decreases 

as the latter increases, linked to the θ rise. Furthermore, as the number of stocks increases, the portfolio variance 

decreases, which leads to the standard deviation shrinkage. The covariance reduction is faster than the standard 

deviation shrinkage. Consequently, the correlation index decreases when we move from m to n stocks, leading to 

an automatic 𝑅2 contraction: 

%𝑅2 = (1 + %𝜌)2 − 1                                (54) 

 

Table 4. Correlation e determination index dynamics referred to the number of stocks in the portfolio 

Stocks in Portfolio 
With Short Sales Without Short Sales 

%𝝆 %𝑹𝟐 %𝝆 %𝑹𝟐 

25 -8.2% -15.8% -6.5% -12.6% 

50 -25.8% -44.9% -14.5% -26.9% 

75 -11.5% -21.7% -2.5% -5.0% 

100 -17.4% -31.7% -5.3% -10.3% 

 

In optimised portfolios with short sales, the dynamics of the correlation and determination indices of the stock 

returns compared to portfolio return are always completely homogeneous for every stock, except for those just 

included since all the stocks are always active. In optimised portfolios sine, we must exclude the stopping stocks 

to appreciate the trend homogeneity of correlation and determination indices. We show such dynamics in Table 

4. 

Within an optimised portfolio with short sales, as the number of stocks increases, we can observe the following 

events: 

1) β tends to increase with Lintner’s weights (the opposite with Merton’s weights);  

2) ρ and 𝑅2 tend to decrease. 

It follows that trying to explain the common stock return against the optimised portfolio return through OLS is 

misleading, while the β trend is due to the increase in the risk perception of common stock compared to the 

optimised portfolio variance that decreases continuously. We can also apply the same considerations to an 

optimised portfolio sine, albeit in a much softer way. The emphasized tendency towards an 𝑅2 reduction is due 

to portfolio optimisation; consequently, Roll (1988) absurdly should rejoice in having an 𝑅2 around 30%; such 

a parameter should be much lower if the market portfolio were optimised. With a 100-stock optimised portfolio 

with short sales, the mean 𝑅2 is around 4.5%. It is a further clue that the market portfolio is far from optimised; 

this is a market failure, and CAPM should be cleared, not blamed.  

4.5 Security Market Lines 

After analysing the asset allocation, we must look at the monthly return of the 100 common stocks compared to 

the market portfolio return using the S&P 500 Index as its proxy. We analysed three periods ending in 2020: 30 

years from 1991, 10 years from 2011 and 5 years from 2016. We present the data in Tables 5, 6a and 6b. We 

replaced the company’s names with aliases. Table 5 summarizes the data from the three periods. 

Briefly, we can see that using the monthly returns, we get the following results: 

1) The intercepts and slopes of the regressions are considered admissible based on the F test, but as the time 

window analysis shrinks, its goodness-in-fit decreases. 
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2) While the slopes align with the goodness-in-fit of the regression, measured by t-stat and P-Value, the 

intercepts fail to pass the null hypothesis easily; the more the time window shrinks, the less they are 

significant: in the 5-year timespan, only 16 intercepts are significant. 

3) The determination index 𝑅2 increases on average as the time window decreases and remains at relatively 

low levels, around 30%, but not insignificant, as expected in an optimised portfolio with short sales. 

4) Moving from monthly to weekly returns 𝑅2  worse, but this result is not due to better portfolio 

optimisation but to more erratic price movements. 

5) The intercepts have an arithmetic mean value between 0.7% and 1.0%, statistically insignificant, while the 

slopes have values that fluctuate around 1. 

On the one hand, the analysis confirms that if we think of explaining stock excess return through the market 

portfolio excess return by using β, we risk incurring excessive risks since the relation does not have an 

outstanding predictive value if measured by 𝑅2, on the other hand, the βs oscillating around one and the 𝑅2s 

suggest that the market portfolio is not optimised. All this confirms that the security market line of each stock 

has the meaning of a portfolio optimisation condition purely, without any predictive worth. 

 

Table 5. Summary of β analyses 

Timespan Item Obs. Standard Error   R2  t-stat t-stat  P-Value  P-Value F F P-Value 

30Y 

 318.83 0.0844 1.008% 1.0083 22.562% 2.028 9.470 5.918% 0.017% 100.17 0.034% 

 75.44 0.0406 0.685% 0.394 9.673% 0.8477 3.2381 9.120% 0.155% 63.08 0.310% 

SIG? 
  

  

5 

  

56 100 
 

100 

10Y 

 119.11 0.0593 0.709% 0.9451 30.330% 1.289 7.216 11.233% 0.177% 59.99 0.355% 

 4.42 0.0260 0.807% 0.389 14.799% 1.2390 2.8143 12.595% 1.012% 44.42 2.023% 

SIG? 

    

26 

  

31 98 

 

98 

5Y 

 60 0.0603 0.694% 0.9464 33.637% 0.8827 5.5167 16.420% 0.520% 34.64 1.039% 

 0.0000 0.0244 1.088% 0.418 15.125% 1.1698 2.0512 14.107% 2.298% 24.41 4.596% 

SIG? 

    

37 

  

16 94 

 

94 

5Y monthly 

rolling  

 290.55 0.0770 0.995% 1.0338 25.968% 0.9980 4.5089 18.396% 1.547% 25.14 3.094% 

 93.3196 0.0332 0.637% 0.375 9.427% 0.4265 1.3102 6.058% 2.550% 13.67 5.099% 

SIG? 

    

6 

  

1 79 

 

79 

 

Table 5 shows the mean rolling β of all common stocks recalculated monthly from 1992 to 2020. The analysis is 

captivating, but the summary does not do justice to the data detail shown in Table 7. It is necessary to examine 

the diagrams to understand their meaning. We report in Figure 5 the diagrams of three stocks issued by historical 

corporations, which can represent what a rolling β means. 

In Figure 5, we show in blue with the scale on the left the 5-year rolling β and the 30-year stationary β, while all 

the other variables have the scale on the right. With a solid blue line, we have the 5-year rolling β while the trend 

of the relative intercept α, 𝑅2, and the P-Value of the rolling regression have dashed lines. The 30-year 

stationary β, its intercept α and the 𝑅2 of the regression have a dotted line with a double point, shown purely for 

comparison purposes with the 5-year rolling analysis.  

Such analysis highlights: 

1) a substantial variability of the rolling β, which contrasts with the presumed constancy of the stationary β, 

2) an equally significant variability of the 𝑅2 of the rolling β regression, 

3) a modest oscillation of the rolling α and  

4) a localized P-Value movement of the rolling β. 

In the first diagram on top of Figure 5, the first stock highlights a marked oscillation in rolling β corresponding 

with the 2008 crisis, also felt in the third diagram in the bottom but not in the second in the middle, which is 

instead affected by a period of the corporate downturn that began in 1992 and ended in 1996. The overall 

graphical analysis of the 100 common stocks shows abrupt changes in the 5-year rolling β in a period of one or 

few months, paired with other sharp α, 𝑅2  and P-Value movements, not always synchronous with their 

respective rolling β.  

Such trends are not unrelated to stock market trends and corporate performance. The security market line does 

not appear insensitive to such changes. It is unclear what the transmission mechanism of the corporate or 

industry performance on the stock return is: CAPM cannot specify it, being persuasive in allocating assets but 

less effective in explaining the individual stock price and return trends. 
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Table 6a. 30-Year, 10-Year, and 5-Year Stationary β Data 

 



ijef.ccsenet.org International Journal of Economics and Finance Vol. 15, No. 12; 2023 

142 

Table 6b. 30-Year, 10-Year, and 5-Year Stationary β Data 
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Table 7. 5-Year Monthly Rolling β in 1992-2020 Timespan 
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Figure 5. 5-Year Monthly Rolling β of Three Historical Corporations of the Automotive, IT and Energy 

Industries 
 

Furthermore, we must ask ourselves how it is possible to create homogeneous β portfolios if this variable could 

undergo sudden fluctuations due to internal or external causes to the firm: over a 5-year timespan, we can get the 

false feeling that β is or has been constant when it can change suddenly and abruptly in one month. The first 

stock on top of Figure 5, fell from 2.50 to 1.50 between 2007 and 2009 to suddenly rise again towards 2.50 with 

an 𝑅2 in between 20% and 40%; a similar trend would not have emerged by combining this stock in a portfolio 

of 50/100 other stocks in a regime where β computation takes place annually or biannually. Portfolios can 

mitigate EIV bias but have other drawbacks that mask factors that characterize individual stocks (Jegadeesh et al., 

2015). 
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4.6 First Conclusions on the Empirical Evidence 

From the previous subsections 4.4 and 4.5, we have verified that CAPM can perform an essential function in 

contouring the portfolio efficient frontier of m risky assets and determining the optimal combination that 

maximizes the investor utility through the slope of the market opportunity line. Once this function is completed, 

the prospect of using the equation (21) reported below falls sharply. 

Ri − RF
̅̅ ̅=βi ∗ (RM − RF

̅̅ ̅) = λ*Cov(Ri, RM)                         (21) 

We reiterate that equation (21) is an equilibrium condition to minimise portfolio risk. Furthermore, it is a 

stochastic relation whose only constant element is RF
̅̅ ̅. Thinking that (21) is verified every instant is a pious 

illusion, like thinking that βi remains constant in time. Equation (21) is a valid relation for a specific portfolio 

aimed at minimizing its risk. Assigning such a relation to a different task involves fatal errors for the reasons we 

are about to present. 

We have seen that β takes on different meanings depending on its use: within an optimised portfolio or as a 

generic measure of a stock risk compared to a market index. Let us examine the results of the first kind using 

Figure 6, which presents the 360 observations of stock monthly returns in the 1991-2020 timespan. 

 
Figure 6. Portfolio Optimisation Effect: Portfolio Return on the Abscissa and Stock Return on the Ordinate 

 

If we assumed that such a risky asset was the only one available on the market, the portfolio returns would be 

equal to the stock returns and the observations would be distributed in Figure 6 as the amaranth points along a 

bisector of the Cartesian axes: intercept equal to 0, slope equal to 1 and such a distribution would have an 𝑅2 

equal to 1. Combining the common stock into the 10-stock optimised portfolio analysed already, we know there 

would be no short sales, and the orange dots represent the distribution of the observations. The optimisation 

process causes a squeeze of the portfolio returns along the abscissa while there is no change along the ordinate. 

The security market line increases from 1 to approximately 1.317; there is no significant change in the intercept 

but 𝑅2 plummets to approximately 16.5%. 

Moving to the 100-stock optimised portfolio with short sales and Lintner’s weights, portfolio returns squeeze 

further with the same stock return distribution as before: the observations in Figure 6 are in blue. The 

optimisation is so effective that the portfolio variance collapses, originating a sharp rise in the yellow regression 

line, with a slope of 4.65, intercept practically zero, and 𝑅2 at 4.1%. We have already presented the dynamics of 

these parameters with equations (51) and (54). 

In summary, portfolio optimisation is so efficient in containing return variance that it makes the common stock 

appear riskier: the squeeze effect is more prominent as the number of common stocks increases. At the same time, 

the relation between portfolio and stock returns becomes less and less significant. 

The inclusion of risk-free assets does not change β because RF
̅̅ ̅ is constant, so it does not affect the variance, 

covariance, correlation, and determination indices. 

In Figure 7 on the left, we replaced the 100-stock portfolio with the S&P 500 Index (turquoise dots). The index 

composed of 500 stocks has squeezed returns like the 10-stock optimised portfolio, while on the right, we have 

replaced the S&P 500 Index with the 100-stock optimised portfolio sine, of which only 29 stocks are active (red 

dots). Now, it appears evident that the effectiveness of the optimisation with short sales constraints exceeds the 
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S&P 500 Index. It follows that the slope of the regression line of the former is steeper than the latter, and, as we 

have also seen in the previous case, there are algebraic and stochastic reasons which should make us reflect on 

the optimisation effectiveness of the market portfolio represented by a proxy. If the market portfolio represented 

by the S&P 500 proxy were as effective as the 100-stock optimised portfolio sine, there would be two numerical 

consequences: it would have a steeper slope and a lower 𝑅2 but unfortunately, this does not happen. Table 8 

compares the essential parameters of the five possible portfolios to the sample common stock to assess their 

internal dynamics: the variable θ allows us to establish their optimisation ranking. 

    

Figure 7. Portfolio Optimisation Effect: Portfolio Returns on the Abscissa and Stock Returns on the Ordinate 

 

Table 8. Regression of five portfolios against a sample stock (benchmark) 

Portfolios 
1-stock 

(benchmark) 

10-stock without 

short sales 

100-stock with short sales 

(Lintner’s weights) 

100-stock with short sales 

(Merton’s weights) 

100-stock without 

short sales 

S&P 500 

Index 

Return 1.680% 1.278% 0.367% 2.069% 1.201% 0.675% 

Variance 1.644% 0.156% 0.003% 0.102% 0.075% 0.179% 

Cov(Ri, RM) 1.644% 0.206% 0.014% 0.083% 0.105% 0.228% 

β 1.000 1.317 4.651 0.811 1.401 1.278 

α 0.000 0.000 0.000 0.000 0.000 0.008 

𝑅2 100.0% 16.472% 4.082% 4.082% 8.948% 17.756% 

θ 13.046% 32.145% 64.569% 64.569% 43.612% 15.800% 

 

Even the 10-stock portfolio sine beats the S&P 500 Index, which is slightly better than the single stock itself, 

despite having the latter a nine times higher variance. The only element ignored by this analysis is that the five 

portfolios are based on ex-post decisions while the single stock and S&P 500 Index are potentially resulting from 

ex-ante choices: if an investor decided to invest in 1991, he could have bought only the single stock and the S&P 

500 Index while no one could have invested in the 100-stock portfolios and only with much good luck could it 

have been possible to opt for the 10-stock portfolio that would initially have been composed by five stocks with 

five subsequent additions between 1997 and 2012, but probably with different weights from those coming from 

equation (19 bis). Ex-post, we know the covariance matrix for 1991-2020; ex-ante, we should have had the 

crystal ball or a better forecast tool than that provided by CAPM. The approach used by Black et al. (1992) is 

encouraging. It would be interesting to use the data for the first n months to optimise the portfolio for the 

subsequent month through all the 30 years and compare that result with the 30-year static optimisation and the 

S&P 500 Index. 

The outcome is that equation (21), of pure stochastic nature, is instrumental only for portfolio optimisation and 

performs a magnificent job. It loses worth when the portfolio is not optimised, such as the market portfolio or its 

proxy, and even when the risky asset, excluded from the market portfolio, is compared to this latter. In any case, 

its predictive reliability can only be modest, being a stochastic relation with a percentage of the explained 

variance lower the broader the stock set held in the portfolio is. Of course, it plays an essential role in defining 

the risk/return ratio of the stock, but alas, it cannot quantify it correctly outside a specifically optimised portfolio. 

CAPM empirical evidence studies assume that the market is efficient without any checking about its 

optimisation, and such a fault has led to nothing. Extremely refined statistical techniques employed to validate 

CAPMs clash with the empirical evidence that: 
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1) The market portfolio might be neither efficient nor optimised; 

2) The better the portfolio optimisation, with many uncorrelated stocks and short sales, the worse the 

explained variance of the relation (21); 

3) β changes over time, even within a few weeks. 

CAPM takes the risky asset prices, returns, variances and covariances as exogenous data. It cannot explain the 

performance of the capital market by itself owing to its incompleteness. If we want a theory explaining the stock 

market returns, we must look outside CAPM. 

4.7 Integration of Stock Market with Corporate Performance 

After analysing the asset allocation and security market lines of 100 stocks embedded in the S&P 500 Index, we 

investigate the possibility of explaining stock returns based on the stock market’s and corporate business’s joint 

performance. 

4.7.1 Stock Market and Corporate Business Performance Data Sampling 

As far as the stock returns are concerned, we said everything already; for the stock market performance, we will 

use the S&P 500 Index return as a proxy for the market portfolio, while for the corporate business performance, 

we will use some variables linked to the DOL and DFL definition, already presented in subsection 2.1. Table 9 

summarizes the fourteen variables employed according to their kind. 
 

Table 9. Corporate performance variables and ratios 

Statement of Income Variables Ratio between Variables Ratio between Ratios 

Total Revenue Total Revenue Growth DOL 

EBIT EBIT Growth DFL 

Net Income Net profit Growth DTL 

Adjusted Basic EPS Adjusted Diluted EPS Growth  

Adjusted Diluted EPS Risk Rate  

Dividends   

 

Most variables are selected from the income statement except for dividends, partly associated with the net 

income trend. The ratios between variables are simply ratios between a specific quantity at time t to time t-1 to 

determine its growth trend. The Risk Rate at time t is the reciprocal of the ratio between EBIT and Total Revenue 

at time t-1. It indicates the risk of the corporate business, albeit in a rough form: the higher this ratio, the greater 

the chance that unfavourable changes, even modest, of unit prices, unit variable costs, volumes and sales or 

manufacturing mixes cause adverse effects on corporate profitability. Instead, DTL is simply the DOL by DFL 

product. 

The first problem in managing a heterogeneous mass of similar financial and market data is their sampling; the 

stock and stock market index quotations are even at an intra-daily level while listed firms release quarterly 

financial statements. Even choosing a monthly frequency for market data, as has been done already, would cause 

a significant mismatch with quarterly financial statement data. Furthermore, the comparison between quarterly 

corporate data should involve a seasonal adjustment to be meaningful. Even so, there would still be the problem 

of defining the trend at the quarter level versus the previous quarter or quarter of the last year, avoiding seasonal 

data adjustment. We discarded the use of quarterly data owing to the consideration that the stock market operates 

skilful professional investors who can evaluate the overall corporate performance by inferring it from the 

quarterly data and converting it into an annual projection; an excellent quarterly performance combined with a 

good corporate knowledge would allow the expert analyst to understand the real corporate trend or even to 

predict it in advance, without having information other than that available on the market. For this reason, we 

decided to use stock annual returns by relating them to annual financial statement data.  

4.7.2 Regression Procedure 

We regress the stock market and corporate performance of the year t on the stock return of the same year: for the 

S&P 500 Index return, there are no problems of synchronicity with the stock return, but with the corporate 

performance it is necessary to make a logical leap and link it to the stock return in advance of the moment in 

which the financial statements for the same year are made available, perhaps several months in advance. We 

have hypothesized that the market does not have to wait for the end of the financial period to find out how the 

firm is doing: it knows beforehand its performance. Therefore, we paired the annual corporate performance at 

time t, relative to the previous 12 months, with the annual stock market and the specific stock returns in one of 

the 12 months of the same financial period. 
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But which month in particular? The one which maximizes 𝑅2 within the 12 months of the financial period. 

Of course, it was necessary to convert the monthly time series from month/year into month/financial period as 

the start and end date of the financial period do not always coincide with the solar one and are specific for each 

firm. Fortunately, there are very few cases of firms that have changed the closing date of the financial period by 

one or more months while scheduling the end of the financial period on a specific variable day within a limited 

period of a few days around the end of a month is relatively frequent. In this case, we assumed the month-end 

date as the end of the financial period. 

Once we acquired the financial statements, we based the analysis for each stock on the following process: 

1) Stage 1: simple regression at the annual level of the S&P 500 Index return as the explanatory variable of the 

stock return, identifying the month of the financial period in which 𝑅2 is maximized on a thirty-year or the 

available timespan. 

2) Stage 2: once defined the month in which there is the maximum variability explained of the stock return 

against the index return and vice versa, we carried out an analysis of the correlations with all the fourteen 

variables of Table 9 on the available timespan for the stock to identify the possible candidates for the 

subsequent multiple linear regression or MLR. 

3) Stage 3: MLR to identify the best second regressor for the same month identified in Stage 1 based on the 

criterion to maximize 𝑅2 in the absence of multicollinearity. 

4) Stage 4: search for a better month than the one already identified in Stage 1. If we observe a better month, 

the analysis restarts from Stage 2. 

5) Stage 5: identification of the third and fourth regressor that maximize 𝑅2 , in the absence of 

multicollinearity. In some cases, Stage 5 changed the reference month identified with Stages 1 and 4, 

restarting the analysis from Stage 2. 

The described process makes it possible to identify the best MLR for each stock, using three explanatory 

variables of corporate performance and the stock market performance over a sufficiently long time. 

The method of choosing the month of the financial period in which to match the stock and stock market returns 

with the financial statement data might seem arbitrary and opportunistic, but if it allows explaining a significant 

share of the stock return variability over 30 years for 68 stocks out of 100, could prove decisive. Considering that 

the month of the financial period that shows tremendous significance is between 5 and 6, it seems to indicate that 

even before the availability of the half-year report, the trends of stock return Ri and corporate performance 𝜓i   
are already correlated, in part mitigated by the presence of RM. This undeniable fact should not necessarily lead 

to insider trading actions or other criminally relevant conduct but only the possibility of skilfully analysing 

corporate performance in advance based on incomplete information. 

For each stock, we will present the details of the simple regressions against the S&P 500 Index return and MLR 

against the same return and the corporate performance’s best variable. For each stock, we will also show the 𝑅2 

of the simple regressions against each of the corporate performance’s fourteen variables, determining an overall 

ranking based on the highest 𝑅2. We will also analyse the best MLR with two regressors focusing on the overlap 

or the bridge discovered with the commonality analysis, verifying the absence of multicollinearity. 

4.7.3 OLS Results 

We can start with the summary of the OLS regression of RM against Ri with the annual return data, shown in 

Table 10; we present the details in Table 11: on average, we analysed around 26 periods for every stock, of which 

68 stocks had 30 periods, and only four stocks had less than ten periods. Based on the F test, 83 regressions are 

significant. Based on t-stats, 70 intercepts did not pass the null hypothesis test, while the βs are significant in 83 

regressions. We can see that shifting from monthly to annual 30-year returns, 𝑅2 increases by more than 13%, 

to 36.3% in Table 10 from 22.5% in Table 5, with 41 stocks exceeding 40% versus only five stocks with monthly 

returns.  

 

Table 10. Summary of OLS with annual returns 

OLS Obs. Month 
Standard 

Error 
  R2  t-stat  t-stat 

 

P-Value 
 P-Value F F P-Value 

 26.38 5.68 0.344 9.636% 1.460 36.320% 1.542 3.719 12.219% 2.283% 17.15 4.565% 

 6.504 3.616 0.338 9.537% 1.447 19.738% 1.0671 1.8214 13.360% 6.352% 15.58 12.704% 

Count 

     

41 

  

30 83 

 

83 
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Table 11. OLS with annual returns for 100 stocks 
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Table 12. 𝑅2 matrix between corporate performance variables and S&P 500 Index return against the stock 

returns 
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4.7.4 The 𝑅2 between Explanatory Variables and Stock Returns 

Before looking at MLRs, it is worth examining which of the stock market and corporate performance variables 

shows the highest 𝑅2 against each of the 100 stock returns. The details of this analysis are in Table 12 for all the 

𝑅2 of the fourteen variables plus the S&P 500 Index return, while in Table 13, we present the summary. 
 
Table 13. Summary of 𝑅2 data 

R
2
 

Matrix 

Annual Returns vs. main variables 

Total 

Revenue 
EBIT 

Net 

Income 

Adj Basic 

EPS 

Adj 

Diluted 

EPS 

Adj 

Dividends 

Revenue 

Growth 

EBIT 

Growth 

Net Income 

Growth 

Adj EPS 

Growth 
DOL DFL DTL Risk Rate 

S&P 500 

Annual 

Returns 

μ 4.263% 6.264% 6.089% 6.463% 6.426% 2.999% 17.364% 12.948% 8.836% 9.051% 6.948% 4.853% 6.529% 8.577% 36.320% 

σ 6.386% 11.363% 8.608% 10.364% 10.270% 5.272% 20.362% 18.028% 13.559% 13.679% 12.112% 8.273% 11.902% 14.490% 19.738% 

Count 1 1 0 2 0 0 18 9 1 2 2 2 0 1 61 

 
The S&P 500 Index return shows the highest mean 𝑅2 with 36.3%, already established in Table 10, and in 61 

cases, it results in having the highest value of 𝑅2 compared to the other fourteen corporate performance 

variables. Not surprisingly, Revenue Growth and EBIT Growth present 18 and 9 cases, respectively, with the 

highest 𝑅2 value with a rounded mean of 17.3% and 12.9%. Four variables never reached the maximum 𝑅2: 

Net Income, Adjusted Diluted EPS, Adjusted Dividends and DTL. The other eight variables compete for the 

remaining 12 places. 

It seems important to underline two topics relating to the annual stock returns: 

1) Although the annual stock return is strongly correlated to the S&P 500 Index return, not unrelated to the 

fact that the latter derives from a weighted mean of the former, at least in the last seven years, the market 

also seems to appreciate other corporate performance indicators in 39 cases, and Revenue Growth and EBIT 

Growth play this role in 27 instances. 

2) Dividends show a mean 𝑅2 of less than 3%, with only six cases exceeding 10%: the market does not 

appreciate this form of equity remuneration, confirming the thesis by Modigliani-Miller that dividends are a 

financial illusion. 

4.7.5 MLR Summary   

Table 14 shows the MLR data analysis summary, while the details for each stock are in Tables 15a and 15b.  

The F test appears significant in 94 cases, while only 28 intercepts, 81 stock market regressors, and 68 corporate 

performance regressors pass the null hypothesis test.  
 
Table 14. Summary of MLR analysis 

 
 
Compared to the significant 100 β regressors of the 30-year OLS with monthly returns shown in subsection 4.3, 

it would appear like a significant step backwards, but if we look at the MLR 𝑅2̅̅̅̅  and 𝑅2, we get a mean value 

of 51.8% and 55.8%, respectively, starting from 22,5% in Table 5. 

4.7.6 The Commonality Analysis 

The mean contribution of the stock market explanatory variable through 𝑅2̅̅̅̅  is 33.4%, while the corporate 

performance variable reaches 22.0% with a mean overlap of 3.5% (data in Table 14). 

We should investigate further such mean results by separating the overlap from bridge cases. From Figure 8 on 

the left, we can examine the bridge case, where there is no apparent overlap between the 𝑅2̅̅̅̅  of the stock market 

and corporate performance variables, 𝑅𝑀
2̅̅ ̅̅  and 𝑅𝜓

2̅̅ ̅̅ , respectively, while on the right, we have the overlap case. 

First, the transition from the monthly to the annual return is more noticeable in the bridge than in the overlap 

case by more than 5%. The adjustment due to the transition from one regressor to two regressors results in a 

reduction of about 3%. 

With two regressors, the gross contribution of the stock market is higher than 5% in the bridge case, while the 

corporate performance contribution is only 6%, the same value as the mean bridge. In the overlap case, the gross 

contribution of the stock market is reduced by an overlap of 10%, while the corporate performance contributes 

almost 33%, higher than the contribution of the stock market. The 𝑅𝑀+𝜓
2  is greater than 4% in the overlap than 

the bridge case.  
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Table 15a. MLR details 
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Table 15b. MLR details 
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Such a result mainly depends on the correlation between the stock market and corporate performance: in the 

overlap case, the mean correlation reaches 17.4%, while in the bridge case, the correlation is -1.7%. There are 36 

negative correlations between RM and the corporate performance ψi selected as the second regressor with a 

mean of -14.7%, while the mean value for the remaining 64 correlations is 23.2%. The mean value of the 

correlation for all 100 stocks is 9.5%. 
 

   
Figure 8. Commonality Analysis: Bridge and Overlap Split 

 

There are no significant correlations between the weights assumed by the various stocks in the optimised 

portfolios, with or without short sales, and the 𝑅2̅̅̅̅  value assumed in the various analyses carried out so far. 

Bridge and overlap cannot explain short sales or zero weights in the two different kinds of optimised portfolios, 

and we cannot deduce any correlation between weights on one side and the joint performance of the stock 

market and the corporate business on the other. 

Moving from one to two regressors, 𝑅2̅̅̅̅  increases by 15.5%, but the impact of the second regressor results in a 

mean 16% decrease in the β due to stock market performance. Moreover, this reduction is entirely clustered in 

the overlap cases, resulting in a reduction of the corresponding β by 27.5%; in the bridge case, there is a slight 

increase in the stock market β of 0.7%. In essence, the traditional β could overestimate the impact of stock 

market performance on the stock return in the overlap case with a second variable affected by the corporate 

performance. This effect would happen when the two performances are positively correlated; if the correlation is 

negative, this effect is less observable. 
 

Table 16. Summary of the MLR regressors and commonality analysis 
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4.7.7 MLR Details and Comparison with OLS    

There is no multicollinearity in the chosen 200 explanatory variables of each MLR when VIF measures the test. 

Instead, when we observe the Condition Number, many regressors are affected by high values, much higher than 

30, and this occurs when we use a regressor with significantly different values from Ri and RM, for example, 

when using data in dollars or when the percentages of corporate performance are several orders of magnitude, 

even 1000 times higher in absolute value. Although there is a matrix ill-conditioning problem, it does not appear 

to be ascribable to multicollinearity. 

Table 16 summarises the results of the OLS regressions on monthly and annual returns and MLR on yearly 

returns, all over 30 years or the shorter available timespan. The second most used regressor is Revenue Growth 

in 30 cases, followed by EBIT Growth in 14 instances and Total Revenue in 11 cases. These three corporate 

performance variables stand for 55% of the second regressors. Also, other regressors assume a moderate 

relevance while the Adjusted Dividends, the Adjusted Basic EPS and the Net Income are absent. From this 

analysis, it seems that the stock market appraises corporate performance variables linked to real markets and 

operating profitability rather than variables directly related to net profitability. Corporate business expectancies 

outclass the ability to generate immediate profit, which is entirely unexpected but an utterly logical behaviour 

from a perspicuous market. 

We point out that in the overlap case with Revenue Growth and EBIT Growth, the 𝑅2̅̅̅̅  share ascribable to the 

stock market is smaller than the corporate performance. This effect also occurs in the overlap case where DOL, 

EBIT, and the Adjusted Diluted EPS appear. 

In all cases but one, 𝑅2̅̅̅̅  grows consistently from one regressor to two regressors with annual returns, especially 

if the second regressor is Revenue Growth (+24.9%), EBIT Growth (+20.3%) and EBIT (+21.8%). The only 

case this does not occur is when the EBIT regressor is concerned about a firm that does not communicate such 

data, which is available only through Bloomberg. 

We have already seen that passing from one to two regressors with annual returns entails a β reduction to 1.220 

from 1.460 (Table 16) due to the stock market performance by about 16%; if we compare the annual return ₂𝛽𝑀 

(1.220) with the monthly returns β (1.008), we note that it is 21% underestimated. In both cases, the evaluation 

varies according to the presence of bridges or overlaps, which largely depend on the correlation between the 

stock market and corporate performance. In general, a high correlation between the stock market and corporate 

performance implies the presence of an overlap, while a low or negative correlation implies the presence of a 

bridge. 

In essence, the empirical evidence suggests that the stock market performance alone cannot explain stock return; 

it is necessary to introduce a variable representing the corporate performance to improve 𝑅2̅̅̅̅  remarkably. This 

result is not totally in contrast with CAPM, which partly assumes stock prices and returns as exogenous data, 

without providing a convincing explanation of the market adjustment process facing an essential deviation from 

its theoretical assumptions. 

4.8 Conclusions from Empirical Evidence  

Having completed the analysis of the empirical evidence topics, which means asset allocation, security market 

lines, and integration of the stock market’s and corporate business’s joint performance, the time has come to 

draw a unitary conclusion. 

The asset allocation test has highlighted that portfolio optimisation leads to the physiological presence of short 

sales, reaching almost 50% of the stock positions as risky assets increase. Such a requirement makes the 

optimised portfolio inconsistent with the market portfolio. At the same time, comparing the optimised portfolio 

sine and market portfolio raises further concerns about stock market efficiency and optimisation since it appears 

sub-optimised compared to a 100-stock portfolio sine, with inactive stocks reaching over 70% of the positions. 

Considering that β and 𝑅2 of a common stock belonging to an optimised portfolio are parameters which, as a 

result of the optimisation, assume respectively increasing and decreasing trends as the number of stocks 

increases, we must ask about the β eligibility to express the risk of a stock not belonging to an optimised 

portfolio or belonging to a non-optimised portfolio like the market one or even worse when the stock is 

compared but not belonging to a non-optimised portfolio. 

Furthermore, we must reflect on the efficient portfolio frontier: is it an optimal and achievable theoretical 

framework or unachievable but valuable as a benchmark? We cannot answer that question, but the doubt is 

legitimate. 
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The security market line is affected by the problems that emerged with asset allocation, and the possibility that it 

changes rapidly in a few weeks exacerbates it. On one side, the instability of the 𝛽𝑀, due to the stock market 

performance, is not unexpected but makes the relation between the stock market and the stock excess returns less 

explicative. Furthermore, finding more space in the financial communication for the data relating to the rolling β 

would be appropriate. 

The integration into an MLR relation of the stock market and corporate performance to explain the annual 

returns of risky assets in a long-term perspective has highlighted a greater explanatory power of the relation (28) 

compared to (21), measured by 𝑅2̅̅̅̅ , higher than 51% on average. The transition from the monthly return to the 

annual return determines a greater explanatory power of equation (21). The S&P 500 Index return has the most 

significant explanatory power. However, this role finds valid competitors in some explanatory variables of the 

corporate performance, such as Revenue Growth, EBIT Growth and EBIT, which in specific cases play a role 

even more critical than stock market performance. 

Analysing in detail the 100 MLR integrations, we have seen that in the case of a negative correlation between the 

stock market and corporate performance, a bridge arises, and the transition to the annual return determines a 

clear improvement of the first variable in explaining the stock return while the second variable remains marginal. 

In the presence of a positive correlation, the opposite occurs: first, an overlap arises, and the corporate 

performance acquires a crucial explanatory power, often superior to the stock market performance. In that case, 

𝑅2 and 𝛽𝑀 are respectively significantly under and overestimated in the framework of the OLS with annual 

returns. If the correlation is strongly negative, this outcome is less important. 

The hypothesis that relation (21), the classic CAPM equation, is not the best possible explanation of the 

behaviour of the risky asset return appears not entirely implausible considering the empirical evidence presented. 

The MLR integration of the stock market and corporate performance with annual returns has greater explanatory 

power than the CAPM equation, at least in temporal local conditions. 

5. Conclusions 

This paper aims to identify a relation between systematic risk and corporate performance represented by DOL 

and DFL, based on the essay by Mandelker et al. (1984) or through further theoretical analyses that will need 

empirical evidence. 

In Section 2, we examined the Mandelker et al. (1984) contribution, concluding that if such a link exists, it is not 

in the form presented by the two economists, as DOL and DFL are not static parameters. The study by Miller et 

al. (1961), also referred to by Fama et al. (2015), permits linking the return of common stock to corporate 

performance without being able to specify a link with systematic risk. If such a link exists, it would be invisible. 

Furthermore, we must consider the impact of dilution, which needs more focus. 

Section 3 briefly reviewed CAPM, highlighting a divergence in short positions, entirely physiological in a 

100-stock optimised portfolio but completely absent in a market portfolio. Another topic concerns the 

inconsistency of 𝑅2 in the CAPM empirical evidence, a significant share of the risky asset return variability is 

unexplained. Starting from this perspective, we hypothesized that CAPM might be an incomplete theory due to 

the total absence of corporate performance variables, given that the stock returns are, by assumption, exogenous 

data. Furthermore, we have observed that neglecting the correlation between the stock market and corporate 

performance, in addition to determining low 𝑅2 values, around 30%, according to Roll (1988), masks the 

presence of omitted variables since critical overlapping phenomena may be present. Finally, we hypothesized 

that stock returns derive from the joint performance of the stock market and the corporate business, which could 

lead to the feedback effect of the former on the latter, both at the level of single stock and portfolio return. From 

this perspective, the portfolio risk could be due to the joint corporate business portfolio, filtered by the stock 

market feedback effect. It is an exciting hypothesis, worthy of further study, but not easy to verify empirically 

due to the presence of an excessive number of unknowns compared to the known variables. 

In Section 4, we first analysed two CAPM topics, the asset allocation and the security market line, through the 

empirical evidence of 100 common stocks included in the S&P 500 Index in the 1991-2020 timespan. 

Asset allocation shows that short sales create a notable detachment from the market portfolio, represented by its 

proxy; unfortunately, this gap persists by using the KKT condition to expunge short sales. The stock market does 

not appear as efficient and optimised as imagined, even without short sales. Alternatively, Merton’s efficient 

analytical frontier could be a splendid theoretical framework unachievable by the market. In any case, the 

portfolio optimisation process with short sales, as the number of common stocks increases, leads to increasingly 

higher β values, which in turn determine an increasingly insignificant 𝑅2 value; with short sales constraints, 
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optimisation leads to the deactivation of an overwhelming number of stocks compared to the active ones. 

Furthermore, the security market line, or more simply β, seems to be affected by considerable instability, even in 

a few weeks, proving to be influenced by both the corporate performance and the sector in which the listed 

company operates. 

From the empirical evidence, we could conclude that CAPM is not the correct theory to explain the behaviour of 

stock returns, and this puts at risk many of its practical applications, such as the calculation of the cost of equity 

via β: Fama et al. (2003) had already pointed out this almost twenty years ago. 

The integration of the stock market and corporate performance into a long-term MLR relation highlighted that 

the transition from monthly to annual returns leads to a significant improvement in 𝑅2 in explaining the stock 

return variability. The introduction of corporate performance shows the presence of a correlation with the stock 

market performance, entirely ignored by CAPM, and this allows for achieving better 𝑅2̅̅̅̅ , both with negative and 

positive correlations. In the latter case, by separating the contribution of the stock market, we highlighted an 

overlap between the two variables, casting light on the corporate performance contribution to improve 𝑅2̅̅̅̅  

significantly. In this context, we emphasize that neglecting corporate performance can lead to significant errors 

in the β estimate within CAPM. 

In general, it is impossible to separate the impact of the stock market and corporate performance on systematic 

risk inside CAPM due to its incompleteness. At a theoretical level, it seems likely to build an alternative general 

theory that integrates the two performances in a single system of linear equations, allowing to separate the share 

of the systematic risk due to the stock market from the corporate business and highlighting the feedback effect of 

the former on the latter. In such a theory, some variables linked to DOL and DFL can play an important role, as 

the empirical evidence has highlighted, providing encouraging results in keeping this direction. Unfortunately, 

we cannot identify corporate performance with a specific variable: those linked to DOL seem to play a 

significant role, especially Revenue Growth, EBIT Growth, Total Revenue and EBIT. 
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