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Abstract 

The literature on asset predictability suggests the usefulness of the variance risk premium (VRP) and its diffusive 

and jump risk components as predictors that can yield an improved forecast power. This study investigates 

whether there is a robust and statistically significant relation between the VRP components and the future 

Japanese composite index of coincident indicators (CI) and credit spreads (CS), including the outbreak of the 

COVID-19 pandemic which has caused economic conditions and financial markets to become unstable. The 

main empirical results are as follows: (i) our rolling window predictive regressions indicate the stability of the 

significantly negative relation between the diffusive risk component of the VRP and the future CI; (ii) the 

significantly positive relation of the jump risk component of the VRP and the future lower-rated CS is hampered 

by the inclusion of the COVID-19 period when the Bank of Japan purchased large-scale corporate bonds under 

the continuing Japanese expansionary monetary policy; and (iii) the diffusive risk component is partly affected 

by the impact of the COVID-19 pandemic, but remains significantly positive relation with the future higher- and 

lower-rated CS. 

Keywords: predictability, COVID-19 pandemic, variance risk premium, option-implied jump variation, 

composite index of coincident indicators, credit spreads 

1. Introduction 

Over the past decade, a large body of studies has investigated asset predictability using the forward-looking 

premium associated with exposure to equity return variation, which mirrors the well-known empirical 

time-varying changes of volatility or variance of an underlying asset. The premium required for investors to 

accept the risk is called the variance risk premium (VRP) and is calculated as the gap between the option-based 

risk-neutral and the statistically expected future return variation. As such, it can gauge investor risk aversion and 

is derived from a consumption-based asset pricing model incorporating time-varying economic uncertainty (see 

Bollerslev et al., 2009; Drechsler & Yaron, 2011). 

The VRP can be decomposed into a component attributable to diffusive or normal-sized price fluctuations and a 

component representing the compensation of jump risk. There is a large body of literature on different jump risk 

measures: option-implied, stock-return based, option-return based, and macroeconomic ones (for details, see 

Dierkes et al., 2021). Specifically, Bollerslev et al. (2015) propose the option-based estimator of left jump 

variation, LJV, representing exposure to abrupt downside price movements. This measure can be approximately 

equal to the time-varying jump tail component of VRP, leading to a straightforward calculation of the diffusive 

risk component as the difference between the VRP and LJV. Andersen et al. (2021) suggest that the LJV is 

applicable to option data for the Japanese aggregate stock market. 

Since the VRP has the advantage from a statistical viewpoint that it is substantially less persistent, it generates 

fewer econometric problems on standard predictability regressions compared with the extremely persistent 

traditional predictors used in long-horizon predictability studies. Therefore, the empirical investigation of the 

statistical significance of the predictive ability of the VRP or its diffusive and jump risk components has been 

widely studied for forecasting market excess returns in the equity market (Bollerslev et al., 2009, 2014; Londono, 

2011), credit and default spreads in the corporate bond market (Zhou, 2010; Wang et al., 2013; Ubukata & 

Watanabe, 2014; Ubukata, 2019), and real economic variables (Oya, 2011; Ubukata & Watanabe, 2014; Dierkes 

et al., 2021). Specifically, Andersen et al. (2015, 2020, 2021), Bollerslev et al. (2015), and Ubukata (2019) 
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indicate that considering the two different components of VRP separately as predictors yields significantly 

improved forecasting power. This finding verifies for international markets, implying that the degrees of 

significance vary depending on the equity index and sample period explored. 

In line with the literature reviewed above, our study provides new empirical evidence of asset predictability in 

Japan based on VRP components using a recent sample including the COVID-19 pandemic. COVID-19 was first 

diagnosed in Wuhan City, China at the beginning of December 2019. As it is highly transmittable, after the first 

infected person was confirmed on January 15, 2020 in Japan, the total infected number exceeded 100 on 

February 21, 2020 and the Novel Coronavirus Special Measures Law was enacted during March 2020. The 

COVID-19 had multifaceted effects on economies worldwide. For example, Maliszewska et al. (2020) 

investigate the impact of COVID-19 on GDP and trade. Padhan and Prabheesh (2021) explore the effects of the 

COVID-19 pandemic and propose potential policy directions to mitigate them through a survey of previous 

studies. 

 

Figure 1. Monthly time series of VRP, LJV, and VRP-LJV 

 

Our contribution is to investigate whether there is a robust and statistically significant relation between the VRP 

components and the future economic and financial variables, including the outbreak of the COVID-19 pandemic 

which has caused economic conditions and financial markets to become unstable. Surprisingly, to the best of our 

knowledge, no study has hitherto assessed the pandemic’s impact on the asset predictability with the VRP 

components even for major markets such as the U.S., Europe, China, and Japan. The predicted variables 

employed in this paper are the Japanese composite index of coincident indicators (CI) and credit and default 

spreads (CS) (Note 1). Our analysis shows that the outbreak of the COVID-19 pandemic has increased national 

financial risks. Figure 1 displays the monthly time-series of the VRP (top panel), the jump risk component, LJV 

(middle panel), and the diffusive risk component, VRP-LJV (bottom panel), for the Nikkei 225 stock index in 

Japan from January 2006 to September 2021. The LJV is calculated as the option-implied left jump variation 

proposed by Bollerslev et al. (2015) and Andersen et al. (2021). The three measures are reported as the 

annualized percentage in variance. Interestingly, we can observe the highest distinct peak of LJV and the second 

highest one of VRP-LJV during March 2020 due to the Novel Coronavirus Special Measures Law being enacted, 

the Government announcing a state of emergency for the first time, and the International Olympic Committee 

(IOC) and the Tokyo 2020 Organizing Committee announcing the postponement of the Tokyo 2020 Games. The 

finding that there is rapid increase in stock market uncertainty, together with negative left jump in stock index 

return, implies the importance of an extended analysis of VRP components in the application to asset 

predictability for a sample including the COVID-19 period. 

This paper mainly employs standard multiple predictability regressions from 1-month to 1-year ahead horizons, 

which are consistent with the methodologies used in many previous studies (for example, see Bollerslev et al. 

2015). However, a direct analysis of monthly predictability regressions using only for the COVID-19 period 

(starting in January 2020 for Japan) is difficult due to the limited sample period. In this study, we explore 

whether the inclusion of the COVID-19 period has a material impact on the relation between the VRP 
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components and the future CI and CS by sequentially estimating the predictability regression models. The idea is 

very close to rolling window predictive regressions. For example, in the sequential 1-month ahead predictability 

regression, we start the sample in February 2006 and end it in December 2019 for predicted variables (in January 

2006 and end it in November 2019 for predictors), corresponding to before the beginning of the COVID-19 

pandemic for Japan. Next, we expand the sample period by 1 month, adding January 2020 for predicted variables 

(December 2019 for predictors), and re-estimate the predictive relation. We continue this procedure until the end 

of October 2021 for predicted variables (September 2021 for predictors) and explicitly demonstrate how the 

statistical significance, sign of coefficient estimates, and adjusted 𝑅2 are sequentially affected by involving the 

COVID-19 period. 

As described in the above, in this paper, we are more focused on documenting whether there is a robust and 

statistically significant relation between the VRP components and the future CI and CS including the COVID-19 

period, and less concerned with the generation of actual return forecast. This is partly because we cannot have a 

size of the rolling estimation window for forecasting in models and a long out-of-sample period needed to assess 

the forecast performance. Even under the sample restriction, it would be helpful to provide at least a statistical 

result in the out-of-sample forecasting environment. This paper also conducts a small out-of-sample analysis 

based on the Campbell and Thompson’s (2008) out-of-sample 𝑅2 statistic and an adjusted version of the 

Diebold and Mariano’s (1995) test proposed by Clark and West (2007). 

The main empirical results are as follows. First, for the CI predictability, the jump risk component of the VRP 

has no reasonably significant relation. By contrast, the diffusive risk component of the VRP has a significantly 

negative relation with the future CI even when the COVID-19 pandemic sample is included. Additionally, the 

COVID-19 pandemic accelerates the predictive power of the diffusive risk component in terms of 𝑡-values. 

Therefore, we conclude that the diffusive risk component of the VRP could be a robust predictor for the future 

change in the Japanese CI. Second, for the predictability of higher-rated CS, the diffusive risk component is 

positively significant, the sign of coefficient being reasonable. The significant relation is essentially unaltered 

over the COVID-19 period. The jump risk component is insignificant or negatively significant, but the negative 

sign of the coefficient is not consistent with the viewpoint that investors facing the rare jump risks require higher 

CS. Third, for the predictability of lower-rated CS and default spreads, we find that the jump risk component is 

significantly positive in some cases without the COVID-19 sample, but then becomes insignificant, implying the 

negative impact of the COVID-19 pandemic. The loss of significant relation may come from the small increase 

in CS by the Bank of Japan’s large-scale corporate bond purchases under the highly unconventional monetary 

easing policy in Japan, while the highest peak of LJV was recorded during the crash in March 2020 triggered by 

the COVID-19 pandemic. We also find that the 𝑡-value of the diffusive risk component and adjusted 𝑅2 are 

affected by the negative effect of the COVID-19 pandemic, but the component remains significant. The results 

show a robust positive relation between the diffusive risk component and the future CS over the entire sample, 

including the COVID-19 pandemic. Finally, the result of 1-month ahead out-of-sample forecast performance 

largely supports the evidence from the multiple predictability regressions that the diffusive risk component of 

VRP has significantly robust relations with the future CI and CS including the COVID-19 pandemic.   

The remainder of the paper is organized as follows. In Section 2, we present the VRP and its calculation method. 

We also briefly explain the option-implied jump risk measure for the decomposition of the VRP into the 

diffusive and jump risk components. In Section 3, we present the empirical results for the predictability of the 

Japanese CI and CS including the COVID-19 pandemic. Section 4 concludes the paper. 

2. Variance Risk Premium and Its Components 

2.1 Definition and Calculation of Variance Risk Premium 

We introduce the VRP and explain its calculation method based on option-implied model-free implied volatility 

and estimates of expected future return variation. It is assumed that on a filtered probability space (Ω, ℱ, ℙ), 

asset price 𝑆𝑡 follows a stochastic exponential of a general jump-diffusion: 

𝑑𝑆𝑡/𝑆𝑡−   = 𝑎𝑡  𝑑t  +   𝜎𝑡  𝑑𝑊𝑡   +   ∫ (𝑒𝑥 − 1)
ℝ

  �̃�ℙ(𝑑𝑥, 𝑑𝑡),                      (1) 

where 𝑎𝑡, σ𝑡, 𝑊𝑡 and 𝑥 are drift and diffusive processes, a standard Brownian motion, and the jump size of 

the log-price, respectively. Under the actual probability measure ℙ, �̃�ℙ(𝑑𝑥, 𝑑𝑡) ≡ 𝜇(𝑑𝑥, 𝑑𝑡)   −   𝜈𝑡
ℙ(𝑑𝑥)𝑑𝑡 is a 

martingale measure where 𝜇(𝑑𝑥, 𝑑𝑡) counts the jumps in 𝑆, and 𝜈𝑡
ℙ(𝑑𝑥) indicates the jump compensator, for 

example, the (predictable) jump intensity process. Then, the quadratic variation measuring the return variation of 

the log-price process over 𝑡 to 𝑡 + τ is expressed as the sum of the integral of 𝜎𝑠
2 and the jump variation:  

𝑄𝑉𝑡,𝑡+𝜏 = ∫ 𝜎𝑠
2𝑡+𝜏

𝑡
 𝑑𝑠  +   ∫ ∫ 𝑥2

ℝ

𝑡+𝜏

𝑡
 𝜇(𝑑𝑥, 𝑑𝑠).                          (2) 
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The no-arbitrage under standard regularity conditions as in Duffie (2001) guarantees the existence of a 

risk-neutral probability measure, ℚ. The VRP denotes the compensation for the time-varying return variation, 

which is measured by the difference between the conditional expectations of 𝑄𝑉𝑡,𝑡+𝜏 under ℚ and ℙ in the 

literature on asset predictability: 

𝑉𝑅𝑃𝑡,τ ≡
1

τ
(𝔼𝑡

ℚ
[𝑄𝑉𝑡,𝑡+τ] − 𝔼𝑡

ℙ[𝑄𝑉𝑡,𝑡+τ]),                          (3) 

where it can be observed that 𝔼𝑡
ℚ

[𝑄𝑉𝑡,𝑡+𝜏] is averagely larger than 𝔼𝑡
ℙ[𝑄𝑉𝑡,𝑡+𝜏]. 

In the VRP calculation, we can use the option-based squared model-free volatility index as an excellent proxy for 

𝔼𝑡
ℚ

[𝑄𝑉𝑡,𝑡+𝜏], where the Center for Mathematical Modeling and Data Science at Osaka University has published 

the volatility index for Japan (VXJ) over a fixed maturity of 30 calendar days for the Nikkei 225 stock index (for 

details, see Fukasawa et al., 2011). Furthermore, to obtain a proxy for 𝔼𝑡
ℙ[𝑄𝑉𝑡,𝑡+𝜏], a 1-month ahead realized 

variance is forecasted by a time-series model. We employ an asymmetric heterogeneous autoregressive model 

with continuous and jump components of the realized variance and the squared model-free implied volatility 

(AHAR-CJ-MFIV model): 

ln𝑅𝑉𝑡 = 𝛼 + 𝛽𝑑ln𝐶𝑡−1 + 𝛽𝑤ln𝐶𝑡−5,𝑡−1 + 𝛽𝑚ln𝐶𝑡−22,𝑡−1 + 𝛾𝑑ln(1 + 𝐽𝑡−1) + 𝛾𝑤ln(1 + 𝐽𝑡−5,𝑡−1) 

                 +𝛾𝑚ln(1 + 𝐽𝑡−22,𝑡−1) + 𝜃𝑑ln𝑉𝑡−1
𝑛𝑜𝑛 + 𝜃𝑤ln𝑉𝑡−5,𝑡−1

𝑛𝑜𝑛 + 𝜃𝑚ln𝑉𝑡−22,𝑡−1
𝑛𝑜𝑛 + 𝜙𝑑ln𝑉𝑋𝐽𝑡−1

2  

                                    +𝜙𝑤ln𝑉𝑋𝐽𝑡−5,𝑡−1
2 + 𝜙𝑚ln𝑉𝑋𝐽𝑡−22,𝑡−1

2 + 𝛿𝑅𝑡−1
− + 𝜈𝑡 ,           𝜈𝑡 ∼ 𝑁(0, 𝜎𝜈

2),             (4) 

where ln𝑅𝑉𝑡 is the sum of the logarithm of realized variance during trading hours on day 𝑡 and the squared 

overnight and lunchtime returns, denoted as 𝑉𝑡
𝑛𝑜𝑛. The realized variance during the trading hours on day 𝑡 − 1 

is decomposed into the continuous (diffusive) and jump components, denoted 𝐶𝑡−1 and 𝐽𝑡−1, respectively, where 

ln𝐶𝑡−5,𝑡−1 = ln(∑ 𝐶𝑉𝑡−𝑖
5
𝑖=1 /5),  ln𝐶𝑡−22,𝑡−1 = ln(∑ 𝐶𝑉𝑡−𝑖/2222

𝑖=1 ), ln𝐽𝑡−5,𝑡−1 = ln(∑ 𝐽𝑡−𝑖/55
𝑖=1 ),  ln𝐽𝑡−22,𝑡−1 =

ln(∑ 𝐽𝑡−𝑖/2222
𝑖=1 ). 𝑉𝑋𝐽𝑡−1

2  indicates the squared model-free implied volatility index on day 𝑡 − 1, where 

ln𝑉𝑋𝐽𝑡−5,𝑡−1
2 = ln(∑ 𝑉𝑋𝐽𝑡−𝑖

25
𝑖=1 /5) and ln𝑉𝑋𝐽𝑡−22,𝑡−1

2 = ln(∑ 𝑉𝑋𝐽𝑡−𝑖
2 /2222

𝑖=1 ) are the logarithm of the average 

1-week and 1-month lagged 𝑉𝑋𝐽2. 𝑅𝑡−1
− = Min,𝑅𝑡−1, 0- is included for capturing the asymmetry in volatility. 

First popularized by Corsi (2009), the HAR model can approximately capture the long-memory property of the 

daily realized variance, whose autocorrelation function decays more slowly than that of the short-memory 

process. The AHAR-CJ-MFIV model is an extended HAR model based on previous empirical evidence. For 

example, Andersen et al. (2007) suggest that the HAR model with realized volatility separately from significant 

jumps improves the forecast performance of future realized volatility. We decompose the realized variance into 

𝐶𝑡−1 and 𝐽𝑡−1 by testing the null hypothesis of no jump and using the realized variance and the bipower 

variation as in Huang and Tauchen (2005) and Barndorff-Nielsen and Shephard (2006). Bekaert and Hoerova 

(2014) show that the model-free implied volatility index, such as the VIX, has a significant predictive power for 

the future U.S. realized variance. Ubukata (2022) suggests that the AHAR-CJ-MFIV model provide the best 

in-sample and out-of-sample forecasts among the HAR-type models using Japanese data. 

We calculate the realized variance over trading hours as the sum of squared 5-minute returns. The parameters of 

the AHAR-CJ-MFIV model can be estimated by simple linear regression. For the realized variance forecasting, 

we assume the normality assumption on the error term because the distribution of ln𝑅𝑉𝑡 is much closer to the 

normal distribution than that of 𝑅𝑉𝑡 (e.g., Andersen et al., 2001; Ubukata & Watanabe, 2014). Under this 

assumption, the forecasts of 𝑅𝑉𝑡, which is log-normal distributed, can be obtained from the forecasts of ln𝑅𝑉𝑡 

and the estimates of 𝜎𝜈
2. Therefore, we use the direct 1-month ahead forecast for the AHAR-CJ-MFIV model as 

a proxy for 𝔼𝑡
ℙ[𝑄𝑉𝑡,𝑡+𝜏] in (3). 

2.2 Risk-Neutral Left Jump Variation for Variance Risk Decomposition 

We describe the risk-neutral left jump variation proposed by Bollerslev et al. (2015), who show that this measure 

can be used as a proxy of the compensation part associated with the jump tail risks in the VRP and can predict 

the future equity risk premium for the S&P 500 index. The left jump variation measure is essentially 

non-parametric, only imposing a general structure on the jump intensity, and is computed from different 

deep-out-of-the-money put options. Andersen et al. (2021) show that the left jump risk measure can be 

applicable to the aggregate Japanese equity market. 

The left risk-neutral (large) predictable jump variation is defined as: 

𝐿𝐽𝑉𝑡,τ
ℚ

= ∫ ∫ 𝑥2𝜈𝑠
ℚ(𝑑𝑥)𝑑𝑠

𝑥<−𝑘𝑡

𝑡+τ

𝑡
,                              (5) 

where 𝑘𝑡 > 0 and 𝜈𝑠
ℚ(𝑑𝑥) indicate the time-varying cutoff for the log-jump size and the jump compensator, for 

example, the (predictable) jump intensity process under ℚ. The jump intensity process of Bollerslev and 
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Todorov (2014, 2015) is expressed as: 

𝜈𝑡
ℚ(𝑑𝑥) = .𝜙𝑡

+ × 𝑒−𝛼𝑡
+𝑥1*𝑥>0+ + 𝜙𝑡

− × 𝑒−𝛼𝑡
−|𝑥|1*𝑥<0+/𝑑𝑥,                   (6) 

where 𝛼𝑡
± and 𝜙𝑡

± denote the time-varying parameters for the shape and level shift of the jump tails. The 

time-varying shape parameter for the left jump tail, 𝛼𝑡
−, has a negative relation with the left jump variation. The 

smaller value of 𝛼𝑡
− indicates the slower rate of decay for the log option put prices, leading to the fatter left tail 

in the risk-neutral density. The time-varying level shift parameter of the left jump tail, 𝜙𝑡
−, has a positive relation 

with the left jump variation because a larger value of 𝜙𝑡
− indicates a fatter left tail. 

The estimates of 𝛼𝑡
− and 𝜙𝑡

− are obtained by solving the following optimization problems: 

�̂�𝑡
− = arg min𝛼−

1

𝑁𝑡
− ∑ |log (

𝑂𝑡,𝜏(𝑘𝑡,𝑖)

𝑂𝑡,𝜏(𝑘𝑡,𝑖−1)
) (𝑘𝑡,𝑖 − 𝑘𝑡,𝑖−1)

−1
− (1 − (−𝛼−))|

𝑁𝑡
−

𝑖=2 ,         (7) 

�̂�𝑡
− = arg min

𝜙−
 

1

𝑁𝑡
− ∑ |log (

𝑒𝑟𝑡𝜏𝑂𝑡,𝜏(𝑘𝑡,𝑖)

𝜏𝐹𝑡,𝜏
) − (1 + �̂�𝑡

−)𝑘𝑡,𝑖 + log(�̂�𝑡
− + 1) + log(�̂�𝑡

−) − log(𝜙−)|
𝑁𝑡

−

𝑖=2 ,     (8) 

where 𝑂𝑡,𝜏(𝑘𝑡,𝑖) is the mid-quote of the out-of-the-money (OTM) put option for the 𝑖-th log-moneyness 𝑘𝑡,𝑖, 

𝑁𝑡
− is the number of puts used in the estimation with 0 < −𝑘𝑡,1 < ⋯ < −𝑘𝑡,𝑁𝑡

−, and 𝐹𝑡,𝜏 is the forward price 

with maturity date 𝑡 + 𝜏. 𝛼− is estimated from (7) using information about the tail decay for the observed 

OTM put options, and 𝜙− is estimated from (8) using an estimate for 𝛼− and the mid-quote level of the 

observed OTM put options. Based on the estimates of 𝛼𝑡
− and 𝜙𝑡

−, we have the left jump tail variation under ℚ 

as: 

𝐿𝐽𝑉𝑡,𝜏
ℚ

= 𝜏𝜙𝑡
−𝑒−𝛼𝑡

−|𝑘𝑡|(𝛼𝑡
−𝑘𝑡(𝛼𝑡

−𝑘𝑡 + 2) + 2)/(𝛼𝑡
−)3 = 𝔼𝑡

ℚ
[𝐿𝐽𝑉𝑡,𝜏

ℚ
].               (9) 

In the calculation of LJV for the Japanese aggregate stock market, we follow the measurement procedure 

proposed by Andersen et al. (2021). We use regular options with maturities from 8 to 42 calendar days in 

consideration of a possible reduction in the effects of the diffusive price component and the market 

microstructure (Note 2). 

Following Andersen et al. (2021), the time-varying 𝛼𝑡
− is assumed to change at a weekly frequency, and the 

weekly 𝛼𝑡
− is estimated by keeping the OTM put options for a week, with log-moneyness below -2.0 (-2.5) 

times the normalized ATM Black-Scholes implied volatility before (after) December 2008. The time-varying 𝜙𝑡
− 

is allowed to change each trading day and is estimated using �̂�𝑡
−. Finally, we compute the monthly LJV as the 

average of the weekly measures within the month (Note 3).  

Once we obtain the LJV as a proxy of jump risk component in the VRP, the diffusive risk component is 

calculated by subtracting the LJV from the VRP. The previous studies suggest that the inclusion of the diffusive 

and jump risk components as separate predictors significantly increases a forecasting power for future financial 

variables (e.g., Bollerslev et al., 2015; Ubukata, 2019, 2022; Andersen et al., 2021). However, no study has 

assessed the asset predictability with the two components around the outbreak of the COVID-19 pandemic which 

has caused economic conditions and financial markets to become unstable. In this paper, we explore whether the 

inclusion of the COVID-19 period has a substantial impact on the relation between the VRP components and 

future economic and financial variables in Japan. 

3. Empirical Analysis 

3.1 Data 

In the empirical analysis, we use Japanese financial and economic data from various sources to investigate 

whether there is a robust and statistically significant relation between the VRP components and future economic 

and financial variables in Japan including the COVID-19 pandemic period when the economic conditions and 

financial markets become unstable. First, the data on the volatility index Japan, VXJ, is obtained from the 

webpage at Center for Mathematical Modeling and Data Science at Osaka University. The VXJ is used for the 

calculation of VRP as a proxy for 𝔼𝑡
ℚ

[𝑄𝑉𝑡,𝑡+τ], as explained in Section 2.1. The Nikkei NEEDS-TICK data 

include 5-minute Nikkei 225 index returns, which are used to calculate realized variance and bipower variation 

for forecasting 𝔼𝑡
ℙ[𝑄𝑉𝑡,𝑡+τ] from the AHAR-CJ-MFIV model in (4). Second, we obtain data on Nikkei 225 put 

options traded on the Osaka Securities Exchange from Nikkei NEEDS Financial Quest 2.0 and the Certificate of 

Deposit rate as a risk-free interest rate from the Bank of Japan. These data are used for estimating 𝛼𝑡
− and 𝜙𝑡

−  

in (7) and (8) and the calculation of LJV in (9). Third, we use the Japanese composite index of coincident 

indicators, CI, as a measure of the current economic condition, obtained from Economic and Social Research 

Institute, Cabinet Office. The interest rate spread, SPRD, calculated as the difference between newly issued 
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10-year government bond yields and the 3-month Tokyo Interbank Offered Rate, is obtained from the Japanese 

Bankers Association TIBOR Administrations. These variables are employed to analyze a relation between the 

VRP components and the future change of CI including the COVID-19 period. Finally, we calculate credit 

spreads, CS, using data obtained from the Japan Credit Rating Agency, Ltd. to analyze a relation between the 

VRP components and the future CS including the COVID-19 pandemic period. We define the difference between 

the average corporate bond yield of firms with investment grade rating 𝑖  at 𝑚 -year maturity and the 

corresponding Japanese government bond (JGB) yield as 𝐶𝑆𝑖,𝑚. We consider two different investment grades, 𝑖 
= AA and A. The AA-rated firms have very high level of the obligor’s capacity to honor their financial 

commitment to their obligations. The A-rated firms also have a high level of capacity but are more susceptible to 

the negative effects of changes in economic conditions than the AA-rated firms. The maturities of 𝑚 =  2, 4, 10 

described here indicate below 2 years, ranging from 3 to 4 years, and from 9 to 10 years, respectively. We also 

use the 1-year JGB yield as a short rate, SR, the difference between JGB yields at 10- and 1-year maturities as a 

term spread, TS, and a monthly log-return for the Nikkei 225 index as a market return, MR. 

 

Table 1. Descriptive statistics 

 VRP-LJV LJV CI SPRD 𝐶𝑆𝐴𝐴,2 𝐶𝑆𝐴𝐴,4 𝐶𝑆𝐴𝐴,10 

Mean 0.19  0.06  97.04  0.40  0.29  0.35  0.42  

Std.Dev. 0.42  0.07  8.09  0.46  0.19  0.15  0.09  

Skewness 7.40  4.06  -1.16  0.58  3.91  2.71  0.95  

Kurtosis 72.93  25.57  4.04  2.74  21.45  12.39  5.78  

Minimum -0.11  0.00  71.50  -0.35  0.14  0.18  0.22  

Maximum 4.64  0.61  107.40  1.78  1.45  1.11  0.86  

ACF(1) 0.60  0.53  0.97  0.97  0.91  0.93  0.76  

 𝐶𝑆𝐴,2 𝐶𝑆𝐴,4 𝐶𝑆𝐴,10 SR TS MR  

Mean 0.65  0.71  0.58  0.09  0.53  0.32   

Std.Dev. 0.54  0.44  0.17  0.28  0.39  5.57   

Skewness 1.90  1.76  0.55  0.89  0.39  -0.91   

Kurtosis 5.98  5.24  2.84  3.02  2.04  5.54   

Minimum 0.20  0.34  0.29  -0.33  -0.07  -27.22   

Maximum 2.64  2.24  1.06  0.83  1.59  14.01   

ACF(1) 0.97  0.97  0.92  0.98  0.96  0.12   

Note. The sample period covers from January 2006 to September 2021 (189 months) including the COVID-19 pandemic period. We report 

VRP-LJV, LJV, and MR in non-annualized percentage form and CS, SPRD, SR, and TS in annualized percentage form. The value of CI for 

reference year 2015 is 100. ACF(1) is the estimated first-order autocorrelation of the monthly variables. 

 

The descriptive statistics are reported in Table 1. The monthly means of VRP-LJV and LJV are 0.19 and 0.06 in 

percentage form. The VRP-LJV and LJV are moderately persistent, with the first-order monthly auto-correlation 

coefficients of 0.60 and 0.53. They are substantially less persistent than other predictors, SPRD, SR, and TS, 

generating fewer econometric problems. The time series of VRP-LJV and LJV are already described in Figure 1 

of Section 1. The monthly mean of CI is 97.04, where the value for reference year 2015 is 100. The first-order 

autocorrelation coefficient of CI is 0.97, so that we use the change rate of CI as a predicted variable. For 

Japanese credit spreads, the annualized monthly means of CS increase from 0.29 to 0.65 for 𝐶𝑆⋅,2, from 0.35 to 

0.71 for 𝐶𝑆⋅,4, and from 0.42 to 0.58 for 𝐶𝑆⋅,10 in percentage form as the credit ratings degrade from AA to A. 

For the CS predictability regressions, we include the lagged CS as a predictor because the CS is highly persistent, 

except for 𝐶𝑆𝐴𝐴,10 of 0.76. We will provide further explanations about the time-series of CI and CS later. 

3.2 Sequential Predictability Regressions Including the COVID-19 Pandemic 

3.2.1 Predicting the Composite Index of Coincident Indicators 

Previous studies have investigated whether there is a relation between several variables and the future real 

economic variables such as output growth, industrial production, and CI. The VRP is a forward-looking variable, 

so if one faces high VRP, one has a high degree of risk aversion to the future economy, meaning firms may 

refrain from new investments and pause hiring new workers. Therefore, it is interesting to investigate whether 

the VRP components affect real economic activity (Oya, 2011; Ubukata & Watanabe, 2014; Dierkes et al., 2021). 

GDP data for output growth are available only quarterly or annually. The industrial production focuses on real 

output for all facilities in manufacturing, mining, and electric and gas industries, and so on. Instead, we examine 
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the predictability of CI because it is composed of various components such as industrial production, producer’s 

shipments, sales values, operating profits, effective job offer rate, and exports volume. To the best of our 

knowledge, an investigation of whether there is a significant relation between the VRP components and the 

future CI including the COVID-19 pandemic period has not been analyzed before. 

Figure 2 plots monthly time-series of CI from January 2006 to March 2022. The series starts out larger than 100 

during the tranquil market period of 2006-2007, but rapidly drops to 71.5 in March 2009 in the aftermath of the 

Lehman Shock and the global financial crisis. CI increases over 2 years after the crisis, but there is a large spike 

in the series that reflect the Tohoku Earthquake and Tsunami in March 2011. The series also decreases during the 

slowdown in overseas economies and considerable decline in exports in 2012 and due to the double increase of 

the consumption tax rate from 5% to 8% and from 8% to 10% in April 2014 and October 2019, respectively. 

Interestingly, there is clearly discernible drop to 74.6 in May 2020 associated with the COVID-19 pandemic and 

the recent series remains less than 100 for reference year 2015. This evidence suggests that the CI is readily 

interpretable and economically meaningful. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Monthly time series of CI 

 

Following the literature, we consider the monthly multiple predictive regressions: 

1

ℎ
𝛥𝐶𝐼𝑡,𝑡+𝜏ℎ = 𝛽0(ℎ) + 𝛽1(ℎ),𝑉𝑅𝑃𝑡 − 𝐿𝐽𝑉𝑡- + 𝛽2(ℎ)𝐿𝐽𝑉𝑡 + 𝛽3(ℎ)𝑆𝑃𝑅𝐷𝑡 + 𝑢𝑡,𝑡+𝜏ℎ ,       (10) 

where 𝛥𝐶𝐼𝑡,𝑡+𝜏ℎ = (𝐶𝐼𝑡+𝜏ℎ − 𝐶𝐼𝑡)/𝐶𝐼𝑡 × 100 is the change rate of CI at time 𝑡 + 𝜏ℎ for 𝜏 =  30 calendar 

days (1 month) and ℎ =  1, … , 12. Thus, we consider the predictability over 1 month to 1 year. 𝑉𝑅𝑃𝑡 − 𝐿𝐽𝑉𝑡 

and 𝐿𝐽𝑉𝑡 represent the diffusive and jump risk components of the VRP at time 𝑡. 𝑆𝑃𝑅𝐷𝑡  is the interest rate 

spread controlled for. For testing the significance of coefficients in the overlapping multiperiod return regression, 

we use the standard robust Newey-West 𝑡-statistic with a lag length of 2ℎ. 

Due to the limited sample for the COVID-19 pandemic, starting in January 2020 for Japan, we investigate 

whether the inclusion of the COVID-19 period has a substantial impact on the relation between the VRP 

components and the future change rate of CI. Thus, the multiple predictive regression model in (10) is estimated 

sequentially. For example, in the sequential 1-month ahead predictability regression for ℎ =  1, we start the 

sample in February 2006 and initially end it in December 2019 for predicted variable (in January 2006 and 

initially end it November 2019 for predictors), corresponding to before the beginning of the COVID-19 

pandemic for Japan. Next, we expand the sample period by 1 month, adding January 2020 for predicted variable 

(December 2019 for predictors), and re-estimate the predictive relation. We continue this procedure all through 

the end of in October 2021 for predicted variable (September 2021 for predictors). In the sequential 1-year ahead 

predictability regression for ℎ =  12, we start the sample in January 2007 and initially stop by December 2019 

for predicted variable (in January 2006 and initially stop by December 2018 for predictors), corresponding to the 

period before the beginning of the COVID-19 pandemic for Japan. Next, we expand the sample period by 1 

month, adding January 2020 for predicted variable (January 2019 for predictors), and re-estimate the predictive 

relation. We continue this procedure until the end of March 2022 for predicted variable (March 2021 for 

predictors). 
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Figure 3. Sequential multiple CI predictability regressions 

 

Figure 3 depicts the Newey-West 𝑡-statistics and the adjusted 𝑅2 estimated sequentially from the multiple CI 

predictability regressions in (10) for 1-month (ℎ = 1), 1-quarter (ℎ = 4), 7-month (ℎ = 7), 10-month (ℎ = 10), 

and 1-year (ℎ = 12) horizons. The top, second, and third panels depict the Newey-West 𝑡-statistics for the 

predictors, VRP-LJV, LJV, and SPRD. The bottom panel plots the adjusted 𝑅2 . Since we estimate the 

regressions explained above sequentially, the horizontal axis represents the end month in each sample of the 

predictors used for re-estimation. The end months of the predictors for the first and last sequential estimation 

periods are November 2019 and September 2021 for (ℎ = 1), August 2019 and September 2021 for (ℎ = 4), 

May 2019 and August 2021 for (ℎ = 7), February 2019 and May 2021 for (ℎ = 10), and December 2018 and 

March 2021 for (ℎ = 12), respectively. In particular, the left point in each marked line represents the results 

from predictive regressions without the COVID-19 pandemic sample for both of the CI and predictors. We 

sequentially expand the sample period every month over the COVID-19 period as the marked point moves to the 

right. 

The diffusive risk component of the VRP, VRP-LJV, has the negative relation with the future change in CI at the 

5% significant level, except for ℎ = 12. The coefficients remain significant, even when we include the 

COVID-19 pandemic sample. Specifically, the 𝑡-values for ℎ = 1 become negatively larger after the end 

month of predictors is February 2020. Therefore, the COVID-19 pandemic accelerated the significant relation 

between the VRP-LJV and CI. By contrast, the jump risk component of the VRP, LJV, is insignificant or 

positively significant for all ℎ. The positive relation between the LJV and the future change in CI might be 

inconsistent with a reasonable interpretation because, if the high left jump tail risk has an impact on CI, it affects 

the delay of real economic activity such as new firms’ investments, producers’ shipments, and employment of 

labor. The interest rate spread, SPRD, as a traditional predictor, has insignificant relation with the future change 

in CI expect for ℎ = 1. The adjusted 𝑅2 is essentially unaltered for each sample period. In particular, although 

we observe that the adjusted 𝑅2 increases during part of the COVID-19 pandemic period from March 2020 to 

April 2020 for ℎ = 1, there might be an overall minor difference between the adjusted 𝑅2s without and with the 

COVID-19 pandemic period. Comparing the different forecasting horizons, the adjusted 𝑅2 for short horizons 

such as ℎ = 1 and 4 is larger than that for long horizons such as ℎ = 7, 10, and 12. We conclude that the 

VRP-LJV has a robust and negative relation with the future Japanese CI, which is accelerated by the COVID-19 

pandemic in terms of 𝑡-values.   

3.2.2 Predicting Credit and Default Spreads 

Previous studies have argued that VRP or its diffusive and jump risk components could provide information 

about future CS in the U.S. and Japanese corporate bond markets (see, e.g., Zhou, 2010; Wang et al., 2013; 

Ubukata & Watanabe, 2014; Ubukata, 2019). However, it has note been investigated whether there is a 

significant relation between the VRP components and the future CS including the COVID-19 pandemic period. 
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We employ the monthly multiple predictive regressions: 

𝐶𝑆𝑖,𝑚,𝑡+𝜏ℎ = 𝛽0(ℎ) + 𝛽1(ℎ),𝑉𝑅𝑃𝑡 − 𝐿𝐽𝑉𝑡- + 𝛽2(ℎ)𝐿𝐽𝑉𝑡 + 𝛽3(ℎ)𝑆𝑅𝑡 + 𝛽4(ℎ)𝑇𝑆𝑡 

+𝛽5(ℎ)𝑀𝑅𝑡 + 𝛽6(ℎ)𝐿𝑎𝑔𝐶𝑆𝑡 + 𝑢𝑖,𝑚,𝑡+𝜏ℎ ,                          (11) 

where 𝐶𝑆𝑖,𝑚,𝑡+𝜏ℎ denotes credit spreads at time 𝑡 + 𝜏ℎ and 𝑚-year maturity for investment grade rating 𝑖 = 

AA and A, 𝜏 =  30 calendar days (1 month), and ℎ =  1, … , 12. We also consider default spreads calculated by 

the difference between A- and AA-rated CS as additional predicted variables. 

Because several variables have been previously documented for predicting future credit and default spreads (see, 

e.g., Merton, 1974; Longstaff & Schwartz, 1995; Collin-Dufresne et al., 2001, 2003), we use four traditional 

explanatory variables: the short rate (SR), the term spread (TS), the market return (MR), and the lagged credit 

spread (LagCS), respectively. Regarding the significance of SR, TS, and MR, the sign of each coefficient might 

be consistent with the implication from classical structural models that a higher risk-free rate and an increase in 

the firm’s value lowers CS, while a high term spread increases CS. Moreover, the LagCS are considered to have 

strong predictive power, as Collin-Dufresne et al. (2001) note that the CS change rates are much harder to 

forecast than the levels. To explore whether there is a significant relation between the VRP components and the 

future CS including the COVID-19 pandemic period, we estimate the multiple predictive regression model in (11) 

sequentially, which is the same as in Section 3.2.1 for the CI predictability. 

 

Figure 4. Monthly time series of credit and default spreads 

 

Figure 4 plots the monthly time-series of credit and default spreads from January 2006 to March 2022, which are 

AA-rated credit spreads, 𝐶𝑆𝐴𝐴,2, 𝐶𝑆𝐴𝐴,4, and 𝐶𝑆𝐴𝐴,10, in the top panel, A-rated credit spreads, 𝐶𝑆𝐴,2, 𝐶𝑆𝐴,4, 

and 𝐶𝑆𝐴,10, in the middle panel, and default spreads, 𝐶𝑆𝐴−𝐴𝐴,2, 𝐶𝑆𝐴−𝐴𝐴,4, and 𝐶𝑆𝐴−𝐴𝐴,10, in the bottom panel. 

Before the COVID-19 pandemic, the A-rated CS tended to increase more than the higher AA-rated CS in the 

aftermath of the Lehman Shock and the global financial crisis, as well as the Tohoku Earthquake and Tsunami. 

The default spreads also tended to increase over this period. Comparing different maturities (𝑚 = 2, 4, and 10), 

we observe inverted corporate bond yields for the AA- and A-rated CS in the aftermath of the Lehman Shock and 

for the A-rated CS in the aftermath of Tohoku Earthquake and Tsunami. 

An interesting observation emerges during the COVID-19 pandemic. Although there is the discernible large drop 

in CI described in Section 3.2.1, the AA- and A-rated credit and default spreads show only a slight increase at the 

beginning of the COVID-19 pandemic. The corresponding corporate bond yield curve remains normal, which is 

opposite in sign to that in the aftermath of the Lehman Shock and Tohoku Earthquake and Tsunami. There is a 

possible reason that the Japanese credit and default spreads are little susceptible to the effects of changes in 

economic conditions caused by the COVID-19 pandemic. The Bank of Japan has conducted large-scale 

purchases of corporate bonds and commercial paper under the quantitative monetary easing policy to curb the 

market turmoil caused by the COVID-19 pandemic. The large-scale corporate bond purchases by BOJ’s open 

market operations put strong downward pressure on the Japanese corporate bond yields, although credit spreads 



ijef.ccsenet.org International Journal of Economics and Finance Vol. 15, No. 8; 2023 

36 

in the global corporate bond market have not decreased to the levels before the COVID-19 pandemic. 

Additionally, high-risk subordinated and low-rated corporate bonds have been issued during the non-traditional 

monetary easing policy. Under these circumstances and given the return to the low interest rate before 

COVID-19, it is difficult for investors to assess the firms’ creditworthiness, leading to a possible decline in 

market function, such as the price discovery in the Japanese corporate bond market. 

 

Figure 5. Newey-West 𝑡-statistics from the sequential predictability regressions of 𝐶𝑆𝐴𝐴,2, 𝐶𝑆𝐴𝐴,4, and 𝐶𝑆𝐴𝐴,10 

 

 
Figure 6. Adjusted 𝑅2 from the sequential predictability regressions of 𝐶𝑆𝐴𝐴,2, 𝐶𝑆𝐴𝐴,4, and 𝐶𝑆𝐴𝐴,10 

 

Figures 5 and 6 plot the Newey-West 𝑡-statistics and adjusted 𝑅2 from the sequential multiple regressions in 

(11) for predicting AA-rated credit spreads, 𝐶𝑆𝐴𝐴,2 (top panel), 𝐶𝑆𝐴𝐴,4 (middle panel), and 𝐶𝑆𝐴𝐴,10 (bottom 

panel). In particular, the left and right panels of Figure 5 depict the Newey-West 𝑡-statistics of the diffusive risk 

component, VRP-LJV, and the jump risk component, LJV, in the VRP. The horizontal axis represents the end 

point of the predictors when we estimate the regression in (11) sequentially for ℎ = 1 (solid square line), ℎ = 4 

(solid circle line), ℎ = 7 (solid lower triangle line), ℎ = 10 (solid rhombus line), and ℎ = 12 (solid triangle 

line), respectively. The VRP-LJV is positively significant in predicting 1-month and 1-quarter ahead 𝐶𝑆𝐴𝐴,2 and 

𝐶𝑆𝐴𝐴,4 and in predicting 1-quarter and 7-month ahead 𝐶𝑆𝐴𝐴,10 at the 5% level. For the impact of the COVID-19 

pandemic on the positive relation between the VRP-LJV and the future AA-rated CS, the 𝑡-values are essentially 

unaltered on the horizontal axis. Comparing the 𝑡-values at the extreme left point and the other points, there is 
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only a minor difference for VRP-LJV. By contrast, the LJV is insignificant or negatively significant where the 

negative sign on the coefficient is not consistent with the viewpoint that the CS contract of firms facing high 

uncertainty associated rare jump risks requires large CS. We omit the detailed results for the control variables in 

(11) to save space. They are available upon request. Overall, there are significantly positive coefficients on 

LagCS until ℎ = 7, but most cases of SR, TS, and MR are not significant. The degree of the adjusted 𝑅2 tends 

to be larger for shorter-month ahead predictability regressions and there is only a minor difference with and 

without the COVID-19 pandemic sample. 

 

Figure 7. Newey-West 𝑡-statistics from the sequential predictability regressions of 𝐶𝑆𝐴,2, 𝐶𝑆𝐴,4, and 𝐶𝑆𝐴,10 

 

 

Figure 8. Adjusted 𝑅2 from the sequential predictability regressions of 𝐶𝑆𝐴,2, 𝐶𝑆𝐴,4, and 𝐶𝑆𝐴,10 

 

For the predictability of A-rated credit spreads 𝐶𝑆𝐴,2, 𝐶𝑆𝐴,4, and 𝐶𝑆𝐴,10, we report the Newey-West 𝑡-statistics 

and adjusted 𝑅2 in Figures 7 and 8 using the same format as in Figures 5 and 6. Using the sample before the 

COVID-19 pandemic, Ubukata (2019) shows that the LJV could predict the future Japanese lower-rated CS, 

even when several predictors and LagCS are controlled for. We obtain similar results from the 𝑡-values at the 

extreme left point in right panels of Figure 7 without the COVID-19 pandemic sample, that is, the LJV is 

significantly positive in predicting 𝐶𝑆𝐴,2 and 𝐶𝑆𝐴,4 for ℎ =  1, 4, and 7 months and 𝐶𝑆𝐴,10 for ℎ =  4, 7, 

and 10 months at the 5% level. However, when the end of sample of predictors is expanded to March 2020, the 

LJV becomes insignificant for all A-rated CS, implying a negative impact of the COVID-19 pandemic. The 

result might stem from that the credit spreads are little susceptible to the effect of the COVID-19 pandemic by 

Bank of Japan’s large-scale corporate bond purchases, as opposed to the fact that the highest distinct peak of LJV 
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is recorded in March 2020. The left panels in Figure 7 show that there is a significant relation between the 

VRP-LJV and the future 𝐶𝑆𝐴,2 and 𝐶𝑆𝐴,4 for all ℎ and 𝐶𝑆𝐴,10 for ℎ = 1 and 4 at the 5% level even when 

the COVID-19 period is included. The 𝑡-values show a discernible change in March 2020 when the second 

highest peak of VRP-LJV is recorded. The direction of the change is not singular, that is, there is a negative 

(positive) impact of the COVID-19 pandemic on A-rated CS for ℎ = 1 and 4 (ℎ = 7, 10, and 12). Figure 8 

shows that the adjusted 𝑅2 is negatively affected, especially for the predictability of A-rated CS for ℎ = 4 and 

7 after including the sample of predictors in March 2020. 

Figures 9 and 10 plot the Newey-West 𝑡-statistics and adjusted 𝑅2 from the sequential multiple regressions in 

(11) for predicting default spreads 𝐶𝑆𝐴−𝐴𝐴,2 (top panel), 𝐶𝑆𝐴−𝐴𝐴,4 (middle panel), and 𝐶𝑆𝐴−𝐴𝐴,10 (bottom 

panel). The results are similar to those for the predictability of A-rated CS in Figures 7 and 8. Without ending the 

sample of predictors in March 2020, the LJV is significant for 𝐶𝑆𝐴−𝐴𝐴,2 with ℎ =  4 and 7 months, 𝐶𝑆𝐴−𝐴𝐴,4 

for ℎ =  4, 7, and 10 months, and 𝐶𝑆𝐴−𝐴𝐴,10 for ℎ =  4, 7, 10, and 12 months at the 5% level. However, it 

failed to be significant for all default spreads since March 2020, implying the negative impact of the COVID-19 

pandemic. All cases of VRP-LJV are significantly positive for 𝐶𝑆𝐴−𝐴𝐴,2  except for ℎ =  1  month and 

𝐶𝑆𝐴−𝐴𝐴,4 for all ℎ at the 5% level. The negative effect of the COVID-19 pandemic on the predictability with 

the VRP-LJV is observed in 𝐶𝑆𝐴−𝐴𝐴,2 for ℎ =  4 and 7 and 𝐶𝑆𝐴−𝐴𝐴,4 for ℎ =  1, 4, and 𝐶𝑆𝐴−𝐴𝐴,10 for all 

ℎ. Figure 10 shows that the adjusted 𝑅2 is negatively affected by the COVID-19 after the sample from March 

2020 is included, especially for the default spreads for ℎ =  4, 7, and 10 months. In summary, we can conclude 

that the jump risk component of the VRP representing the significance before the COVID-19 period loses the 

significant relation with the future credit spreads, implying a negative impact of the COVID-19 pandemic, but 

the diffusive risk component retains a significant relation even after the inclusion of the COVID-19 period. 

 
Figure 9. Newey-West 𝑡-statistics from the sequential regressions of 𝐶𝑆𝐴−𝐴𝐴,2, 𝐶𝑆𝐴−𝐴𝐴,4, and 𝐶𝑆𝐴−𝐴𝐴,10 

 

Figure 10. Adjusted 𝑅2 from the sequential predictability regressions of 𝐶𝑆𝐴−𝐴𝐴,2, 𝐶𝑆𝐴−𝐴𝐴,4, and 𝐶𝑆𝐴−𝐴𝐴,10 
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3.3 Out-of-Sample Forecasts During the COVID-19 Pandemic 

This paper focuses on documenting whether there is a robust and significant relation between the VRP 

components and the future CI and CS including the COVID-19 pandemic period. A reason that we are less 

concerned with the generation of actual forecast is that we cannot obtain a long out-of-sample period needed to 

assess the forecast performance including the COVID-19 period. Although the sample of the rolling estimation 

window is also limited in size, we provide a simple statistical result in the 1-month ahead out-of-sample 

forecasting environment. To assess the out-of-sample performance relative to a benchmark, we calculate the 

Campbell and Thompson’s (2008) out-of-sample 𝑅2 statistic (OOS-𝑅2) by: 

𝑂𝑂𝑆 − 𝑅2 = 1 −
∑ (𝑅𝑒,𝑡+1−�̂�𝑒,𝑡+1)

2𝑇−1
𝑡=𝑠0

∑ (𝑅𝑒,𝑡+1−�̅�𝑒,𝑡+1)
2𝑇−1

𝑡=𝑠0

,                             (12) 

where �̂�𝑒,𝑡+1, for 𝑡 = 𝑠0, … , 𝑇 − 1, is a sequence of 𝑇 − 𝑠0 1-month ahead out-of-sample forecasts based on a 

rolling predictive regression for a given window of constant length 𝑠0. We use a rolling window of 𝑠0 = 168 

month, where the first and last in-sample estimation periods are from January 2006 to December 2019 and from 

October 2007 to September 2021, respectively. The out-of-sample period is therefore from January 2020 to 

October 2021 (22 months). 𝑅𝑒,𝑡+1 is the realized value of predicted variable and �̅�𝑒,𝑡+1 is the rolling estimate 

of the historical average of predicted variable as a well-known benchmark value (see Batten et al. 2022 for 

equity premium prediction). The OOS-𝑅2 is positive (negative) if a predictive regression model performs better 

than the benchmark in terms of a lower (higher) mean squared error (MSE). 

To test whether the relative out-of-sample performance is statistically significant when the benchmark is a 

historical average, we employ the Diebold-Mariano test statistic (DM) adjusted by Clark and West (2007), which 

is expressed as 

𝐷𝑀 = �̂�/𝜎�̂�.                                        (13) 

�̂� and 𝜎�̂� are the estimated intercept and the standard error of �̂� in the regression, 𝜖𝑡+1 = 𝜇 + 𝜉𝑡+1, where 

𝜖𝑡+1 = (𝑅𝑒,𝑡+1 − �̅�𝑒,𝑡+1)
2

− 0(𝑅𝑒,𝑡+1 − �̂�𝑒,𝑡+1)
2

− (�̅�𝑒,𝑡+1 − �̂�𝑒,𝑡+1)
2

1 for 𝑡 = 𝑠0, … , 𝑇 − 1. The null hypothesis 

is rejected if DM is larger than the 𝑝-quantile of a standard normal distribution for a given significance level 𝑝, 

indicating a significantly lower MSE of the predictive regression model than the historical average. 

 

Table 2. Out-of-sample forecasts 

 CI change prediction     

Predictor OOS-𝑅2 DM     

VRP-LJV 13.7   1.307∗     

AR(1) 13.9 1.073     

 𝐶𝑆𝐴𝐴,10 prediction 𝐶𝑆𝐴,10 prediction 𝐶𝑆𝐴−𝐴𝐴,10 prediction 

Predictor OOS-𝑅2 DM OOS-𝑅2 DM OOS-𝑅2 DM 

VRP-LJV, LagCS 89.5      3.422∗∗∗ 93.6      4.278∗∗∗ 80.9  5.598∗∗∗ 

VRP-LJV 12.4 1.081 12.4 1.277  6.3 1.862∗∗ 

LagCS 87.7       3.620∗∗∗ 91.7      4.213∗∗∗ 78.8   5.257∗∗∗ 

Note. The asterisks, ∗∗∗, ∗∗, and ∗, represent significant out-of-sample forecasts at the 1%, 5%, and 10% level. 

 

The out-of-sample CI and CS forecast results are reported in Table 2 where the first column shows predictors 

included in predictive regression models. For the CI predictability, we consider the simple predictive regression 

model with the VRP-LJV, which has the significantly negative relation with the future CI as showed in Section 

3.2.1. We also report the out-of-sample performance of AR(1) model relative to the historical average. The 

results show that the VRP-LJV with significantly postive OOS-𝑅2 of 13.7% at the 10% level outperforms the 

historical average of the CI change. The time series model of AR(1) achieves positive OOS-𝑅2 of 13.9%, but 

this is insignificant even at 10% level. 

For the CS predictability, we consider the simple and multiple predictive regression models with the robust 

predictors in Section 3.2.2, VRP-LJV and LagCS. Not surprisingly, the LagCS provides significantly high 

OOS-𝑅2 at the 1% level because CS is so highly persistent that the LagCS has a strong explanatory power as 

noted in Collin-Dufresne et al. (2001). The VRP-LJV achieves significantly postive OOS-𝑅2 of 6.3% at the 5% 

level for predicting 𝐶𝑆𝐴−𝐴𝐴,10. The OOS-𝑅2 of the multiple predictive regression model with the VRP-LJV and 

LagCS can yield an improved forecast power for 𝐶𝑆𝐴𝐴,10, 𝐶𝑆𝐴,10, and 𝐶𝑆𝐴−𝐴𝐴,10. Overall, the VRP-LJV shows 

a consistent result in our in-sample analysis. 
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4. Conclusions 

This paper investigated whether there is a robust and significant relation between the VRP components and the 

future Japanese economic and financial variables including the COVID-19 pandemic period. Our analysis 

provides new empirical evidence as follows. The diffusive risk component of the VRP has a robust positive 

relation with the future CI, with higher significance by the inclusion of the COVID-19 pandemic. But the jump 

risk component of the VRP does not have statistically reasonable relation with the future CI. 

For the predictability of higher-rated CS, the diffusive risk component is positively significant and it is 

essentially unaltered over the COVID-19 period. For the lower-rated credit and default spreads, the jump risk 

component is significantly positive in some cases without the COVID-19 sample, but then becomes insignificant, 

implying the negative impact of the COVID-19 pandemic. This might be associated with the small increase in 

CS by the Bank of Japan’s large-scale corporate bond purchases under the highly unconventional monetary 

easing policy in Japan. The diffusive risk component remains a significantly positive relation with the 

lower-rated credit and default spreads, although the 𝑡-value and adjusted 𝑅2 are affected by the COVID-19 

pandemic. Additionally, the 1-month ahead out-of-sample forecast performance largely supports the evidence 

that the diffusive risk component is a robust predictor over the entire sample including the COVID-19 pandemic. 

Our predictability results might shed more light on the usefulness of the diffusive risk component in the VRP for 

analyzing the Japanese CI and CS during the COVID-19 pandemic. The application is limited to a 

country-specific analysis. Since the COVID-19 pandemic had multifaceted effects on all economies worldwide, 

future studies should explore how the COVID-19 pandemic affected the predictability with the VRP components 

in other major markets such as the U.S., Europe, and China. It would be also worthwhile to investigate the 

predictability of the other international assets during the COVID-19 pandemic period. 
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Notes 

Note 1. First, we do not focus on market excess return predictability in the Japanese equity market. Andersen et 

al. (2021) use a sample before the COVID-19 pandemic and find that: (i) the U.S. left jump variation measure 

has a strong predictive power for U.S. dollar-denominated Japanese excess returns and (ii) neither Japanese VRP 

nor its jump risk component provides significant forecasts for the Japanese yen-denominated Nikkei 225 index 

returns. Although we cannot examine the predictive power of U.S. VRP components during the COVID-19 

period due to data availability, we find an insignificant predictive power of the Japanese VRP and its components 

for the future excess returns of the Nikkei 225 index during the COVID-19 pandemic, which is qualitatively 

identical to the results of Andersen et al. (2021) without the COVID-19 period. Second, another study using a 

sample before the COVID-19 pandemic is Ubukata and Watanabe (2014), who find a significant negative 

relation between the VRP and the future change rate in the Japanese CI, implying that greater forward return 

variance leads to lower economic activity. However, they do not analyze the VRP decomposition. Ubukata (2019) 

show that the significant positive relation between the VRP components and the future CS in the Japanese 

corporate bond market, where the predictive patterns over horizons ranging from 1-month to 1-year differ in 

terms of the diffusive and jump risk components, but the study does not investigate whether the relation is robust 

to the COVID-19 period. 

Note 2. We refrain from the weekly options with maturities of the nearest 4 weeks because they are only 

available from May 25, 2015, thus making a meaningful empirical evaluation infeasible. 

Note 3. Ubukata (2022) uses high-frequency options data to relax the constancy assumption to more general 

cases, such that 𝛼𝑡
− varies each trading day, and conducts a daily frequency-based analysis. In this paper, we do 

not use the high-frequency data because our empirical analysis focuses on monthly frequency-based 

predictability of economic and financial variables during the COVID-19 pandemic period. 
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