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Abstract 

This study presents an analysis of the impact of asset price bubbles on the markets for cryptocurrencies and 

con-siders the standard risk management measure Value-at-Risk (“VaR”). We apply the theory of local 

martingales, present a styled model of asset price bubbles in continuous time and perform a simulation 

experiment featuring one- and two-dimensional Stochastic Differential Equation (“SDE”) systems for asset value 

through a Constant Elasticity of Variance (“CEV”) process that can detect bubble behavior. In an empirical 

analysis across several widely traded cryptocurrencies, we find that the estimated parameters of one-dimensional 

SDE systems do not show evidence of bubble behavior. However, if we estimate a two-dimensional system 

jointly with an equity market index, we do detect a bubble, and comparing bubble to non-bubble economies it is 

shown that asset price bubbles result in materially inflated VaR measures. The implication of this finding for 

portfolio and risk management is that rather than acting as a diversifying asset class, cryptocurrencies may not 

only be highly correlated with other assets but have anti-diversification properties that materially inflate the 

downside risks in portfolios combining these asset types. We also measure the model risk arising from 

mispecifying the process driving cryptocurrencies by ignoring the relationship to another representative risk 

asset through applying the principle of relative entropy, where we find that across all cryptocurrencies studied 

that the distributions of a distance measure between the simulated distributions of VaR are almost all highly 

skewed to the right and very heavy-tailed. We find that in the majority of cases that the model risk “multipliers” 

range in about two to five across cryptocurrencies, estimates which could be applied to establish a model risk 

reserve as part of an economic capital calculation for risk management of cryptocurrencies. 

Keywords: cryptocurrencies, model risk, asset price bubbles, value-at-risk, stochastic differential equations, 

constant elasticity of variance 

JEL Classification: C15, E58, G12, G17, G18, G21, G28. 

1. Introduction and Motivations 

The financial crises of the last decades have been the impetus behind a movement to better understand the 

relative merits of various risk measures, classic examples being Value-at-Risk (“VaR”) and related quantities 

(Jorion, 2006; Inanoglu & Jacobs, 2009). The importance of an augmented comprehension of these measures is 

accentuated in the realm of new asset classes such as cryptocurrencies, as observed in the recent meltdown in 

these markets. We have subsequently learned from episodes such this that the pricing models have failed in not 

incorporating the phenomenon of asset price bubbles, which in turn added to the severity of the downturn for 

investors and risk managers who mis-measured their potential adverse exposure to market risk in this domain. 

This manifestation of model risk (The U.S. Board of the Governors Federal Reserve System, SR 11-7), wherein a 

modeling framework lacks a key element of an economic reality and therefore fails, was due to some extent to a 

lack of basic understanding. This failure of the modeling paradigm in cryptocurrencies spans gaps in the 

measurement, characterization and economics of asset price bubbles. 
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In this paper we leverage the deep economics literature concerning local martingale theory as applied asset price 

bubbles using historical time series data in a continuous time and finite horizon setting (see Brunnermeier and 

Oehmke (2012) for a survey). As discussed in Jarrow et al. (2010), in the most general model structure possible, 

there are three types of bubbles: Type 1, Type 2 and Type 3. A Type 1 bubble exists only in infinite horizon 

models, and it captures a bubble in fiat money, a security with zero cash flows but strictly positive value. A type 

2 bubble also exists only in infinite horizon models, and it corresponds to an asset whose price process (under 

the risk neutral probability measure) is a martingale but not a uniformly integrable martingale. Intuitively, the 

sum of the risk adjusted expected discounted cash flows and liquidation value at time infinity (i.e. the asset’s 

fundamental value) does not equal the market price. Type 2 bubbles are studied within an infinite horizon model 

where the market price of an asset is compared to its fundamental value and estimated using a model for the 

asset’s dividends and discount rate. However, there are two challenges associated with testing for Type 1 and 

Type 2 bubbles that have resulted in conflicting results in the literature. First, since in both cases the models 

assume an infinite horizon, the model estimation requires a very large time series sample, which creates a 

problem when there are structural breaks or non-stationarities in financial markets (Note 1). Second, in the case 

of Type 2 bubbles there is no consensus on the model for an asset’s fundamental value, which leads to a joint 

hypothesis issue. Moreover, this setup is not applicable to cryptocurencies, as they have no cash flows.   

Finally, a Type 3 bubble exists only in continuous trading models, and it corresponds to an asset whose price 

process is a local martingale but not a martingale, which is the type of bubble that is the subject of this study. In 

economic terms, in this case the risk adjusted expected discounted cash flows and liquidation value at some 

finite time horizon does not equal the market price, implying the asset’s fundamental value not being equal to its 

market price. Type 3 bubbles arise when investors attempt to capture short-term trading profits through trading 

over a finite horizon where the market price for an asset exceeds its fundamental value, the latter being 

interpreted as the price paid for the asset to buy and hold until liquidation. Jarrow et al. (2011) show it is possible 

to test for the existence of Type 3 bubbles without estimating an asset’s fundamental value, thereby avoiding the 

joint hypothesis issue, and discuss how local martingale theory is the basis for this mode of testing for Type 3 

bubbles. Cryptocurrencies are naturally suited to this form of testing since as they have no have no cash flows, 

and the fundamental value corresponds to the currency’s liquidation value at the model’s horizon, which implies 

that bubbles exist in cryptocurrencies when speculators buy to resell before the model’s horizon. We believe this 

situation to be rather plausible in the case of novel cryptocurrencies, which are mainly used as a medium of 

exchange. Theoretically, if purchased to buy and hold and to use as needed, the transaction demand for these 

as-sets should be constrained by the usage of other more standard currencies to execute transactions. However, 

this expectation is at odds with historical experience, as seen in the unprecedented expansion of cryptocurrency 

markets over the last decade. 

In view of analyzing the impact of asset price bubbles on market risk measures and economic capital 

determination, we construct various hypothetical economies, having and also not having asset price bubbles. In a 

stylized structural asset pricing model framework (Merton, 1974), we simulate a cryptocurrency asset value 

processes in each of these economies, computing the standard risk measure VaR. We present a model of asset 

price bubbles in continuous time, and perform a simulation experiment of a one- and two- dimensional 

Stochastic Differential Equation (“SDE”) system for asset value. Comparing bubble to non-bubble economies, it 

is shown that asset price bubbles may cause a traditional market risk measures such as VaR to decline, due to a 

reduced right skewness of the loss distribution. In an empirical experiment across several widely traded 

cryptocurrencies, we find that estimated parameters of one-dimensional SDE systems do not show evidence of 

bubble behavior. However, if we estimate a two-dimensional system jointly with an equity market index (in this 

case the NASDAQ), we do detect a bubble, and comparing bubble to non-bubble economies, it is shown that 

asset price bubbles result in materially inflated VaR measures. The implication of this finding for portfolio and 

risk management is that rather than acting as a diversifying asset class, cryptocurrencies may not only be highly 

correlated with other assets but have anti-diversification properties that materially reduce diversification benefits 

in portfolios.        

The results of our experiment demonstrate that the existence of an asset price bubble, which occurs for certain 

parameter settings in the CEV model, results in the cryptocurrency loss distributions having more right-skewness 

and higher kurtosis. This augmented non-normality of the cryptocurrency’s returns due to bubble expansion 

results in an increase in the VaR risk measures, and an under-statement in the risk of the cryptocurrency, when 

non-bubble dynamics are inferred from incorrectly modeling the asset in isolation. Based on these measures 

alone, their more mildly declining asset values imply that in the presence of asset price bubbles, less economic 

capital is required. However, as shown by the joint modeling with an equity asset class proposed in the present 
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paper, this conclusion is incorrect. This market loss measure increases in bubble economies and is due to bubble 

bursting, with accompanying market risk losses on the bubble-bursting paths.  

As asset price bubbles are inevitably bound to burst, causing significant mark-to-market loss to holders of 

cryptocurrencies, more market risk capital should be held for these bubble-bursting scenarios. Unfortunately, the 

severity of these bubble-bursting scenarios is not adequately captured by such a misspecification of modeling 

cryptocurrencies in isolation. However, if these bubble-bursting scenarios are captured with market risk 

measures derived from assuming the correct CEV dynamics that admit asset price bubbles, and estimated over a 

long enough historical time period, we are more likely to anticipate the bursting of a bubble.  

We also measure the model risk arising from mispecifying the process driving cryptocurrencies by ignoring the 

relationship to another representative risk asset through applying the principle of relative entropy, where we find 

that across all cryptocurrencies studied the distribution of a distance measure between the simulated distributions 

of VaR are almost all highly skewed to the right and exhibit extremely heavy tails. We find that in the majority of 

cases that the model risk “multipliers” range in about two to five across cryptocurrencies, estimates which could 

be applied to establish a model risk reserve as part of an economic capital calculation for market risk 

management of cryptocurrencies. 

We conclude this introduction with a discussion of the implications of this research for prudential supervision 

and public policy. In the wake of the downturn in the cryptocurrency markets that began in earnest in 2022 that 

coincided with central banks raising interest rates, and the several high-profile blow-ups of several 

cryptocurrency exchanges and trading firms (e.g., most infamously FTX) that followed, the debate about the 

proper scope for supervision over this asset class has transitioned into a phase of a fevered pitch. The central 

question has been not only if but how cryptocurrencies should be brought under the supervisory umbrella, 

including which asset classes the various cryptocurrencies should be classified as (e.g., securities vs. 

commodities), but also possible unintended consequences of ill designed regulation (Sauce, 2022). In view of 

our findings, that there is a powerful interaction between cryptocurrencies and another major risk asset that leads 

to a self-reinforcing vicious cycle of bubble behavior, any such regulatory regime should account for these 

linkages. Such a regulatory regime should include an emphasis on coordination between different supervisory 

bodies with authority and domain knowledge across different asset classes, such as in the U.S. the SEC, CFTC, 

Federal Reserve, etc.     

An outline for this paper is as follows. Section 2 presents a review of the literature. Section 3 presents our market 

model incorporating the effect of asset price bubbles. Section 4 describes the cryptocurrencies that constitute our 

modeling data. Section 5 contains the results of the estimation of the models and our VaR simulation experiment. 

Section 6 describes the mathematics and results of our measurement of model risk. Finally, Section 7 

summarizes the implications of our analysis for market and model risk management, and provides directions for 

future research. 

2. Review of the Literature 

Modern credit risk modeling (e.g., Merton, 1974) increasingly relies on advanced mathematical, statistical and 

numerical techniques to measure and manage risk in market portfolios. This gives rise to model risk (The U.S. 

Board of Governors of the Federal Reserve System, SR 11-7), defined as the potential that a model used to 

assess financial risks does not accurately capture those risks, and the possibility of understating inherent dangers 

stemming from very rare yet plausible occurrences perhaps not in reference datasets or historical patterns of data
 

(Note 2), a key example of this being the inability of the market risk modeling paradigm to accommodate the 

phenomenon of asset price bubbles. 

The relative merits of various risk measures, classic examples being VaR and related quantities, have been 

discussed extensively by prior research (Alexander, 2001; Jeanblanc et al., 2009; Jorion, 1997, 2006). Risk 

management as a discipline in its own right, distinct from either general finance or financial institutions, is a 

relatively recent phenomenon. A general result of mathematical statistics due to Sklar (1956), allowing the 

combination of arbitrary marginal risk distributions into a joint distribution while preserving a non-normal 

correlation structure, readily found an application in finance. Among the early academics to introduce this 

methodology is Embrechts et al. (1999, 2003). This was applied to credit risk management and credit derivatives 

by Li (2000). The notion of copulas as a generalization of dependence according to linear correlations is used as 

a motivation for applying the technique to understanding tail events ss found in Frey and McNeil (2003). This 

treatment of tail dependence contrasts to Poon et al. (2004), who instead use a data intensive multivariate 

extension of extreme value theory, which requires observations of joint tail events. Inanoglu and Jacobs (2009) 

contribute to the modeling effort by providing tools and insights to practitioners and regulators, utilizing data 
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from major banking institutions’ loss experience, exploring the impact of business mix and inter-risk correlations 

on total risk, and comparing alternative established frameworks for risk aggregation on the same datasets across 

banks.  

In this paper we perform analysis of alternative asset pricing models and resultant VaR measures, and we 

quantify the model risk arising from potential model misspecification, which is a key component of the 

supervisory framework for managing model risk. Jacobs (2015a) discusses various approaches to measuring and 

aggregating model risk across an institution, including a sensitivity analysis approach to quantification of model 

risk. Jacobs (2015a, 2017) applies a model for asset price bubbles in a credit risk context to stress testing (“ST”), 

a key supervisory tool for supplementing VaR measures such as VaR or economic capital. Jacobs (2013) surveys 

practices and supervisory expectations for stress testing (“ST”), in a credit risk framework for trading book 

exposures; including simple and practical ST examples, a ratings migration based approach and anther a 

top-down time series modeling approach. Combining these concepts, Jacobs et al. (2015) presents an example of 

model risk quantification in the realm of ST, comparing alternative models in two different classes, Frequentist 

and Bayesian approaches to modeling stressed bank losses.    

Regarding our choice of VaR as the risk measure of interest, we note that recently in the realm of regulatory 

capital measurement of market risk there has been a movement toward expected shortfall (“ES”), which is 

defined as the expected or average loss in the tail of the loss distribution in excess of a VaR level at a given 

confidence level. We offer three justifications for studying VaR and not ES in this paper. First, VaR and not ES is 

still predominant amongst practitioners in market risk for non-regulatory purposes, as it is numerically more 

stable and easier to explain to the lines of business (Carver, 2014). Second, in Section 5 of this paper on the 

measurement of model risk we simulate the entire distribution of VaR, which yields a more robust and 

comprehensive view of the risk in excess of VaR than only the mean, the latter being less meaningful due to the 

asymmetry in the VaR distribution. Finally, by measuring the risk in the VaR model relative to an alternative and 

plausible model, we develop a more holistic view of the risk in the VaR measure than ES would represent, in that 

ES is more akin to a confidence bound measuring only parameter uncertainty in estimating VaR.   

Since the 2007 crisis, the mathematical finance literature has made significant advances in the modeling and 

testing of asset price bubbles (Jarrow & Protter, 2010; Hong et al., 2006). Protter (2011), Protter et al. (2010) and 

Jarrow et al. (2007, 2010, 2011, 2014, 2015) apply these new insights to determine the impact that asset price 

bubbles have on the common risk measures used in practice for the determination of equity capital. Jacobs 

(2015b) and Jacobs (2016) provide an extension of the latter literature the realms of credit and liquidity risk, 

respectively. Jacobs (2017) extend Jacobs (2016) with an addition of a sensitivity analysis as well as an empirical 

implementation with an application to the stress testing of credit risk.   

There have been several papers over the past decade that have empirically investigated whether there are asset 

price bubbles in markets for cryptocurrencies. Cheung et al. (2015) conduct an econometric investigation of the 

existence of asset price bubbles in the bitcoin market based on the technique of Phillips et al. (2013). Over the 

period 2010-2014 the authors detect three huge bubbles in the latter part of the period 2011-2013 lasting from 66 

to 106 days, with the last and biggest one leading to the demise of the Mt. Gox exchange. Phillips and Gorse 

(2017) build predictive models to detect asset price bubbles for a number of cryptocurrencies using a hidden 

Markov model previously utilized to detect influenza epidemic outbreaks, based on the behavior of novel online 

social media indicators. The authors validate their methodology through implementing a trading strategy that is 

built and tested on historical data which they find to outperform a buy and hold strategy. Geuder et al. (2019) and 

Cheah and Fry (2015) investigate the presence of asset price bubbles in Bitcoin. Bouri et al. (2019) argue that the 

cryptocurrency market is prone to herding behavior, and they find evidence of a high degree of co-movement in 

the cross-sectional returns across different cryptocurrencies. Agosto and Cafferata (2020) investigate 

co-explosivity amongst cryptocurrencies in unit root a model that accounts for possible shock propagation 

channels that can potentially improve the prediction of market collapses. Shahzad et al. (2022) detect episodes of 

price explosivity and collapse in Bitcoin and its contender Dogecoin using four-hourly data. The results show 

multiple bubble episodes in both cryptocurrencies, with a more frequent occurrence in Bitcoin that are related to 

Elon Musk's tweets that are more general cryptocurrency related, whereas his Dogecoin specific tweets have 

contributed to price explosivity in Dogecoin only. Most recently and in a methodology closest to that employed 

in this research, Choi and Jarrow (2022) employ an asset price bubble detection algorithm based upon local 

Martingale theory to test for the existence of price bubbles in eight cryptocurrencies from January 1, 2019 to July 

17, 2019. The authors find that five of the eight cryptocurrencies exhibit asset price bubbles, and that the 

remainder are inconclusive, which they argue provides strong evidence for the prevalence of asset price bubbles 

in cryptocurrencies.   
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Finally, we review some of the foundational studies in the quantification of model risk according to the principle 

of relative entropy. Hansen and Sargent (2007) propose an alternative paradigm to the standard theory of 

decision making under uncertainty that is based on a statistical model that informs an optimal distribution of 

outcomes. The authors adapt robust control techniques through developing a theory of model risk measurement 

that admits acknowledgement of misspecification in economic modeling and applies this framework to a variety 

of problems in dynamic macroeconomics. Glasserman and Xu (2014) apply this framework to financial risk 

measurement that relies on models of prices and other market variables that inevitably rely on imperfect 

assumptions that give rise to model risk. They develop a framework for quantifying the impact of model error 

through measuring and minimizing risk in a way that is robust to model error. Their robust approach starts from 

a baseline model and finds the worst-case error in risk measurement that would be incurred through a deviation 

from a baseline model, given a precise constraint on the plausibility of the deviation. Using relative entropy to 

constrain model distance leads to an explicit characterization of worst-case model errors that lends itself to 

Monte Carlo simulation, allowing straightforward calculation of bounds on model error with very little 

computational effort beyond that required to evaluate performance under the baseline nominal model. The 

authors apply this technique to a variety of applications in finance such as problems of portfolio risk 

measurement, credit risk, delta hedging and counterparty risk measured through credit valuation adjustment. 

Skoglund (2019) applies the principle of relative entropy to quantify the model risk inherent in loss-projection 

models used in macroeconomic stress testing and impairment estimation in an application to a retail portfolio 

and a delinquency transition model. He argues that this technique can complement traditional model risk 

quantification techniques, where a specific direction or range of model misspecification reasons, such as model 

sensitivity analysis, model parameter uncertainty analysis, competing models and conservative model 

assumptions, is usually considered. Jacobs (2022) addresses the building of obligor level hazard rate corporate 

probability-of-default (“PD”) models for ST, building models based upon varied of financial, credit rating, equity 

market and macroeconomic factors, using an extensive history of large corporate firms sourced from Moody’s. 

He develops a distance-to-default (“DTD”) risk factor and designs hybrid structural/Merton-reduced form 

models as challengers to versions of the models containing only the other variables. Measuring the model risk 

attributed to various modeling assumptions according to the principle of relative entropy, where the loss metrics 

are bounds on the stressed PD forecasts, he observes that the omitted variable bias with respect to the DTD risk 

factor, neglect of interaction effects and incorrect link function specification has the greatest, intermediate and 

least impacts, respectively. 

3. A Model for Asset Price Bubbles 

We model the evolution of asset prices, incorporating the phenomenon of price bubbles, using the approach of 

Jarrow et al. (2007, 2014a, 2014b). The setting is a continuous time trading economy, without loss of generality 

having a finite horizon [0, 𝝉], with randomness described by the filtered probability space (Ω, ℑ, F, P), where we 

define: the state space  , the  -algebra , the information partition 𝐹 = *ℑ𝑡+𝑡∈,0,𝜏-  and the physical 

probability measure P (or actuarial, as contrasted to a risk-neutral probability measure, commonly denoted by 

the symbol Q). We assume, again without loss of generality and for the purpose on focusing on the application to 

market risk, a single asset value process *𝑉𝑡+𝑡∈,0,𝜏- that is adapted to the filtration F . Note that this could also 

represent a share of stock owned by a representative equity investor, which is a claim on the single productive 

entity or firm in this economy. In the general setting 𝑉𝑡 follows an Ito diffusion process (Øksendal, 2003) 

having the following stochastic differential equation (“SDE”) representation:  

   , , ,
t

L

t t t
dV V t dt V t dW                                  (1) 

where  ,
t

V t  is the instantaneous drift process,  ,
t

V t  is the instantaneous diffusion process, 𝑊𝑡
𝐿~𝑁(0, 𝑡) 

is a standard Weiner process (or a Brownian motion process) on the filtered probability space  , , F, P  , and 

𝑑𝑊𝑡 are its infinitesimal increments. In order to complete this economy, we assume that there exists a traded 

money market account process 𝑀𝑡, which grows according to a risk-free rate process
t

r , the latter also adapted 

to the filtration of the aforementioned probability space:  

 
0

exp .
t

t s
s

M r ds


                                      (2) 

Without a loss of generality, we assume that the asset has no cashflows, which could have been incorporated into 

the model by assuming a dividend process and studying the dividend-reinvested stock price process (Back, 2010), 

but as previously argued as appropriate to a non-yielding cryptocurrency setting, we choose to not do so. 

We model an economy potentially having an price bubbles through the assumption that the risky asset’s prices 
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follows a constant elasticity of variance (“CEV:) process (Emanuel & MacBeth, 1982; Schroder, 1989), as in 

Jarrow et al. (2014b), which is the following restricted version of the Ito diffusion process in equation (1):  

,
t t

V

t t
dV V dt V dW


                                     (3) 

where  is the drift,  is the volatility and the CEV parameter governs the state of the risky asset price process 

exhibiting a price bubble or not. An asset price bubble is defined as the situation where the market price for an 

asset exceeds its fundamental value (Jarrow et al., 2007, 2010), the latter being defined conventionally price an 

investor would pay to hold the asset perpetually without rebalancing. This fundamental value is determined 

through the imposing some additional structure on the economy, requiring at minimum two additional 

assumptions. First, we need to assume that the absence of any arbitrage opportunities (Delbaen & 

Schachermayer, 1998), which guarantees the existence of a risk-neutral probability Q measure equivalent to P, 

such that the asset value process 𝑉𝑡 normalized by the money market account 𝑀𝑡 is a local Martingale process:  

 

*

*'
,

[ / | ] [ / ] ' ,
Q

t t t t t
t

E V M V M V t t


                              (4) 

where 𝑉𝑡
𝜏∗

≡ 𝑉(t,𝜏∗)− is the stopped process of 𝑉𝑡 and 𝜏∗: Ω → ,0, +∞) is a sequence of stopping times that 

satisfy certain technical conditions (Note 3). The mechanism in (4) involving the risk-neutral probability 

measure affords us a means of computing present values where we shift the mass of the probability distribution 

(magnitude of the cash-flows) such that we can recover the same prices as under actuarial measure with the 

original cash-flows – but note that is arbitrary. In order to pin down this risk-neutral distribution, we assume 

from this point on a complete market, which means that that enough derivatives on the risky assets trade in order 

to replicate its cash flows in a suitably constructed arbitrage portfolio. The first condition is satisfied because the 

CEV process given in expression (3) admits an equivalent local martingale measure, so by construction it 

satisfies the absence of arbitrage opportunities (Note 4). Under this incremental structure that we impose upon 

the economy, an asset’s fundamental value 𝐹𝑉𝑡 given the time 𝑡 information set ℑ𝑡, is defined as the asset’s 

discounted future payoff from liquidation at time at horizon 𝜏 > 𝑡:  

[ | ] [ / | ] .
Q

t t t t
FV V E V M M

  
                                (5) 

It follows that we may define the asset’s price bubble as the difference between the market price and its 

fundamental value 
t

FV :  

[ | ] [ | ].
V

t t t t
V V FV V
  

                                    (6) 

Since as a conditional expectation, the fundamental value normalized by the value of the money market account 

is a martingale under Q, a bubble exists if and only if the asset’s normalized price is a strict local martingale and 

not a martingale under Q. In the case of the CEV process, it can be shown (Jarrow et al., 2011) that the asset’s 

normalized price (𝑉𝑡
𝜏∗

/𝑀𝑡) is a martingale under Q when 𝜃 ≤ 1 in (3) (i.e., no asset price bubble), and a 

strict-local martingale under Q where 𝜃 > 1 in that equation (i.e., an asset price bubble). Note that the boundary 

case of 𝜃 = 1 yields the geometric Brownian motion underlying the Black–Scholes–Merton (“BSM”) option 

pricing model (Merton, 1974), which is called the BSM economy, and can be shown to exhibit no price bubble 

(Delbaen & Schachermayer, 1995). 

Finally, we extend the CEV model of equation (3) by estimating a two-equation joint SDE process:  

,c C

t t

VC C

t c t c
dV V dt V dW


                                  (7)  

,E E

t t

VE E

t E t E
dV V dt V dW


                                  (8) 

,
Corr [ , ] (1 / ) E [ ],C CE E

t t t t

V VV VC E

t t t
dW dW dt dW dW                            (9) 

where 𝑉𝑡
𝐶 represents the asset value process of a cryptocurrency, 𝑉𝑡

𝐸 represents the same with respect to an 

equity price and 𝜌𝑡
𝐶,𝐸

 is the instantaneous correlation between the Brownian motions governing the respective 

processes. 

Given these dynamics, the statistics to be estimated are the market loss distribution’s moments under the physical 

probability measure, characterizing the changes in the market value of instruments that includes both positive 

and negative mark-to-market values. In a market risk management application, we are actually only interested in 

losses, to which end we seek to understand the right tail of the market loss distribution, and compute the high 

quantile risk measure VaR to measure market risk. Apart from asset price bubbles, even though its limitations are 

widely known (Alexander, 2001; Jorion, 1997), such measures are widely used in the industry. An estimator for 

the VaR at a given confidence level c is given by:  

   
Quantile ,

pi k N c
VaR c

  
                                (10) 
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where 

   
1

Quantile inf{(1 / ) [ ] },

p

k
p

N

pi k N c CL xx
k

c N I c


  


                          (11) 

where 𝐼𝐶𝐿𝜏
𝐾≥𝑥  is an indicator function that takes the value 1 if 𝐶𝐿𝜏

𝐾 ≥ 𝑥
 

and 0 otherwise. As the 

cryptocurrencies and the NASDAQ are on different scales, in the analysis of VaR we report the normalized VaR 

measures, which is minus the difference of VaR and the starting value of the series expressed as a percentage of 

the starting value, which is denoted by: 

    0 0
( ) / ,

N N
VaR c VaR c V V

 
                                (12) 

Where 𝑉0 is the starting value of the series. 

4. Modeling Data and Summary Statistics 

In our empirical experiment we consider the top 6 most widely traded cryptocurrencies (Bitcoin, Etherium, 

Stellar, Bancor Cash, Cardano and Dogecoin). Summary statistics for the cryptocurrencies are show below in 

Table 1 and they are described below in Table 2. All data run through the 2
nd

 quarter of 2022 and have start dates 

ranging from the year 2013 for Bitcoin to as recent as 2018 for Dogecoin, as can be seen in the time series plots 

of the series levels and percent changes below in Figure 1 (Figures 2 through 7) for the NASDAQ 

(cryptocurrencies), including the respective data histograms for each series. The prices are all measured at a daily 

frequency, where in the case of the NASDAQ we take the closing prices, and in the case of the cryptocurrencies 

we take the price that is closest on an hourly basis to when trading in the NASDAQ ends for the day. While the 

scales differ markedly amongst the cryptocurrency series, what is striking is the commonality that all of them are 

extremely volatile, excessively skewed to the right and have fat tails far in excess of normality, with Dogecoin 

departing the furthest from normality. The NASDAQ also exhibits high volatility relative to the mean and fat 

tails, but unlike the cryptocurrencies has negative excess skewness. 

 

Table 1. Summary statistics of cryptocurrencies in the empirical experiment 

  Count Min. 1st Quartile Median Mean 3rd Quartile Max. Stdev. Skew. Kurt. 

NASDAQ  

 

Level 3,336 

 

3,166 4,813 6,606 7,499 8,721 16,057 3,336 0.97 2.77 

% Δ -12.00% 0.00% 0.00% 0.05% 1.00% 9.00% 1.27% -0.33 10.59 

Bitcoin 

 

Level 3,336 

 

65.16 447.48 3,859.1 10,378.0 9,997.7 67,108.2 15,851 1.87 -1.75 

% Δ -25.00% 0.00% 0.00% -0.01% 0.00% 23.00% 0.95% 5.31 260.21 

Etherium 

 

Level 2,193 

 

7.06 135.74 244.29 763.62 691.63 4,777.8 1,123 1.86 5.30 

% Δ -30.42% -2.3365% 0.20% 0.41% 2.92% 33.13 5.60% 0.24 6.54 

Stellar 

 

Level 1,481 

 

0.032 0.0788 0.1593 0.19 0.28 0.73 0.13 0.99 3.65 

% Δ -35.82% -3.03% 0.0000% 0.16% 2.69% 78.88% 6.34% 1.89 23.67 

Bancor 

 

Level 1,690 

 

0.14 0.60 1.63 2.23 3.35 10.44 1.99 1.20 4.025 

% Δ -39.75% -2.9t% -0.05% 0.29% 3.00% 64.56% 7.65% 1.29 13.57 

Cardano 

 

Level 1,450 

 

0.022 0.052 0.10 0.49 0.99 2.972 0.69 1.49 4.10 

% Δ -36.48% -2.9412% 0.00% 0.25% 3.03% 28.49% 5.78% 0.31 5.89 

Dogecoin 

 

Level 1,755 

 

0.01 0.02 0.04 0.01 0.02 0.12 0.01 24.43 639.98 

% Δ -98.79% 0.00% 0.00% 1.66% 0.00% 2214.3% 57.4% 34.87 1295.1 

 

 

 

 

 

 

 

 

 

 



ijef.ccsenet.org International Journal of Economics and Finance Vol. 15, No. 7; 2023 

53 

Table 2. Description of cryptocurrencies in the empirical experiment 

Bitcoin 

(BTC) 

 

Bitcoin is the original blockchain-based cryptocurrency. Created in 2009 by the pseudonymous Satoshi Nakomoto, Bitcoin has 

since attracted millions of investors, becoming the largest cryptocurrency by market capitalization. Bitcoin is inherently scarce: 

only 21 million Bitcoin will ever be minted. Bitcoin’s proof-of-work blockchain has become a template for other 

cryptocurrencies in building decentralized consensus mechanisms. 

Etherium 

(ETH) 

 

 

 

Ethereum was created in 2014 by Vitalik Buterin, a Russian-Canadian programmer, and Gavin Wood, an English computer 

scientist who later contributed to other cryptocurrency projects. The Ether currency is built on top of the Ethereum blockchain, 

which operates smart contracts. Unlike Bitcoin, which investors primarily view as a store of value, Ether’s value derives from its 

enablement of smart contracts in decentralized applications. Most “DeFi” (decentralized finance) projects are built on Ethereum. 

Ether’s supply is unconstrained, meaning the total number of Ether minted is still undecided, but will be determined by 

Ethereum’s community members. Recently the network has been split into the existing proof-of-work mechanism and a new 

proof-of-stake mechanism. 

Stellar 

(XLM) 

 

Stellar is an open source blockchain whose native currency is Lumen. The network was founded in 2014 by Jed McCaleb, a 

cryptocurrency evangelist who previously co-founded Ripple Labs and the infamous Mt. Gox Exchange. Stellar’s goal is to 

enable inexpensive transactions in underdeveloped markets. The blockchain eschewed a standard mining network for transaction 

validations, relying instead on what’s known as a “federated byzantine agreement” algorithm. 

Bancor 

(BNT) 

Bancor Network Token (BNT) is an Ethereum token that powers the Bancor protocol. The protocol describes itself as “a fully 

on-chain liquidity protocol that can be implemented on any smart contract-enabled blockchain model.  

Cardano 

(ADA) 

 

 

Cardano was founded in 2015 by Charles Hoskinson, a computer scientist and cofounder of Ethereum, who left the project over 

disagreements with its other founders. Cardano’s cryptocurrency, ADA, is secured by a proof-of-stake protocol named 

Ouroboros, which runs both permissioned and permissionless blockchains. The Cardano Foundation, a Switzerland based 

not-for-profit group, supervises the development of the project. The group has carried out extensive research and 

experimentation, writing over 90 papers on blockchain technology. Much of this academic work underlies Cardano’s technology. 

Dogecoin 

(DOGE) 

 

 

Dogecoin began in 2013 as a joke. The token’s mascot appropriates the doge internet meme, and was intended as an ironic take 

on the growth of so-called “altcoins” (cryptocurrencies that aren’t Bitcoin). Dogecoin has a large, unconstrained supply, which 

means the coin could inflate infinitely. The cryptocurrency attracted millions of new investors in 2021, when Tesla CEO Elon 

Musk, NBA owner Mark Cuban and other celebrities began tweeting about the erstwhile little-known cryptocurrency. 

 

 
Figure 1. Time series plots and data histograms – NASDAQ 

 

 
Figure 2. Time series plots and data histograms – Bitcoin 
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Figure 3. Time series plots and data histograms – Etherium 

 

 

Figure 4. Time series plots and data histograms – Stellar 

 

 

Figure 5. Time series plots and data histograms – Bancor 
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Figure 6. Time series plots and data histograms – Cardano 

 

 

Figure 7. Time series plots and data histograms – Dogecoin 

 

5. Estimation Results 

In this section we discuss the estimation results for the one- and two-dimensional SDE models for the six 

cryptocurrencies under consideration and the NASDAQ (Note 5), as well as the simulation of daily VaR for each 

of these models. We normalize the VaR measures by calculating the proportion of the starting value of the 

process, which would be the price of the cryptocurrency or level of the NASDAQ on the last available trading 

day in the historical time series, lost at the VaR level in the simulated loss distribution. In Tables 3 through 8 

below we show the estimation results. Each table corresponds to a cryptocurrency and the NASDAQ, and for 

each price process we show the results for the one- and the two-dimensional SDE system. The statistics tabulated 

include the parameter estimates of the CEV process, corresponding standard errors and p-values, log-likelihoods, 

Aikaike information criteria (”AIC”) and the normalized VaR measures.      

Consistently across all six cryptocurrencies, we observe that when we estimate the SDE separately for each of 

them and the NASDAQ, the parameter estimate for the CEV parameter is either statistically indistinguishable 

from unity, else is less than one and we would reject the null hypothesis that it exceeds one, which is indicative 

of no bubble. However, when we estimate the two-dimensional systems, considering the correlation between the 

cryptocurrency and equity index process, all CEV parameter estimates are greater than one and enough so that 

we would reject the null hypothesis that it is less than or equal to one, which is evidence of a bubble in the joint 

price processes. For example, in the case of Bitcoin and NASDAQ, for the one- (two) dimensional system we 

estimate a CEV parameter of 0.9035 (1.0390) in the case of the cryptocurrency with a standard error of 0.0012 

(0.0064), and the corresponding estimate for the equity index is 1.1012 (1.5196) with a standard error of 0.0851 

(0.0014). While the conclusions regarding detection of a bubble are consistent across all cases, we note that there 

is wide variation in the CEV estimates between cryptocurrencies and for the NASDAQ in isolation or considered 

jointly, which reflects the particular market dynamics and structures across cryptocurrencies and how these 
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interact with other risky assets such as equities. For example, we have just described that the NASDAQ appears 

to have extreme bubble behavior when modeled with Bitcoin, whereas considering Dogecoin the bubble 

behavior in the NASDAQ appears to be milder (a CEV estimate of 1.1254), and for Dogecoin itself in the 

two-dimensional system the CEV estimate is showing much more extreme bubble behavior (a CEV estimate of 

1.4079), whereas the bubble behavior for Bitcoin is milder in the two-dimensional model.  

The second major observation is that the normalized VaR measures are materially elevated in the cases of the 

two-dimensional SDE models where we detect bubble behavior as compared to the one-dimensional cases, 

which holds across all cryptocurrencies as well as the NASDAQ. As an example, in the case of Bitcoin, for the 

cryptocurrency itself the normalized VaR estimate is 0. 8568 (0.9903) in the one- (two-) dimensional SDE model, 

and for the NASDAQ the corresponding measure is 0.2718 (0.4930). As with the CEV exponent and other 

parameter estimates, there is a wide variation across cryptocurrencies and the equity index, although we note a 

consistent pattern that the VaR estimates are much higher in the case of the former as compared to the latter, 

which reflects the extremely fat tails and asymmetry of the distribution to the right (i.e., positive skewness) in 

cryptocurrencies as compared to equities as we saw in the analysis of distributional statistics. Another feature 

worthy of note is that we see across all cryptocurrencies and the equity index that in the two-dimensional models 

the drift and volatility estimates are lower versus the one-dimensional models. 

 

Table 3. One- and two-dimensional SDE system estimation results – NASDAQ and Bitcoin 

 Drift Vol. CEV Exp. Corr. Log-L AIC 99th Prcntl. VaR 

Bitcoin 

 

1 Dim. SDE 

Estimate 0.1012 1.6586 0.9035 

N/A 71,643.73 71,644.33 0.8568 Std. Err. 0.0249 0.0167 0.0012 

2 Dim. SDE 

Estimate 0.9095 1.1167 1.0390 0.9128 

41,048.81 41,054.81 0.9902 Std. Err. 0.2784 0.0638 0.0064 0.0282 

NASDAQ 

Equity 

Index 

1 Dim. SDE 

Estimate 0.0635 0.0565 1.1012 

N/A 60,432.10 60,372.10 0.2718 Std. Err. 0.0242 0.0022 0.0851 

2 Dim. SDE 

Estimate 0.0752 0.0802 1.5196 0.9128 

41,048.81 41,054.81 0.4930 Std. Err. 0.0064 0.0000 0.0014 0.0282 

 

Table 4. One- and two-dimensional SDE system estimation results – NASDAQ and Etherium 

 Drift Vol. CEV Exp. Corr. Log-L AIC 99th Prcntl. VaR 

Etherium 

 

 

1 Dim. SDE 

Estimate 0.0644 0.0866 0.9962 

N/A 23,287.20 23,287.80 0.7296 Std. Err. 0.0035 0.0091 0.0018 

2 Dim. SDE 

Estimate 0.0739 0.0546 1.0462 0.8482 

17,664.41 17,670.41 0.9898 Std. Err. 0.0044 0.0055 0.0088 0.0359 

NASDAQ 

Equity 

Index 

1 Dim. SDE 

Estimate 0.03992 0.10117 1.00523 

N/A 27,881.12 27,851.12 0.3188 Std. Err. -0.00114 0.00880 0.00157 

2 Dim. SDE Estimate 0.2032 0.0149 1.0684 0.8482 17,664.41 17,670.41 0.4309 

 

Table 5. One- and two-dimensional SDE system estimation results – NASDAQ and Stellar 

 Drift Vol. CEV Exp. Corr. Log-L AIC 99th Prcntl. VaR 

Stellar 

 

1 Dim. SDE 

Estimate 0.1005 0.1483 1.0121 

N/A 35,656.17 35,655.57 0.8175 Std. Err. 0.0048 0.0153 0.0102 

2 Dim. SDE 

Estimate 0.0785 0.1643 1.1687 0.5421 

19,207.75 19,195.75 0.8707 Std. Err. 0.0059 0.0085 0.0256 0.0248 

NASDAQ 

Equity 

Index 

1 Dim. SDE 

Estimate 0.03993 0.15566 1.01530 

N/A 3,571.63 3,565.63 0.3589 Std. Err. 0.00133 0.00330 0.01986 

2 Dim. SDE Estimate 0.0412 0.0994 1.1202 0.5421 2,310.41 2,311.16 0.5481 
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Table 6. One- and two-dimensional SDE system estimation results – NASDAQ and Bancor 

 Drift Vol. CEV Exp. Corr. Log-L AIC 99th Prcntl. VaR 

Bancor 

1 Dim. SDE 

Estimate 0.3173 0.4326 0.9968 

N/A 151,887.80 151,881.80 0.8678 Std. Err. 0.0105 0.0017 0.0091 

2 Dim. SDE 

Estimate 0.2988 0.3549 1.0750 0.3873 

2,774.60 2,768.60 0.9835 Std. Err. 0.0168 0.0065 0.0185 0.0237 

NASDAQ 

Equity 

Index 

1 Dim. SDE 

Estimate 0.06210 0.09299 0.99873 

N/A 20,829.39 20,835.39 0.2608 Std. Err. 0.01078 0.01326 0.00623 

2 Dim. SDE 

Estimate 0.0661 0.0783 1.0856 0.3873 

2,073.47 2,070.47 0.3316 Std. Err. 0.0021 0.0077 0.0182 0.0237 

 

Table 7. One- and two-dimensional SDE system estimation results – NASDAQ and Cardano 

 Drift Vol. CEV Exp. Corr. Log-L AIC 99th Prcntl. VaR 

Cardano 

 

1 Dim. SDE 

Estimate 0.9633 1.1268 0.9485 

N/A 21,672.17 21,671.77 0.7704 Std. Err. 0.0061 0.0072 0.0030 

2 Dim. SDE 

Estimate 0.9212 1.1737 1.0365 0.8313 

9,184.79 9,178.79 0.9493 Std. Err. 0.0046 0.0354 0.0069 0.0140 

NASDAQ 

Equity 

Index 

1 Dim. SDE 

Estimate 0.05692 0.10261 1.01097 

N/A 3,495.30 3,489.30 0.2202 Std. Err. 0.00266 0.00663 0.02028 

2 Dim. SDE Estimate 0.0933 0.0733 1.1545 0.8313 3,022.92 3,023.92 0.5284 

 

Table 8. One- and two-dimensional SDE system estimation results – NASDAQ and Dogecoin 

 Drift Vol. CEV Exp. Corr. Log-L AIC 99th Prcntl. VaR 

Dogecoin 

 

 

1 Dim. SDE 

Estimate 0.1002 0.4542 1.0023 

N/A 31,612.49 31,612.09 0.7008 Std. Err. 0.0438 0.0045 0.0019 

2 Dim. SDE 

Estimate 0.0574 0.1231 1.4079 0.7104 

18,368.45 18,362.45 0.8789 Std. Err. 0.0047 0.0217 0.0290 0.0206 

NASDAQ 

Equity 

Index 

1 Dim. SDE 

Estimate 0.0397 0.0943 0.9883 

N/A 4,320.87 4,314.87 0.1873 Std. Err. 0.0012 0.0030 0.0179 

2 Dim. SDE Estimate 0.0376 0.0568 1.1254 0.7104 4,307.07 4,308.27 0.3668 

 

Lastly for describing the estimation results and the implication thereof, we comment upon the estimates of the 

correlation parameters in the two-dimensional SDE models, and the performance of the latter in comparison to 

the one-dimensional SDE models. First, the estimates of the instantaneous correlations between the Brownian 

processes driving the cryptocurrency and equity market processes are very high, generally in the range of around 

70% to 90% (with Bitcoin having the highest estimate of 0.9218), which holds in four out of five cases 

(exceptions being the 40-50% range for Stellar and Bancor, where the time series lengths are shorter than for the 

other cases). While not definitive, as is the analysis of the CEV exponent or normalized VaR estimates, this is 

consistent with limited, non-existent or even anti-diversification benefit from holding cryptocurrencies and 

equities in a portfolio. Second, the AIC measures are all materially lower in the two- versus the one-dimensional 

models, indicative of superior model fit in the latter as compared to the former where we account for this 

correlation, which is an intuitive result that speaks to model misspecification when not modeling 

cryptocurrencies and equities jointly. 

Finally, in Figures 9 through 12 below we show graphical depictions of the VaR simulations for Bitcoin and the 

NASDAQ, where for the sake of brevity we do not show these for the five other cryptocurrencies. The extreme 

non-normality, i.e., extreme excess kurtosis and skewness, of the simulated loss distribution in the case of the 

two- versus the one-dimensional model, are evident from these plots, and the appearance of these graphics are 

qualitatively similar for the other five cryptocurrencies not shown herein (the plots are available upon request.)        
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Figure 9. Simulation of one-day VaR from the estimation of a one-dimensional SDE System CEV model – 

Bitcoin 

 

 
Figure 10. Simulation of one-day VaR from the estimation of a one-dimensional SDE System CEV model – 

NASDAQ 

 

 
Figure 11. Simulation of one-day VaR from the estimation of a one-dimensional SDE System CEV model – 

Bitcoin 
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Figure 12. Simulation of one-day VaR from the estimation of a one-dimensional SDE System CEV model – 

NASDAQ 

 

6. Measurement of Model Risk 

In the building of risk models we are subject to errors from model risk, one source being the violation of 

modeling assumptions. In this section we apply a methodology for the quantification of model risk that is a tool 

in building models robust to such errors. A key objective of model risk management is to assess the likelihood, 

exposure and severity of model error in that all models rely upon simplifying assumptions. It follows that a 

critical component of an effective model risk framework is the development of bounds upon a model error 

resulting from the violation of modeling assumptions. This measurement is based upon a reference nominal risk 

model and is capable of rank ordering the various model risks as well as indicating which perturbation of the 

model has maximal effect upon some risk measure. 

In line with the objective of managing model risk in the context of measuring VaR for cryptocurrencies, we 

calculate confidence bounds around forecasted VaR spanning model errors in a vicinity of a nominal or reference 

model defined by a set of alternative models. These bounds can be likened to confidence intervals that quantify 

sampling error in parameter estimation. However, these bounds are a measure of model robustness that instead 

measures model error due to the violation of modeling assumptions. In contrast, a standard error estimate 

conventionally employed in managing market risk portfolios does not achieve this objective, as this construct 

relies in this context upon an assumed joint distribution of the asset returns amongst cryptocurrencies and an 

equity market index. Note that in applying relative entropy to model risk measurement we need not make this 

assumption but rather we are able to test whether this assumption is valid. 

We meet our previously stated objective in the context of VaR modeling through bounding a measure of loss, in 

this case the VaR forecasts, which can within reason reflect a level of model error. We have observed that while 

amongst practitioners one alternative means of measuring model risk is to consider challenger models, an 

assessment of estimation error or sensitivity in perturbing parameters is in fact a more prevalent means of 

accomplishing this objective, which captures only a very narrow dimension of model risk. In contrast, our 

methodology transcends the latter aspect to quantify potential model errors such as incorrect specification of the 

probability law governing the model without assuming which of these is correct, or herein the specification of 

the SDE dynamics governing the cryptocurrency and equity index processes, namely whether a one- or 

two-dimensional SDE between each cryptocurrency and the equity market index is the best specification in terms 

of model risk. 

As these types of model errors under consideration all relate to the likelihood of such error, which in turn is 

connected to the perturbation of probability laws governing the entire modeling construct, we apply the principle 

of relative entropy (Hansen & Sargent, 2007; Glasserman & Xu, 2013). In Bayesian statistical inference, relative 

entropy between a posterior and a prior distribution is a measure of information gain when incorporating 

incremental data. In the context of quantifying model error, relative entropy has the interpretation of a measure 

of the additional information requisite for a perturbed model to be considered superior to a champion or null 

model. Said differently, relative entropy may be interpreted as measuring the credibility of a challenger model. 

Another useful feature of this construct is that within a relative entropy constraint the so-called worst-case 

alternative (e.g., in our case a high quantile of a distribution of VaR estimate differences between the models due 
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to ignoring some feature of the alternative model) can be expressed as an exponential change of measure. 

Model risk with respect to a champion model 𝑦 = 𝑓(𝑥) is quantified by the Kullback–Leibler relative entropy 

divergence measure to a challenger model  y g x
 

and is expressed as follows: 

           , ( / ) log( / ) .D f g g x f x g x f x f x dx                      (13) 

In this construct, the mapping  g x is an alternative model and the mapping
 

𝑓(𝑥) is some kind of base model, 

the latter being the base one-dimensional SDE VaR model which we have estimated in this paper that may be 

violating the model assumption that the correct model is a two-dimensional SDE. In a model validation context 

this is a critical construct as the implication of these relations is a robustness to model misspecification with 

respect to the alternative model – i.e., we do not have to assume that either the reference or alternative models is 

correct, and we need only quantify its distance of the alternative from the reference model according to a loss 

metric to assess the impact of the modeling assumption at play.   

Define the likelihood ratio  ,m f g , characterizing our modeling choice, which is expressed as follows: 

     , / .m f g g x f x                                  (14)                                                                              

As is the standard in the literature, Equation (14) may be expressed as an equivalent expectation of a relative 

deviation in likelihood:  

   E [ log ] , ,
f

m m D f g                                 (15)                                                                   

where 𝛿 is an upper bound to deviations in model risk (which should be small on a relative basis), which may be 

determined by the model risk tolerance of an institution for a certain model type, interpretable as a threshold for 

model performance.   

A property of relative entropy dictates that  , 0D f g 
 

and  , 0D f g 
 

only if    f x g x . Given a relative 

distance measure ( , )D f g   
and a set of alternative models  g x , model error can be quantified by the 

following change of numeraire: 

     , exp( ) / E [exp( )],
f

m f g f x f x                           (16)                                                                      

where the solution (or inner supremum) to Equation (16) is formulated in the following optimization: 

   0 ( )
( , ) inf sup E [ (1 / )( ( ) log( ( )) )].

m x f
m f g m x f x m x m x

 
 


                 (17)                                        

Equation (16) features the parameterization of model risk by 𝜃 ∈ ,0, 1-, where 0   is the best case of no 

model risk and 1   the worst case of model risk in extremis. The change in measure of Equation (16) has 

important property of being model-free, or not dependent upon the specification of the challenger model ( )g x . 

As mentioned previously, this reflects the robustness to misspecification of the alternative model that is a key 

feature of this construct, and from a model validation perspective is a desirable property. In other words, we do 

not have to assume that either the champion or the alternative models is correct and only have to quantify the 

distance of the alternative from the base model according to a loss metric in order to assess the impact of 

violating the modeling assumptions. 

We study the quantification of model risk with respect to the modeling assumptions that the correct VaR model is 

a single-dimensional SDE through implementing the principle of relative entropy in a bootstrap simulation 

exercise. In each iteration we resample the data with replacement and re-estimate the models considered in the 

paper, either a one- or two-dimensional SDE for each cryptocurrency and the equity market index, where our 

measure of model risk or loss is the difference in the normalized VaR estimates between these models, which we 

denote by     

     
; , , ,

,
f g g f

b b b
dVaR c VaR c VaR c

  
                             (18) 

where 𝑑𝑉𝑎𝑅𝜏;𝑓,𝘨
𝑏 (𝑐)  is the deviation in VaR estimates between of the challenger model 𝘨(𝑥)  (the 

two-dimensional SDE model) and of the reference model f(x) (the one-dimensional SDE model) in the th
b

bootstrap, at horizon   (one day) and confidence level c (the 99
th

 percentile). We then study the distribution of 

this quantity, as well as the differences between high 99
th

 and low 1
st
 percentiles of these distributions and the 

mean of the distributions as upper and lower bounds on model risk, respectively.   

The results of this exercise are shown below, summary statistics and plots of the normalized VaR deviation 

model risk measures, in Tables 9 above and 10 below for the former, and in Figures 10 through 15 for the latter. 

The first major observation is that distributions all have positive support, so that in each case across 100,000 
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simulations, the VaR in the two-dimensional models always exceeds that in the one-dimensional model. Second, 

in all cases for the cryptocurrencies with the exception of Stellar, the distributions are extremely skewed to the 

right, which holds as well in all cases for the NASDAQ. Third, focusing on the cryptocurrencies with the 

exceptions of Stellar and Dogecoin (the latter being a special case as the right skewness is extreme to an order of 

magnitude greater than the other right-skewed cryptocurrencies), we observe that the upper bound model risk 

add-ons range in about 30%-37%, whereas the means of the distributions range in about 8%-26%, which implies 

that the model risk “multipliers” range in about two to five, where these are shown in the 2
nd

 to last rows of the 

tables and are defined as:    

    ; , ,,
1 1

(Quantile ( ) (1 / ) ( )) / ((1 / ) ( )),
f g f gf g

B B
B b b

cVaR c dVaR c
b b

M F B dVaR c B dVaR C
 

 
 

              (19) 

 

Table 9. Summary statistics – distribution of bootstrapped deviations in normalized VaR estimates between the 

one- and two-dimensional SDE models for cryptocurrencies  

Statistic Bitcoin Etherium Stellar Bancor Cardano Dogecoin 

Minimum  0.01% 0.13% 10.18% 2.00E-07 1.00E-04 8.00E-09 

1st Quartile 6.62% 15.22% 64.57% 3.86% 1.76% 1.00E-07 

Median 12.96% 24.15% 75.34% 8.82% 5.22% 0.01% 

Mean 15.52% 25.95% 73.54% 11.65% 8.12% 1.11% 

3rd Quartile 21.87% 34.71% 84.31% 16.68% 11.60% 0.42% 

Maximum 83.30% 88.56% 99.90% 82.96% 72.82% 65.61% 

Standard   Deviation 11.48% 13.88% 13.95% 10.17% 8.65% 3.29% 

Skewness 1.1013 0.6234 -0.6073 1.3745 1.7721 5.3106 

Kurtosis 4.1778 3.0315 3.0107 5.0797 6.8235 41.1076 

99th Percentile Upper Bound 35.08% 37.25% 23.21% 33.09% 30.35% 15.91% 

1st Percentile Lower Bound 14.97% 22.82% 37.10% 11.49% 8.10% 1.11E-02 

VaR Model Risk Multiplier 3.26 2.44 1.32 3.84 4.74 15.39 

 

Table 10. Summary statistics – distribution of bootstrapped deviations in normalized VaR estimates between the 

one- and two-dimensional SDE models for the NASDAQ 

Statistic Bitcoin Etherium Stellar Bancor Cardano Dogecoin 

Minimum  0.01% 0.00% 0.04% 0.01% 0.21% 2.11E-05 

1st Quartile 7.01% 3.24% 9.91% 10.20% 19.76% 8.58% 

Median 13.44% 7.85% 17.37% 17.82% 29.38% 15.51% 

Mean 15.94% 10.69% 19.67% 20.00% 30.84% 17.94% 

3rd Quartile 22.36% 15.31% 27.06% 27.50% 40.42% 24.96% 

Maximum 80.67% 76.35% 85.06% 84.81% 88.14% 80.34% 

Standard   Deviation 11.54% 9.80% 12.60% 12.59% 14.56% 12.13% 

Skewness 1.0553 1.4707 0.8783 0.8464 0.4746 0.9666 

Kurtosis 4.0107 5.4559 3.5443 3.4801 2.8051 3.7852 

99th Percentile Upper Bound 34.76% 32.55% 36.17% 35.84% 37.22% 35.89% 

1st Percentile Lower Bound 15.32% 10.59% 18.36% 18.59% 25.84% 16.98% 

VaR Model Risk Multiplier 3.18 4.05 2.84 2.79 2.21 3.00 

 

Where
 VaR c

M


is the VaR multiplier, 
 

; ,

Quantile ( )
f g

B

c dVaR c
F

  
is the th

c (i.e., 99
th
) percentile of the bootstrapped 

distribution of the VaR deviations (in bootstraps) and   
; ,

1

1

f g

B
b

b

dVaR c
B 



 is the mean of the bootstrapped 

distribution. Only in the case of the left skewed Stellar do we get a same order of magnitude as the mean value of 

1.32, and in the extremely right-skewed case of Dogecoin do we get an order of magnitude larger than the mean 

value of 15.39. In the case of NASDAQ, the multipliers all range narrowly in a range of about two to three. Such 

quantities could be applied to establish a model risk reserve as part of an economic capital calculation for traders 

or risk managers in cryptocurrencies.    



ijef.ccsenet.org International Journal of Economics and Finance Vol. 15, No. 7; 2023 

62 

        
Figure 13. Distribution of bootstrapped deviations in    Figure 14. Distribution of bootstrapped deviations in 

normalized VaR estimates between the one- and        normalized VaR estimates between the one- and 

two-dimensional SDE models for Bitcoin                two-dimensional SDE models for Etherium 

and the NASDAQ                                and the NASDAQ 

 

        

Figure 15. Distribution of bootstrapped deviations in    Figure 16. Distribution of bootstrapped deviations in 

normalized VaR estimates between the one- and        normalized VaR estimates between the one- and 

two-dimensional SDE models for Stellar               two-dimensional SDE models for Bancor 

and the NASDAQ                                  and the NASDAQ 

 

      
Figure 17. Distribution of bootstrapped deviations in   Figure 18. Distribution of bootstrapped deviations in  

normalized VaR estimates between the one- and       normalized VaR estimates between the one- and  

two-dimensional SDE models for Cardano             two-dimensional SDE models for Dogecoin  

and the NASDAQ                                     and the NASDAQ 
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7. Conclusions and Directions for Future Research 

In this study we have leveraged the deep economics literature of local martingale theory as applied asset price 

bubbles in the markets for cryptocurrencies using historical time series data in a continuous time and finite 

horizon trading model setting. We have noted that in the case of cryptocurrencies a Type 1 asset price bubble is 

an inappropriate hypothesis, as such bubbles exists that only in infinite horizon models and a fiat money asset, a 

security with zero cash flows but strictly positive value. We have also deemed to be an inappropriate hypothesis 

the case of Type 2 bubbles, as there is no consensus on the model for an asset’s fundamental value, which holds 

especially in the case of cryptocurrencies as they have no cash flows, and which leads to an egregious joint 

hypothesis problem. In light of these considerations, we have argued that a Type 3 asset price bubble is the most 

appropriate hypothesis, as they exist only in continuous trading models with finite holding periods, and 

correspond to an asset whose price process is a local martingale but not a martingale. It has been further noted 

that in economic terms, for the case where the risk adjusted expected discounted cash flows and liquidation value 

at some finite time horizon does not equal the market price, this implies that the asset’s fundamental value is not 

equal to its market price. We have proceeded to point out that in this setting, such bubbles arise when investors 

attempt to capture short-term trading profits through trading over a finite horizon where the market price for an 

asset exceeds its fundamental value, the latter being interpreted as the price paid for the asset to buy and hold 

until liquidation. As such, we have concluded that it is possible to test for the existence of Type 3 asset price 

bubbles without estimating an asset’s fundamental value, thereby avoiding the joint hypothesis issue, and we 

went on to discuss how local martingale theory may be applied as the basis for this mode of testing for Type 3 

asset price bubbles. We have then argued that cryptocurrencies are naturally suited to this form of testing as they 

have no have no cash flows, and the fundamental value corresponds to the cryptocurrency’s liquidation value at 

the model’s horizon, which implies that bubbles exist in cryptocurrencies when speculators buy to resell before 

the model’s horizon. Furthermore, we have asserted that this situation is rather plausible especially in the case of 

novel cryptocurrencies, which are mainly used as a medium of exchange, despite that theoretically if purchased 

to buy and hold the transaction demand for these assets should be constrained by the usage of other more 

standard currencies to execute transactions. as the latter expectation is at odds with historical experience with the 

unprecedented expansion of cryptocurrency markets. 

In view of analyzing the impact of asset price bubbles on market risk measures and economic capital 

determination, we constructed various hypothetical economies, having and also not having asset price bubbles. 

In a stylized structural asset pricing model framework, we simulated a cryptocurrency asset value processes in 

each of these economies, computing the standard risk measure VaR. We presented a model of asset price bubbles 

in continuous time, and performed a simulation experiment of one- and two- dimensional SDE systems for asset 

values. In an empirical experiment across several widely traded cryptocurrencies, we have found that estimated 

parameters of one-dimensional SDE systems do not show evidence of bubble behavior. However, if estimating a 

two-dimensional system jointly with an equity market index we have detected asset price bubbles, and in 

comparing bubble to non-bubble economies it has been shown that asset price bubbles result in materially 

inflated VaR measures. We concluded from these findings that the implication for portfolio and risk management 

is that rather than acting as a diversifying asset class, cryptocurrencies may not only be highly correlated with 

other assets, but in fact have anti-diversification properties.        

The results of our experiment demonstrated that the existence of an asset price bubble, which occurs for certain 

parameter settings in the CEV model, results in the cryptocurrency loss distributions having more right-skewness 

and higher kurtosis. It has been shown that this augmented non-normality of the cryptocurrency’s returns due to 

bubble expansion results in an increase in the VaR risk measures, and an understatement in the risk of the 

cryptocurrencies when non-bubble dynamics are inferred from an incorrect specification that fails to model 

cryptocurrencies jointly with equity prices. Based on these measures alone, their declining values imply that in 

the presence of asset price bubbles, a mispecified model results in a lower economic capital requirement. This 

market loss measure increases in bubble economies and is due to bubble bursting, with accompanying magnified 

market risk losses on the bubble-bursting paths.  

As asset price bubbles are inevitably bound to burst, causing significant mark-to-market losses to holders of 

cryptocurrencies, we conclude that more market risk capital should be held for these bubble-bursting scenarios.  

Unfortunately, we have observed that the severity of these bubble-bursting scenarios is not adequately captured 

by a standard approach to market risk measures in novel asset classes such as cryptocurrencies, whose 

computations are based on modeling in isolation from other asset classes. Also, modeling time horizons are 

typically not long enough over which bubble bursting is likely, which coupled with inferring non-bubble 

dynamics in mispecified models creates further model risk. Furthermore, it has been shown that when these 
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bubble-bursting scenarios are captured in correctly specified CEV model dynamics, derived from calibration of 

two- versus one- dimensional SDE models where cryptocurrencies are modeled jointly with an equity price 

index, then market risk measures thus derived admit asset price bubbles and are not understated.  

We also measured the model risk arising from mispecifying the process driving cryptocurrencies by ignoring the 

relationship to another representative risk asset through applying the principle of relative entropy. In a bootstrap 

simulation implementation of this principle, we studied the distribution of a distance measure between the 

simulated distributions of VaR, in each iteration measuring the difference in VaR derived from a 

two-dimensional and a one-dimensional SDE model. We found that across all cryptocurrencies and the equity 

prices index these distributions to have positive support, excess kurtosis and (with the exception of a single 

cryptocurrency) extreme right-skewness. We found that in the majority of cases that the model risk “multipliers” 

range in about two to five across cryptocurrencies, estimates which could be applied to establish a model risk 

reserve as part of an economic capital calculation for traders in cryptocurrencies. 

We have also illustrated implications of this research for prudential supervision and public policy. We have 

argued that a central question in this domain has been not only if but how cryptocurrencies should be brought 

under the supervisory umbrella, including which asset classes the various cryptocurrencies should be classified 

as (e.g., securities vs. commodities), and possible unintended consequences of ill-designed regulation. In view of 

our findings, we have asserted that there is a powerful interaction between cryptocurrencies and another major 

risk asset that leads to a self-reinforcing vicious cycle of bubble behavior, and that the regulatory regime should 

account for these linkages. Therefore, we concluded that any such regulatory regime should include an emphasis 

on coordination between different supervisory bodies, such as in the U.S. the SEC, CFTC, Federal Reserve, etc. 

There are several fruitful avenues of future direction that we can take this line of research on cryptocurrencies 

and asset price bubbles, including but not limited to: 

 Analyzing the interaction of cryptocurrencies and other risk assets such as fixed income, commodities, 

volatility, etc.; 

 modeling several cryptocurrencies jointly in a portfolio management application; 

 alternative econometric methodologies, such as non-parametric or machine learning techniques, and, 

 alternative methodologies for applying the theory of martingales, such as in Choi et al. (2020). 
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Notes 

Note 1. The data used in this paper ranges in length from around 9 years for Bitcoin and 4-6 years for the other 

cryptocurrencies under consideration, which is arguably a short enough period that allows us to credibly rule out 

any drastic regime change.  

Note 2. In the wake of the financial crisis (Demirguc-Kunt et al., 2010; Acharya et al., 2009), international 

supervisors have recognized the importance of ST, especially in the realm of credit risk, as can be seen in the 

re-vised Basel framework (BCBS 2005, 2006; 2009 a,b; 2010) and the Federal Reserve’s Comprehensive Capital 

Analysis and Review (“CCAR”) program (Jacobs, 2013; Jacobs et al., 2015). 

Note 3. The conditions are that 𝜏∗  is almost surely increasing 𝑃𝑄,𝜏𝑘
∗ < 𝜏𝑘+1

∗ - = 1 and is almost surely 

divergent 𝑃𝑄,𝜏𝑘
∗ → ∞ 𝑎𝑠 𝑘 → ∞- = 1 (Oksendal, 2003). 

Note 4. This condition is sometimes termed “no free-lunch with vanishing risk” or NFLVR (Jeanblanc et al., 

2009). 

Note 5. We use a proprietary modified code based upon the source code for the R package Sim.DiffProc to both 

estimate and simulate the one- and two-dimensional system of SDEs for the cryptocurrencies and the NADAQ 

equity index (R Development Core Team, 2022). The estimation algorithm that we develop is robust to 

misspecification the distribution of the random noise Weiner processes relative to the assumption that they obey 

a Gaussian law. 
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