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Abstract 

This study investigates the effectiveness of technology models in credit risk scoring modeling in emerging 

markets. the study proposes evaluation methods for credit risk scoring modeling for current and potential 

borrowers through an investigation into the Egyptian banking industry by offering and examining a framework 

for the integration of big data and artificial neural networks based on systematic and unsystematic risk for both 

the macroeconomic environment and characteristics of current and potential borrowers. The data for the 

borrowers under examination covers the period from 2015 to 2019 for 75 firms, excluding 2020 and 2021 data to 

isolate the impact of COVID-19 on the results of the inferred statistics. Artificial Neural Networks was training 

within 25 firms under NeuroXL program but examination for 50 firms. The study found the ability of artificial 

neural networks to rank the commitment of borrowers in Egyptian banks under big data about the firm and 

Egyptian economy. Additions to discrepancy between the proposed model against some traditional models. 

Finally; The Integration of Big Data and ANN can help banks to bring out the value of data within create a level 

of financial stability for banks. Especially in emerging markets characterized by information inefficiency 

Keywords: Big Data, Artificial Neural Network, Credit Risk Scoring, banking industry; emerging markets 

1. Introduction 

In the banking industry, Default risk is a significant issue that may have a significant impact on the decisions of 

banks. It may utilise accurate forecasts to identify hazardous borrowers and adjust their lending practises 

accordingly. (Moscatelli et al., 2020). 

Lenders use a credit scoring technique to gather information about a borrower’s payment habits in order to assess 

the level of risk involved (Trivedi, 2020). Some banks’ biggest challenges, however, are deciding which 

borrowers are eligible for loans and which ones aren’t. Building an automated artificial intelligence credit score 

prediction model based on artificial intelligence classifiers like machine learning and neural networks is critical 

for making such an important judgement (Trivedi, 2020). The financial industry, which includes banks, is 

attempting to stay competitive in the face of an enormous rise of data around the globe (Yldrm et al., 2021). 

Banks and FinTech companies are increasingly relying on artificial intelligence tools to anticipate and classify 

customers (Hurlin & Pérignon, 2019; ACPR, 2020). 

Big data analytics is becoming an integral aspect of data science because of the rapid expansion of financial data 

(Lee, 2017). Scalability and storage limitations have prevented traditional data approaches from extracting the 

desired information from a large volume and variety of financial data. Consequently, big data analytics provides 

a strong platform for doing deep analyses and delivering more accurate and dependable results for extracting 

information on economic activities (Narayanan, 2014; Oussous et al., 2018). 

Banks have spent a lot of time and money over the last four decades establishing internal models for credit risk 

scoring. Bank authorities have applauded and encouraged these efforts. Banks have recently expanded their 
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efforts to include credit risk scoring modeling; however, an important question for both banks and their 

regulators is evaluating the accuracy of credit risk scoring modeling. Using a panel data approach, the study 

proposes evaluation methods for credit risk scoring modeling based on cross-sectional simulation for borrowers 

through an investigation into the Egyptian banking industry by offering and examining a framework for the 

integration of big data and artificial neural networks based on systematic and unsystematic risk for both the 

macroeconomic environment and borrowers. 

2. Literature Review and Theoretical Framework  

During the last quarter of the twentieth century, the pace of changes in the business environment accelerated 

based on the developments that occurred in many fields, especially the technological aspects, in addition to the 

liberalisation of international trade and capital movements, the world have experienced. 

Egypt responded by The policies of economic openness have been underway since the seventies, as the levels of 

economic activities for the private sector, which was reflected in thire contribution of the private sector to the 

GDP, as this contribution by the private sector to various economic activities resulted in more transactions 

between the private sector and banking system on the other hand, which took many forms such as facilities 

beside bank loans, and in light of the many shocks that the Egyptian economy has been subjected to, both 

internal (due to terrorism, interest rate fluctuations, and exchange rate fluctuations), or external  as southeast 

asian countries crises 1998, Mortgage Crisis 2008 and Pandemic Crisis (Covid-19) led to the exposure of many 

individuals and businesses to The risks of stopping its operating activities, which usually requires intervention 

from external parties, in order to ensure the continuation of work in that facility without losing jobs and cutting 

the supply chain, to provide goods and services to the Egyptian economy, usually through banking flotation.  

Traditional financial methods such as financial ratios have been used for this purpose, in addition to a number of 

other methods that mix financial and non-financial methods at the level of credit to the business establishment 

(loans and banking facilities for companies) in exchange for proof of income and verifying the existence of a 

surplus to repay loans to individuals (Loans and personal facilities for individuals) in light of the controls of 

regulatory and supervisory authorities such as the Central Bank of Egypt. 

2.1 Concept of Credit Scoring 

Banks formulate their credit policies in a way that achieves good and safe use of the available funds, whether 

from depositors or shareholders of that unit, while achieving an appropriate return. Credit is defined as the ability 

to grant loans in light of the confidence that the banking unit places on its customers in making a certain amount 

of money available for its use. For a specific purpose during a certain period, and it is paid on certain terms in 

return for an agreed upon material return.  

Bank credit patterns vary, as bank credit patterns can be determined according to several factors, including the 

maturity period (short/medium/long-term), according to the type of collateral (credit with in-kind 

guarantees/without in-kind guarantees), according to the payment method (equal payments/unequal 

payments/one payment), according to the legal form of the credit recipient (natural person/legal person), 

according to the type of credit currency (local currency/foreign currency), according to the number of parties 

providing credit (single credit/joint credit), and according to the economic sectors of the credit recipient 

(production activity: industrial/agricultural production/service/commercial). 

Credit risk scoring is seen as one of the quantitative tools that can be used by banks to reduce their risks. Credit 

risk scoring is an extension of financing theories in general, and credit management in particular. Through these 

methods, the customer is viewed with a critical view, as the ability to pay is the basis for this assessment. 

A debtor’s financial flexibility and creditworthiness may be determined objectively using credit scoring. Debtors’ 

exposure to credit, market, liquidity and interest rate risk is one of several aspects taken into account in this 

judgement. (Pertaia et al., 2021). The purpose of credit scorings is to provide a uniform and transparent system 

for the market candidates in order to understand the repayment capacity and to facilitate an efficient debt space 

(Szetela et al., 2019).  

Credit scoring plays a key role in identifying default prediction of companies (Nehrebecka, 2018). In the retail 

credit sector, credit scoring is used for developing empirical models to support decisions (Crook et al., 2007). 

The huge numbers of individual and mortgage loans indicate that financial institutions require quantitative tools 

to process such big data to take credit decisions (Calabrese, 2014). 

Traditional methods used to credit scoring include linear discriminant analysis and logit analysis. Emerging 

artificial intelligence techniques such as artificial neural networks, genetic algorithm and support vector machine 

were applied with positive results for both consumer and company credit ratings (Lai et al., 2006a). 
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Credit scoring models capture probability of the default behavior of borrowers in the future. Therefore, banks 

use predictive models called scorecards in application scoring, to evaluate the probability of non-payment. (Hand 

& Henley, 1997) it also have benefits for stakeholders and entities, as they help in optimizing the financing cost, 

and provide better access to raise capital (Alanis, 2020). In credit risk modeling, many prediction tasks occurs. 

According to Basel II Capital accord is necessary for banks to estimate like: Probability of default (PD); 

Exposure at default (EAD) and Loss given default (LGD). The recent trending models for research topic are 

EAD and LGD models (Yao et al., 2015).  

In addition to the above, some studies have presented some variables affecting credit risk. These variables can be 

classified into two groups. The first is general variables called sources of systematic risk, versus private variables 

called sources of unsystematic risk.  

The sources of systematic risk relate to credit risk such as Macroeconomic environment (Jakubik, 2007), interest 

rate (Chen et al., 2013), and the business cycle (Alessandrini, 1999); but the sources of unsystematic risk relate 

to credit risk such as Capital structure (Hackbarth et al., 2006); Liquidity (Ericsson & Renault, 2006). According 

to (Ham & Koharki, 2016) that a positive correlation between “the corporate general counsel” promotions to 

“senior management” and increases in business unit credit risk. Finally; Credit default swaps leads to looser loan 

terms (less collateral and looser covenants), consistent with a reduction in monitoring incentives (Shan et al., 

2019)   

2.2 Artificial Neural Network and Credit Risk Scoring 

The field of artificial intelligence is based on research in biology, neuroscience, psychology, mathematics, and 

other related sciences, as it focuses on how the human mind performs its functions and how humans themselves 

learn from experience, as well as the way they think in different situations and circumstances, and the last quarter 

of the twentieth century witnessed the emergence of multiple decision-making methods based on artificial 

intelligence in the fields of economics, finance, and business, and these emerging sciences use computer systems 

designed on the basis of human thinking and intelligence. These methods include: Neural Networks, Genetic 

Algorithms, Genetic Programming, Evolutionary Programming, Classifier Systems, Agent-based Modeling, 

Fuzzy Logic, Wavelets, Molecular Computing. 

Artificial neural networks are a method by which data is analyzed by tracking data trends, studying the complex 

and interrelated relationships between them, while learning to adapt to environmental changes. With it, and these 

artificial neural networks are modeled to resemble the human brain, and with the way it works. 

When artificial neural networks emerged, they were limited to engineers only, and with the beginning of the use 

of artificial neural networks as software, they began to invade the financial field, and due to the fact that many 

banks and pension funds as well as insurance companies and international investment funds managed billions of 

dollars in the financial markets, in the business of buying, selling and speculating on stock prices. And currencies, 

and the managers of those facilities and institutions need for modern scientific methods to help predict what will 

happen in the future, in order to direct their investments towards the right direction of investment, hence the use 

of artificial neural networks in the field of accounting to predict stock prices, or changes in them. 

At the end of the nineties of the twentieth century, the applications of artificial neural networks varied in 

accounting and finance, which required dividing them into multiple types: in financial accounting, auditing, cost 

accounting, management accounting, as well as financial investments. 

With the high rates of interest in artificial neural networks, their industrial applications increased, and with the 

multiplicity of software ready for artificial neural networks, the fields applying artificial neural networks in the 

field of applied and social sciences also increased. 

The vast majority of Artificial Neural Network applications can be placed in prediction application 

classifications, data filtering, classification, and data correlation, as well as sample and pattern recognition, and 

data modeling. 

A neural network is a massively parallel-distributed processor that has a natural propensity for storing 

experiential knowledge and making it available for use, Credit scoring was one of the first areas of economics 

and finance to use machine learning and artificial intelligence techniques. is a related field of Business 

Intelligence which refers to as techniques, technologies, systems, and tools that enable accessing to diverse data, 

manipulating and transforming such data to provide managers of productivity and competitiveness. It also helps 

improving decision making progress to perform accurate actions in the future (Chen et al., 2012, 2013). 

Some early studies were on using artificial neural networks in the financial arena like (Tam & Kiang, 1992) used 

managerial applications of neural networks for the case of bank failure predictions, (Desai et al., 1996) 
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conducted a comparison of neural networks and linear scoring models in the credit union environment; (West, 

2000) investigated the credit scoring accuracy of five neural network models, (Yobas et al., 2000) compared the 

predictive power of linear discriminant analysis, neural networks, genetic algorithms and decision trees in 

distinguishing between good and slow payers of bank credit card accounts. (Bahrammirzaee, 2010), confirmed 

that neural networks have proven the ability to predict credit worthiness rather than its counterparties. 

According to Hosaka (2019), banks can use Convolutional Neural Network (CNN) through imaged financial 

ratios to predict bankruptcy, and compare findings with other techniques such as DT, linear discriminant analysis, 

SVM, MLP, and Altman’s Z-score. The results showed higher performance results with CNN in comparison with 

other machine learning methods. 

But Khandani et al. (2010) construct a credit score model via machine learning, but their model only 

incorporates bank account transactions and credit bureau information. on other side; Nwulu et al. (2012) used 

support vector machine (SVM) and Artificial Neural Network (ANN) for building credit-scoring models. Results 

showed that ANN outperforms SVM with significant high accuracy. 

In addition to Bequé and Lessmann (2017) used artificial neural network to build extreme learning machine 

(ELM) credit score predication model. but Trivedi (2020) conducted a study on credit scoring modeling with 

different feature selection and machine learning approaches. 

One of the main shortages of Neural Networks techniques in the credit scoring industry comes from their lack of 

explain ability and interpretability. Because most of such Machine learnings tools, are considered as “black 

boxes “in the sense that the corresponding scorecards and credit approval process cannot be easily explained to 

customers and regulators. (Dupont et al., 2020), this explains why the logistic regression remains the standard 

approach in credit industry, because of its simplicity and intrinsic interpretability (EBA, 2020; Bracke et al., 

2020). 

Criticisms of Artificial Neural Networks; There are many criticisms of artificial neural networks, which the 

researcher can summarize in the following points: 

a) The most common criticism of artificial neural networks is that they work like black boxes, they work in an 

unclear way, and they do the main calculations in the hidden layer, and there is no apparent way to process 

that information in the hidden layer, so the rules of operation of this network cannot be fully understood. 

b) The process of training an artificial neural network requires a lot of effort and time, compared to the results 

of an artificial neural network or the cost of preparing a knowledge base by experts, this is not the problem 

of the system, the more experiments, the greater the confidence in the results produced by the network We 

must point out that despite the limited training time required for artificial neural networks especially when 

using multiple layers, the speed involved in software development overcomes most of the shortcomings. 

c) There are no mathematical theories that can be applied to ensure the successful performance of an applied 

artificial neural network, and those theories are still under development or in the process of being created. 

d) Sometimes artificial neural networks are biased, even if there is no relationship between these data, it will 

try to fit the data curve and visualize the relationship between certain data, that is, exaggerating some data 

even in the absence of a relationship between these data, and this is called “Over Fitting”, This occurs when 

the network is overtrained, which results in poor network comprehensiveness. 

Despite the previous weaknesses, they do not reduce the success of artificial neural networks in any accounting 

and financial fields, as they have proven their effectiveness and efficiency in the work of estimation and 

forecasting. 

2.3 Big Data analytics and Credit Risk Scoring 

Data analytics defined as technologies and algorithms that facilitate the analysis of data; the big data technology 

has been successfully used in the Internet of Things, and the financial industry hopes to use such advanced 

technology to integrate and improve internal and external data related to credit risks (Chunhui et al., 2021). 

With shedding light on consumer lending process, financial institutions have begun using large-scale external 

data to evaluate the creditworthiness of potential borrowers. (Jiang et al., 2021). The big data credit score system 

has greater coverage and uses thousands of variables that cannot be easily manipulated by traditional rating 

techniques, which relies heavily on official credit records that are not available for most individuals (Jiang et al., 

2021). The big data credit score include an individual’s very frequent and realtime behavioral information, such 

as online cash loan applications, online shopping, and internet browsing, which could reflect an individual’s 

general profile accurately (Einav & Levin, 2014, Garmaise, 2015). 
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Traditional data analytic platforms are challenged by storage, management, and analysis challenges as the 

volume of data grows exponentially. Decentralized and distributed processing is provided by BDA; it call as 

emerging Big Data Analytics (Yıldırım et al., 2021). 

According to Gandomi and Haider (2015); Big data analytics consists of five sub-stages: “Acquisition and 

Recording”, “Extraction, Cleanup and Commentary”, “Integration, Clustering, Representation”, “Modeling and 

Analysis”, and “Electronic Interpretation”. By analyzing a huge amount of financial data, banks can obtain 

valuable information to determine their strategic plans such as risk control, crisis management or growth 

management (Yildirim et al., 2021). 

However, there are certain drawbacks to using big data in credit evaluation. The first difficulty is how to collect, 

store, and manage massive amounts of data in a cost-effective manner. Using typical econometric methods to 

calculate credit scores from large datasets might also be difficult. high-dimensional data analysis, which is 

computationally expensive and susceptible to overprocessing, is another challenge (Stanmirova et al., 2007; Yu 

et al., 2009). 

3. Examine and Results 

The study seeks to demonstrate the effectiveness of the integration between big data and artificial neural 

networks to support the decisions of banking units towards credit success in the Egyptian business environment, 

as it is one of the emerging markets, unlike the majority of previous studies that dealt with developed markets. 

3.1 Study Design 

Big data in credit evaluation usually refers to applying machine learning algorithms that have high predictive 

power. The study built a credit-scoring model based on integration between the FinTech field and the artificial 

intelligence field. Regarding FinTech, we have focused on big data analytics as a branch of FinTech activities 

due to its advantages that enable accessing diverse data, manipulating and transforming such data for rational 

decisions. Regarding AI techniques, we incorporated artificial neural networks (ANNs) rather than other AI 

techniques due to their ability to better classify and predict huge amounts of data, in addition to their ability to 

capture nonlinear relationships in incomplete, random, and hugely diverse data sets of loan candidates. Therefore, 

the study create an integrated system for loan approval in rational and secured practises for entities, which ends 

up mitigating default risks largely. 

This study investigates the improvements in credit risk scoring modeling accuracy by under Integration of Big 

Data and Artificial Neural Networks, with two real world data sets partitioned into training and independent test 

sets using panel data approach. The study proposes evaluation methods for credit risk scoring modeling based on 

cross-sectional simulation for borrowers through an investigation into the Egyptian banking industry by offering 

and examining a framework for the integration of big data and artificial neural networks based on systematic and 

unsystematic risk for both the macroeconomic environment and borrowers. 

The study used a training set establish the credit scoring model’s parameters, while the independent holdout 

sample is used to exam the generalisation capability of the model. The examination covers the database of the 

Egyptian Credit Bureau “I-Score” In addition to the advice data from the “Central Bank of Egypt” and “Central 

Agency for Public Mobilization and Statistics-Egypt” and “IHS market” for period from 2015 to 2019, excluding 

2020 and 2021 data to isolate the impact of COVID-19 on the results of the inferred statistics; Figure 1 illustrates 

proposes credit risk scoring modeling based on the integration of big data and artificial neural networks in the 

Egyptian business environment. 
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Figure 1. Proposes credit risk scoring modeling based on the Integration of Big Data and Artificial Neural 

Networks 

 

3.2 Study Variables 

The proposed model for credit evaluation includes two main groups of variables, including systematic and 

unsystematic risks; the first group includes economic variables and business cycle (Economic Growth Rate, 

Interest Rate, Exchange Rate, Inflation Rate, and Purchasing Managers’ Index). Second group includes two types 

of variables: financial indicators and control variables. The credit risk scoring modeling indicator system 

established of four sources of data, covering the status of credit. Table 1 illustrates study variables. 

 

Table 1. Study variables 

Sources Symbol indicator Variable 

Financial 

Reporting  

F1 Gross profit margin 

Independent 

F2 Operating profit margin 

F3 Accounts receivable turnover 

F4 Inventory turnover 

F5 Accounts payable turnover 

F6 Operating cash flow for fixed expenses 

F7 Operating cash flow for free cash flow  

F8 Debt to equity ratio 

F9 Financial leverage 

F10 Operating leverage 

F11 Current ratio 

F12 Quick ratio 

F13 Cash ratio 

F14 Revenue Growth Rate 

F15 Net profit growth rate 

I-Score ORR Obligor Risk Rating 

CBE, 

CAPMS & 

IHS market  

E1 Economic Growth Rate 

E2 Interest Rate 

E3 Exchange Rate 

E4 Inflation Rate 

E5 PMI, Purchasing Managers’ Index 
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Table 1. Study variables (continue) 

Sources Symbol indicator Variable 

Financial 

Reporting 

C1 logarithm of Sales  

Control  

C2 logarithm of total assets 

C3 Logarithm of total owner’s equity 

C4i Sector i  

C5 weight of owner’s equity for Institutional 

ANN CRS Credit Risk Scoring Dependent  

 

In addition to the previous variables, and some verification of the efficiency of the model, the firms were 

estimated according to some traditional models (Beaver, 1966; Edmister, 1972). 

3.3 Training Artificial Neural Networks  

Artificial Neural Network was training within 119 firms under NeuroXL program (see Figure 2). 

 
Figure 2. NeuroXL program version 

 

It is built by entering the data that makes up the artificial neural network; the parameters are shown Figure 3; But 

Figure 4 illustrates Artificial Neural Networks under training within 119 firms. 

 

Figure 3. The parameters of artificial neural network 

     

Figure 4. Artificial Neural Networks under training 
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3.4 Examining the Integration of Big Data and Artificial Neural Networks to Rank Credit Commitment of 

Borrowers 

This hypothesis examines the ability of artificial neural networks to rank credit commitment of borrowers in an 

Egyptian bank under big data about the firm and Egyptian economy. The study used a cross-sectional units test 

to examine this hypothesis based on fixed-effects. This  examines includes credit risk scoring –the rank 

commitment of borrowers based on artificial neural networks – as independent variable (Prediction value) 

against obligor credit – based on credit report from bank- as dependent variable (Actual value). 

 

Table 2. Credit risk scoring (Prediction value) against obligor credit (Actual value) 

Model 1: Fixed-effects, using 250 observations 

Included 50 cross-sectional units 

Time-series length = 5 

Dependent variable: OBLIGOR 

  Coefficient Std. Error t-ratio p-value  

Const. 66.7340 3.55130 18.79 <0.0001 *** 

CRS 29.5000 3.79298 7.778 <0.0001 *** 

Mean dependent var 94.22800 S.D. dependent var 19.17621 

Sum squared resid 5725.900 S.E. of regression 5.364081 

LSDV R-squared 0.937466 Within R-squared 0.233111 

LSDV F(50, 199) 59.66497 P-value(F) 8.25e-96 

Log-likelihood −746.1464 Akaike criterion 1594.293 

Schwarz criterion 1773.887 Hannan-Quinn 1666.574 

rho −0.042992 Durbin-Watson 1.478981 

Joint test on named regressors - 

Test statistic: F(1, 199) = 60.49 

with p-value = P(F(1, 199) > 60.49) = 3.91048e-013 

Test for differing group intercepts - 

Null hypothesis: The groups have a common intercept 

Test statistic: F(49, 199) = 6.03645 

with p-value = P(F(49, 199) > 6.03645) = 3.01116e-020. 

 

According to the statistical results from table 2, the study rejects the null hypothesis, as the study found the 

ability of artificial neural networks to rank the commitment of borrowers in an Egyptian bank under big data 

about the firm and Egyptian economy. This was not significant at the 0.01 level. According “within R-squared”; 

the credit risk scoring –the rank of the commitment of borrowers based on artificial neural networks – explain of 

23.31% of change in obligor credit of borrowers – based on credit report from bank-.     

3.5 Examining the Rank Credit Commitment of Borrowers Based on “Artificial Neural Networks And Big Data” 

Against Some Traditional Models 

This hypothesis compares the credit rating according to the proposed model based on integration of big data and 

artificial neural networks against some traditional models. The study used a Friedman Test for that within Beaver 

(1966) and Edmister (1972). 

 

Table 3. Credit risk scoring against Beaver and Edmister models 

Ranks 

Mean Rank 

BM 2.03 

EM 1.88 

CRS 2.10 

Test Statistics a 

N 250 

Chi-Square 45.489 

df 2 

Asymp. Sig. 0.00 

a. Friedman Test 
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According to the statistical results from table 3, the study rejects the null hypothesis, as the study found a 

discrepancy between the proposed model - based on integration of big data and artificial neural networks- 

against some traditional models for both Beaver (1966) and Edmister (1972). 

4. Conclusion and Recommendations 

4.1 Conclusion 

Machine learning and other expert systems in the banking industry are being used to speed up loan decisions 

while also controlling increasing risk. Lenders have relied on credit ratings for a long time to make loan choices 

for individuals as well as businesses. In essence, most credit rating systems are based on information provided by 

financial institutions, such as payment history and transaction data. Banking and other lenders are now relying 

on a variety of non-structured data, including text message and mobile phone use activity data as well as social 

media usage, to better assess for persons as retail clients. In order to improve credit risk scoring in emerging 

markets, the researchers advocated integrating big data and artificial neural networks for enhancing credit risk 

Scoring of companies as institution clients. These issues are intended for the current study. 

The study proposed a dynamic model for credit risk scoring in emerging markets; this model has Integration of 

Big Data and Artificial Neural Networks that includes the factors of credit risk based on financial, non-financial 

and economic variables. Our model can accommodate ever-changing uncertain financial, non-financial and 

economic factors. Big Data can help banks to bring out the value of data so better decisions can be taken related 

to credit. Through this approach, banks would have less credit risk when forecasting which borrowers will be 

successful in their payments.  

The data for the borrowers under examination covers the period from 2015 to 2019 for 75 firms, excluding 2020 

and 2021 data to isolate the impact of COVID-19 on the results of the inferred statistics. Artificial Neural 

Networks was training within 25 firms under NeuroXL program but examination for 50 firms. The study found 

the ability of artificial neural networks to rank the commitment of borrowers in Egyptian banks under big data 

about the firm and Egyptian economy. Additions to discrepancy between the proposed model against some 

traditional models – Beaver,1966 and Edmister, 1972-. So; The Integration of Big Data and ANN can help banks 

to bring out the value of data within create a level of financial stability for banks. Especially in emerging markets 

characterized by information inefficiency. 

4.2 Recommendations for Egyptian Banking Industry 

Emerging markets and Egypt too are highly ready to accept plans of domestic and multinational firms for more 

projects. so it is a positive factor to bank’s need for Enhancing Credit Risk Scoring models, Therefore, the study 

suggests the following recommendations: 

a. Egypt needs restructuring to information environment. The development of regulatory restrictions play a 

critical role to make the information more suitable for analysis, the study finds that this mission is assigned 

to the Central Bank of Egypt and the Financial Supervisory Authority. 

b. Banks have to close the gap between current technological infrastructures and the required technological 

credit risk scoring systems. This requires more investment in financial technology. 

c. In order to effectively integrate current cases and the needed abilities, banks must allocate money for 

seminars and session centres to train their staff on credit risk scoring systems. 

4.2 Recommendations for Future Research 

Researchers could pay attention to the Fintech category of Robo-advising, which includes systems that provide 

automated advice to many parties in the banking system and firms. Using technologies like artificial intelligence, 

big data, and machine learning all together for building data mining techniques advisor system. In addition, test 

fuzzy logic for credit scoring because it is accurate in uncertainty modeling with machine learning and big data 

analytics. Therefore, the study suggests the following recommendations as a title for future studies: 

a. Data Mining Techniques from Social Media and Credit Card Risk Scoring model. 

b. Effective Comparative Study of Credit Risk Scoring between international and Emerging Markets. 

c. Emerging market requirements for the application of machine learning systems in banks 
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