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Abstract 

This paper analyzes the features of the boards of large listed European banks and their degree of ―collective 

suitability‖ as formalized by the Capital Requirements Directives (CRD4) and evaluates whether closer 

proximity to the collective suitability regulatory paradigm affects banks’ performance, risk and risk-adjusted 

performance. We leverage Self-Organizing Maps (SOMs) to analyze board features and suitability (i.e. 

competence, diversity, independence and time commitment) jointly as a multifaceted, non-linear combination of 

all board variables, rather than evaluating the single variables individually as in the mainstream literature. Using 

a hand-collected dataset based on numerous features of boards of directors, we find that European banks’ boards 

can be classified in four different board archetypes characterized by different degrees of collective suitability. 

Our findings also suggest positive relationships between the degree of collective suitability and performance, 

risk-adjusted performance, and risk, confirming that the regulatory provisions on governance are going in the 

right direction, enhancing effective and prudent management. 

Keywords: banks, boards, corporate governance, regulation, Self-Organizing Map, suitability 

1. Introduction 

Over the last two decades, the characteristics of the board of directors of banks, their suitability and the 

relationship between board features and bank performance have attracted increasing attention from academics 

and regulators for the central role that boards have in bank management and supervision. Any flaws in its 

functioning may lead to excessive risk-taking and bank instability, as the global financial crisis highlighted 

(Kirkpatrick, 2009). Appropriate board characteristics are a critical precondition of (good) internal governance 

that is able to bring value to the bank in terms of not only shareholders’ profitability but also stakeholders’ 

interests and effective risk management. Appropriateness has to be considered at the individual level, 

considering each director’s characteristics in terms of reputation, competence, time commitment, etc., and the 

collective level, which concerns the overall suitability of the board to perform its management and supervisory 

functions. Although the suitability of each director is an important requirement, it is the collective and overall 

suitability of the board that is crucial in the decision-making process, as the responsibilities of the management 

body in its functions are collective. 

In line with this approach, the European banking regulatory authorities have gradually reinforced corporate 

governance rules for banks, specifically in terms of the structure and quality of the board of directors both at 

individual and ―collective‖ levels. This process led to the issuance of Directive 36/2013 (also known as CRD4), 

which, for the first time in the banking sector, specified the requirements that should be met by each director and 

by the board as a whole and formalized a new ―bank board paradigm‖. The expectation is that collective 

suitability and board diversity enhance the decision-making process and allow for proper and prudent 

management of the bank and effective risk-taking. 

Despite the relevance of the ―collective‖ approach, most studies of banks’ corporate governance have not yet 

addressed this topic exhaustively, and the empirical evidence concerning the relationship between the board’s 

overall characteristics and performance and/or risk is rather scant. This can be explained by several practical 
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hurdles, including the difficulties in identifying appropriate/meaningful proxies for characteristics such as skills, 

expertise, specific competencies in banking and finance (Blinco, Galbarz, Hohl, & Zamil, 2020); understanding 

how all the different qualities of the board combine together; and finding indicators that synthesize the overall 

features of the board. In fact, there are no a priori hypotheses about how the different features of the board 

combine with one another; in consequence, most studies focus on the effect of specific board features, which 

they analyze separately from the others, thus failing to gauge the potential interrelationships among the different 

characteristics of the board. This paper aims to fill these gaps by investigating the collective suitability and 

appropriateness of bank boards with reference to a sample of European banks. It provides two main novel 

contributions. First, it jointly analyzes how the different features of the board combine with one another and 

identifies a number of ―board archetypes‖ employing a suitable technique, i.e., Self-Organizing Maps (SOMs, a 

machine learning technique) able to explore a large number of board attributes jointly and to consider the board 

as a single entity, not merely the sum of its characteristics, thus providing a new perspective for analyzing the 

collective features of the board. Levering on a comprehensive hand-collected dataset covering over 700 directors 

of 40 listed European banks, the paper assesses whether the features of the different archetypes and their degree 

of collective suitability impact banks’ financial performance and risk control. Furthermore, we assess the 

relationship between governance and different measures of performance, risk and risk-adjusted performance 

measures. 

The remainder of the paper is structured as follows: the second section delves into the concept of collective 

suitability with specific reference to European banking regulations and prior research, and describes our aims; 

the third section explains the methodology and data used in the empirical analysis; the fourth section presents 

and discusses our results; and the last section concludes. 

2. Regulatory Context, Prior Research, and Aims of the Paper 

2.1 The Issue of Collective Suitability and European Banking Regulations 

Weak board governance has been blamed for having played a pivotal role in the development and outbreak of the 

international financial crisis: among other factors, the directors’ lack of financial experience and inability to 

understand the most complex aspects of bank management, as well as insufficient board diversity and limited 

ability to challenge senior managers’ decisions, led to ineffective bank management and fostered instability in 

the banking system (Financial Stability Board [FSB], 2013; Mehran, Morrison, & Shapiro, 2011). Consequently, 

in the aftermath of the crisis, regulators have focused increasingly on improving bank corporate governance 

regulation to facilitate the implementation of sound practices and ensure the effective and prudent management 

of institutions (Basel Committee on Banking Supervision [BCBS], 2015). 

In Europe, internal bank governance was covered by Article 22 of Directive 2006/48/EC, which required, in very 

general terms, that every credit institution have robust governance arrangements, and by the guidelines on 

internal governance issued in 2011 by the European Banking Authority (EBA), which defined a management 

body’s duties and responsibilities but did not explicitly consider the individual and collective requirements that a 

board should meet. However, regulation was not able to promote sound corporate governance practices for two 

reasons: i) the very general and often non-binding provisions on governance; and ii) the unclear role of the 

competent authorities in overseeing governance. The CRD4 introduces the new bank governance paradigm, that 

formalizes the concept of the suitability and appropriateness of the board and states the requirements the 

management body needs to meet to be judged suitable by European bank supervisors. The CRD4 clearly 

indicates the main principles and standards that shareholders should consider (and authorities should oversee) 

when appointing members of the management body and provides a double-track policy framework, i.e., each 

board member has to comply with the individual suitability requirements and, more importantly, the board as a 

whole has to comply with the collective suitability rules (Note 1). In detail, collective suitability attains to five 

different profiles: 

 Competence: overall knowledge, skills, and ability; professional experience; banking and finance 

competencies; etc.; 

 Diversity: in the demographic aspects of board members (age, gender, etc.), as well as their educational and 

professional backgrounds. It should prevent the phenomenon of groupthink and enhance the 

decision-making process; 

 Independence and balance of power: limits to the concentration of power within the board and presence of 

an appropriate number of independent and non-executive directors, to protect the interests of the different 

stakeholders; 
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 Time commitment: adequacy of the time spent by the board in performing its functions, which in turn is 

affected by the number of other mandates/offices held by each director; 

 Structure: the size of the board and its governance structure. Although regulators do not claim the 

superiority of a specific structure, according to the relevant literature, a very small board may not have 

adequate overall competence and diversity, whereas too large a board may be inefficient. 

Overall, collective board suitability requirements are based on the expectations that suitable and diversified 

boards are able to keep all risks under control, ensure the effective and prudent management of the bank, and 

allow for better performance at the same time. 

Also after the issuance of CRD4, supervisory interventions underlined the relevance of banks’ governance and 

risk management in the supervisory process (FSB, 2017; Blinco et al., 2020). These included ―Guidelines on the 

assessment of the suitability of members of the management body and key function holders‖ (European Banking 

Authority-European Securities and Markets Authority [EBA-ESMA], 2017; EBA-ESMA, 2021); the updated 

―Guide to fit and proper assessments‖ (European Central Bank [ECB], 2018; ECB, 2021).  

2.2 Prior Research and Aims of the Paper 

There is a wide and fast-growing literature examining the relationship between bank board characteristics and 

performance. Suitable and diversified boards allow banks to curb risk and achieve better performance according 

to the traditional theoretical literature (Hermalin & Wiesbach, 1991, 2003); however, the wide empirical 

literature provides mixed and contrasting results with respect to the contribution of board features to bank 

performance (for a review, see de Haan & Vlahu, 2016; Fernandes, Farinha, Martins, & Mateus, 2018; John, De 

Masi, & Paci, 2016). The latter is usually proxied by returns—and less often by risk measures and risk-adjusted 

performance (Aebi, Sabato, & Schmid, 2012; Ellul & Yerramilli, 2013; Harkin, Mare, & Crook, 2020; Srivastav 

& Hagendorff, 2016); governance is proxied by one or more characteristics of the management body such as size; 

the percentage of non-executive directors; the directors’ nationality, education, and financial expertise; and 

gender diversity (Resti, 2020). The latter is the most common diversity profiles investigated (e.g., Adams & 

Ferreira, 2009; Carter, Simkins, & Simpson, 2003; Farrell & Hersch, 2005; Nguyen, Hagendorff, & Eshraghi, 

2015) together with age diversity (e.g., Arnaboldi, Casu, Gallo, Kalotychou, & Sarkisyan, 2021; Bøhren & 

Staubo, 2016; Grove, Patelli, & Victoravich, 2011), and nationality of directors (e.g., Bennouri, Chtioui, Nagati, 

& Nekhili, 2018; García-Meca, García-Sànchez, & Martínez-Ferrero, 2015; Masulis, Wang, & Xie, 2012). In 

general, the evidence shows that greater diversity is associated with better performance and risk management, 

but results remain ambiguous (Adams & Ferreira, 2009; Cardillo, Onali, & Torluccio, 2020; Carter et al., 2003; 

Farrell & Hersch, 2005; Nguyen et al., 2015). 

The balance of power within the board has also received much attention in academic studies, especially in 

relation to the CEO/Chairman duality effects on risk and performance, providing contrasting evidence (e.g., 

Altunbaş et al., 2020; John et al., 2016; Schultz, Tan, & Walsh, 2010). Similarly, the empirical studies analyzing 

the effect of the presence of independent or non-executive directors on bank performance or risk management, 

provide inconclusive results (Altunbaş, Thornton, & Uymaz, 2020; De Andres & Vallelado, 2008; Pathan & Faff, 

2013). 

Finally, another strand of the literature focused on the level of competence and skills of the board, including 

information on the education and previous experience of directors (e.g., Hau & Thum, 2009; Locatelli, Schena, 

Tanda, & Uselli, 2018). Despite their relevance from a managerial and regulatory point of view, these aspects 

have so far received limited attention because of the absence of public data and/or standardized measures. 

Overall, results tend to confirm that the level of experience and education of the board promotes better 

performance and risk control. 

The lack of univocal empirical evidence on the nexus between bank performance and board governance may 

also be due to the vast majority of the empirical analyses considering each board characteristic independently of 

the others. In fact, they ignore the possible interdependencies among board features and offer a limited picture of 

overall board governance. Directors’ skills are interdependent (Adams, Akyol, & Verwijmeren, 2018) and 

collective suitability of the board is a complex concept that calls for a multidimensional analysis of the different 

board features and how they interrelate, without a priori hypotheses (Adams et al., 2018; Tarchouna, Jarraya, & 

Bouri, 2017).  

To delve into this issue, we exploit the definition of collective suitability given by the CRD4 together with a 

specific technique—SOM—to analyze the features of the boards of 40 European banks. This technique offers an 

alternative approach to data analysis, considering the bank situation as a multifaceted, non-linear combination of 
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all board variables and thus capturing all the possible interrelationships among the multiple characteristics of the 

board and identifying similarities between bank boards, without imposing rules on the way the board features 

aggregate. We can thus identify a number of groups of banks sharing similar board features and visualize the 

resulting patterns (Zou & Hastie, 2005). These groups represent how the different characteristics of the board 

combine together and can be viewed as archetypes in terms of board governance.  

Finally, after analyzing the extent to which each archetype is close to the collective suitability rules identified by 

the regulations, we assess whether the board archetype of each bank affects its performance and risk. 

3. Data and Empirical Design 

3.1 Data 

The empirical analysis is based on a sample of 40 listed banks from 11 Western European countries (see Table 1). 

For the selected countries, we considered all the domestic banks that were listed at 2014 year-end and for which 

detailed information on board governance and financial and economic data was available. 

 

Table 1. Sample composition 

Country  Number of banks Total assets per country (million euros) 

Austria 1 196 287 

Belgium 2 492 294 

France 3 4 974 940 

Germany 3 2 316 577 

Ireland 2 143 748 

Italy 10 2 168 747 

Netherlands 2 1 379 723 

Portugal 2 118 990 

Spain 6 2 618 997 

Sweden 4 1 476 242 

UK 5 6 961 593 

Total 40 22 848 138 

 

First, we apply SOMs to a dataset that includes 28 variables describing the five profiles of sample boards’ 

collective suitability, i.e., competencies, diversity, time commitment, independence and balance of powers, and 

the structure of the board, as of the end of 2014 (Table 2, column a). These 28 variables were created by 

aggregating hand-collected information on each of the 710 members of the boards (Note 2 and Note 3) (Table 2, 

column b). 

Information on the individual board members was retrieved from various sources (annual reports, governance 

reports, CVs available on the bank websites, and other public sources). We collected information on 

demographic traits (e.g., gender, age), functioning of the board (independent or executive directors, presence at 

meetings, number of other offices held), competencies (e.g., education), experience and skills, specific 

competence in Banking and Finance (Note 4) (Table 2).  

The SOM algorithm allows obtaining the board governance archetypes, i.e., different models in terms of board 

governance. We explore the overall characteristics of each board archetype and evaluate its proximity to the 

collective suitability regulatory paradigm. Afterwards, we evaluate the relationship between bank financial 

performance and board archetypes identified by SOMs through a panel regression, employing bank financial 

data obtained through Orbis Bankfocus and SNL Financial and macroeconomic data retrieved from the World 

Bank database. 

We detail the methodological steps in the following sections. 
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Table 2. List of variables for the analysis of board suitability 

N a) BOARD FEATURES  N b) DIRECTORS FEATURES 

 COMPETENCE 

 Education 

1 % DEGREE: Percentage of directors holding a 

bachelor’s degree  

1 DEGREE: dummy equal to one for the directors holding a bachelor’s 

degree and zero otherwise 

2 % POST DEGREE: Percentage of directors with a post 

graduate degree  

2 POST DEGREE: dummy equal to one for the directors holding a post 

degree diploma and zero otherwise 

3 % FOREIGN STUDIES: Percentage of directors that 

have studied abroad  

3 FOREIGN STUDIES: dummy equal to one for the directors that have 

studied abroad for their bachelor or post degree course and zero 

otherwise 

 Professional competences 

4 B&F SCORE: Banking & Finance Score at board level 

is obtained by averaging all the B&F Scores obtained 

for the single directors It is a proxy of the scope of the 

banking and finance professional competencies of the 

board 

4 B&F SCORE: Banking & Finance score expressing the number of 

different roles in which the director obtained knowledge on banking and 

financial issues We assign one point for each experience as either 

manager, director, consultant, professor/academic, in the same bank or in 

another bank (or financial institution) If the director has at least one 

experience in a given category, we assign 1 point If he/she has 

experiences in all the categories, the score is 5, the maximum achievable 

5 % BANK: Percentage of directors that have one or 

more professional experiences in any banking and 

finance It proxies the degree of banking and finance 

knowledge of the board  

5 BANK EXPERIENCE: dummy variable equal to one for directors with 

previous professional experience in banking and finance and zero 

otherwise 

6 % SAME: Percentage of directors that have one or 

more professional working experiences in the same 

bank in any role  

6 SAME BANK EXPERIENCE: dummy variable equal to one for 

directors with previous working experience in the same bank and zero 

otherwise 

7 % INTERNATIONAL EXPERIENCE: Percentage of 

directors with international experience  

7 INTERNATIONAL EXPERIENCE: dummy equal to one for the 

directors that have at least one professional experience obtained abroad 

and zero otherwise 

8 % BOARD: Percentage of directors that have one or 

more previous experiences as a board director  

8 BOARD EXPERIENCE: dummy variable equal to one for directors with 

previous board experience and zero otherwise 

 DIVERSITY 

 Demographic diversity 

9 % WOMEN: Percentage of women in the board  9 GENDER: dummy variable equal to one for women directors and zero 

otherwise 

10 % FOREIGN: Percentage of foreign directors  10 NATIONALITY: nationality of directors 

11 Average age: Average age of directors in the board  11 AGE of the director 

 Diversity in education 

12 % BUSINESS & ECO: Percentage of directors with a 

degree in Economics, Management, Business, 

Administration, and related courses  

12 DEGREE BUSINESS & ECONOMICS: dummy variable equal to one 

for directors with a degree in Business and Economics and zero 

otherwise 

13 % LAW: Percentage of directors with a degree in Law 

or Political science  

13 DEGREE LAW: dummy variable equal to one for directors with a 

degree in Law or Political Science and zero otherwise 

14 % STEM: Percentage of directors with a degree in 

quantitative disciplines (Mathematics, Engineering, 

Statistics, Physics) 

14 DEGREE ―STEM‖: dummy variable equal to one for directors with a 

degree in quantitative disciplines (Mathematics, Engineering, Statistics, 

Physics) and zero otherwise 

15 % OTHER DEGREE: Percentage of directors with a 

degree in other disciplines  

15 OTHER DEGREE: dummy variable equal to one for directors with a 

degree in other disciplines and zero otherwise 

 Diversity in professional experience 

16 % ACADEMICS: Percentage of directors with 

experience as a university professor/academic  

16 PROFESSIONAL EXPERIENCE ACADEMICS: dummy variable equal 

to one for directors with a previous professional experience as a 

university professor/academic and zero otherwise 

17 % CONSULT: Percentage of directors with experience 

as a legal/fiscal/strategic consultant  

17 PROFESSIONAL EXPERIENCE CONSULTANT: dummy variable 

equal to one for directors with a previous professional experience as a 

legal/fiscal/strategic consultant and zero otherwise 
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18 % MANAGER: Percentage of directors with 

experience as a manager, director, executive  

18 PROFESSIONAL EXPERIENCE MANAGER: dummy variable equal 

to one for directors with a previous professional experience as a 

manager, director, executive and zero otherwise 

19 % ENTREPR: Percentage of directors with experience 

as an entrepreneur  

19 PROFESSIONAL EXPERIENCE ENTREPRENEUR: dummy variable 

equal to one for directors with a previous professional experience as 

entrepreneur and zero otherwise 

20 % OTHER EXP: Percentage of directors with other 

work experience  

20 OTHER PROFESSIONAL EXPERIENCE: dummy variable equal to 

one for directors with other previous professional experience and zero 

otherwise 

 INDEPENDENCE & BALANCE OF POWERS 

21 % EXECUTIVES: Percentage of executive directors  21 EXECUTIVE: dummy variable equal to one if the director is an 

executive director and zero otherwise 

22 % INDEPENDENT: Percentage of independent 

directors 

 

22 INDEPENDENT: dummy variable equal to one if the director is an 

independent director and zero otherwise 

23 POWER CONCENTRATION: It is a measure of 

concentration of power in the board It is computed as 

=1- (number of directors in committees /number of 

directors in the board) 

23 COMMITTEES: dummy variable equal to one if the director seats in at 

least one committee and zero otherwise 

 TIME COMMITMENT 

24 PRESENCE: Average percentage of meetings attended 

by directors  

24 MEETINGS ATTENDED: percentage of meetings attended by the 

director 

25 OTHER OFFICES: Average number of other offices 

held by the directors in other boards or supervisory 

bodies  

25 OTHER OFFICES: number or other offices held 

 STRUCTURE 

26 CG MODEL: Corporate Governance model: One-tier, 

Two-tier, Other board governance model 

  

27 N DIRECTORS: Number of directors   

28 TURNOVER: Past turnover of members from 2010 to 

2014 

  

 

3.2 Self-Organizing Maps (SOMs) 

The Self-Organizing Map (SOM) (Kohonen, 1982, 1997) is a computational model extending the intuition of 

Willshaw and von der Malsburg (1976, 1979), who discovered that some areas of the brain develop specialized 

structures in different areas with high sensitivity for a specific input pattern. 

From a technical viewpoint, the SOM looks like a grid (rectangular or hexagonal), with each point representing a 

neuron. This plane, and the nodes in it, is driven through a learning procedure to mimic in a bi-dimensional 

space the organization of the n-dimensions input space (with n sensitively greater than 2). The underlying 

algorithm hence performs both classification and dimensionality reduction and has been used extensively in 

various Economics and Management fields of research, as testified by a huge literature corpus (Kolari & Sanz, 

2017; Mints, 2019; Dameri, Garelli, & Resta, 2020). However, so far, SOMs have rarely been applied in the 

corporate governance literature (Somers & Casal, 2017). 

Nevertheless, using SOMs could help to improve knowledge of the similarity among banks’ boards of directors, 

not only by grouping banks into clusters but also by going deep to the root of those groups’ configuration. 

Concerning our database, we first group banks according to specific criteria or dimensions relating to their 

management bodies. In this respect, the SOM can be thought of as a processing unit that acquires information 

from a multidimensional space and organizes it into a projection on a bi-dimensional plane. Moreover, the SOM 

conciliates and supersedes the known limitations of other dimension-reduction and clustering techniques such as 

Principal Component Analysis (PCA) (Pearson, 1901; Yeung & Ruzzo, 2001; Gorban, Kegl, Wunsch, & 

Zinovyev, 2007), and k-means clustering (k-means) (Hartigan & Wang, 1979; Ding & He, 2004; Lee & Megrey, 

2010; Toor & Singh, 2013).  

Perhaps the most notable features of SOMs can be summarized as two capabilities: (i) extracting the main 

features of the data without any explicit analytic formula to explain dependencies among the variables; (ii) 
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extensive visualization of the banks’ position on the plane. 

The first capability can be explained with an example focusing on the dimensions of our database, a set of 40 

banks characterized by 28 variables. Following a conventional econometric approach, the position of the banks 

depends on how all 28 variables interact through a (not known) non-linear function that must be estimated; in 

our approach, on the other hand, we do not care about this function because the final positioning of the bank is 

the result of how neurons organize themselves through the learning procedure (see Appendix A) based on a 

similarity function which, incidentally, is known and far easier to manage than a generic function in 28 variables. 

The second capability relies on the extensive visualization features of SOMs. SOMs can, in fact, be represented 

as a 2-D projection plane with units (the neurons) arranged in either a rectangular or hexagonal shape, as shown 

in Figure 1. 

 

Figure 1. A SOM with a rectangular shape 

Source: authors’ elaboration. 

  

Moreover, SOMs offer a platform for further visual investigation in three directions. First, the direct output of 

the SOM procedure is the so-called U-Matrix. In summary, the U-Matrix nodes (hexagons) are colored according 

to their distance from one another (see Figure 2). On the one hand, a dark coloring between the neurons also 

corresponds to a large distance between codebooks in the input space; on the other hand, a light coloring 

between the neurons means that the vectors are close to one another in the input space. Light-colored areas can 

be thought of as clusters and dark areas as cluster separators; however, this holds especially in the case of 

well-defined input features, as in the case of customer segmentation (Hanafizadeh & Mirzazadeh, 2011). 

Nevertheless, as in our case, the original situation may be more blurred, as our variables are picked from five 

profiles of collective suitability and are very pointed. The consequence is that the U-Matrix represents an 

intermediate step, and it is necessary to perform additional k-means analysis to identify unambiguous clusters.  

 

 

Figure 2. Examples of U-Matrix 

Source. authors’ elaboration. 

 

In this way, blurs can be replaced by distinct colors corresponding to separate archetypes whose features can 

then be investigated with the aid of more conventional statistical analytic tools. 
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Second, the contribution of each variable can be interpreted employing the Components Maps (CMs). CM can 

be thought of as a sliced version of the SOM, that allows to visualize the distribution of the input data in relation 

to the component under examination: in this case, we have, therefore, 28 CMs. The analysis of the CMs also 

provides hints on the correlation of a pair of components as a measure of the strength of their relation. CMs are 

generally reported represented in full colors, while the U-Matrix is in grayscale. CMs colors are read according 

to these rules: for input data, if nodes have the same or similar color, input vectors have similar behavior. 

Additionally, in the CMs, areas with similar colors in two maps suggest the existence of a positive correlation 

between variables; while when similar areas are associated with different colors, input variables are negatively 

correlated. 

The results of the CMs can be also appreciated by deriving a ―DNA matrix‖. The latter is a colored matrix whose 

rows (in our case, the banks) are colored according to the relevant color in the CMs (Note 5). The same color 

guidance described above applies. In this way, it is possible to obtain an overall representation of the ―DNA 

features‖ of each bank without giving up the simplicity of the 2-D visualization offered by the SOM (Resta, 

2022). 

3.3 Panel Regressions 

After grouping the banks within each archetype, we perform a panel analysis to test for the impact of the 

combination of the different features and the degree of collective suitability of each archetype on: i) financial and 

market performance; ii) banks’ riskiness; and iii) risk-adjusted performance (Table 3). To proxy financial and 

market performance, we use three different measures (return on average assets, ROA; return on average equity, 

ROE; and stock returns, r_i), following the traditional empirical approach in banking and governance studies 

(e.g., Arnaboldi et al., 2018; Bøhren & Strøm, 2010; Minton, Taillard, & Williamson, 2014). Then, we use three 

measures of risk: risk-weighted assets to total assets (RWA/TA) to measure the overall exposure to risks; 

non-performing loans to gross loans (NPL/GL) as a proxy of credit risk; and the standard deviation of stock 

returns (sd_i) to capture the market perception of a bank’s riskiness. Finally, we also use risk-adjusted 

performance measures to capture a bank’s ability to remunerate risks adequately. The first measure we use is the 

return on risk-weighted assets, computed as the ratio between net income and risk-weighted assets (RoRWA); 

second, we use the ratio between net income and total regulatory capital (RoTRC); finally, in a stock market 

perspective, we also use the annualized stock returns over the annualized standard deviation of returns (r_i/sd_i). 

We model performance, risk, and risk-adjusted performance as the outcome of the combination of board features 

(i.e., the board archetype within which each bank is grouped), which is our explanatory variable of interest, and a 

set of control variables, according to the following relation: 

𝑝𝑒𝑟𝑓𝑖,𝑡 = 𝑓(𝐴𝑟𝑐𝑖; 𝑋𝑖,𝑡; 𝑌𝑖,𝑡) = 𝛼 + 𝛽𝐴𝑟𝑐𝑖 + 𝛾′𝑋𝑖,𝑡 + 𝛿′𝑌𝑖,𝑡 + 𝜀𝑖,𝑡                 (1) 

where (Table 3): 

 Perfi,t is the dependent variable for bank i at time t; 

 Arci, is a categorical variable with n levels, each representing the n board governance archetypes obtained 

using the SOM operationalized on the features of boards in charge at the end of 2014. In the regression, this 

variable is transformed into n−1 dummy variables, each taking the value of 1 when a bank is part of the 

specific archetype and 0 otherwise. Board archetype dummies are used as synthetic indicators of the overall 

features of the bank’s board; 

 Xi,t is a set of firm characteristics at time t for bank i including: size, proxied by the natural logarithm of 

total assets and its squared value to catch any non-linearity in the relationship; and business model, proxied 

by the ratio of deposits to total assets (DEP/TA) and the weight of gross loans to total assets (GL/TA). 

When measuring performance with ROE, we also control for capitalization, measured by equity to total 

assets (E/TA); 

 Yi,t includes control variables describing the economic and market conditions of the country where the bank 

i is headquartered at time t, including GDP growth (GDP_g) and the interest rate level, proxied by the 

interest rate on long-term sovereign debt (y10bond). In a further specification of the model, we control for 

countries experiencing a severe banking crisis in the years following the start of the financial crisis (i.e., 

Italy, Spain, Portugal, and Ireland — ISPI). When the dependent variable is a stock market measure, we 

also control for domestic stock market returns (r_mkt); 

 α, β, γ, and δ are the coefficients; 

 ε is the robust error. 
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We run a panel regression with random effects and robust standard errors on our sample for the period 2014–

2016. The dummy Arc refers to 2014, and it is time-invariant (Note 6); all the other variables refer to the 

three-year period ending in 2016. More explicitly, we test the effect of board governance overall features as of 

the end of 2014—proxied by the bank’s board archetype—on performance over the same year and the following 

two years, following a well-established approach (Beltratti & Stulz, 2012; Grove et al., 2011; Sun & Cahan, 

2009) and allowing board decisions more time to produce their effects on performance. Moreover, introducing a 

time lag between the ―Arc‖ variables, on the one hand, and performance and control variables, on the other, is 

useful in addressing the possible endogeneity issues—and more precisely, reverse causality—that may arise 

when exploring the relationship between board structure and performance.  

Endogeneity often affects the governance–performance relationship: simultaneity or reverse causality 

(governance might be determined simultaneously with performance); unobserved heterogeneity (both 

governance and performance are driven by a third unobservable factor); and dynamic endogeneity (past 

performance shapes the current governance setting and also the current performance) (Hermalin & Weisbach, 

2003; Schultz et al., 2010). In line with previous studies (Arnaboldi et al., 2018; Sheikh, Shah, & Akbar, 2018), 

we include in the regressions bank-specific controls (e.g., size and business model proxies) and country features 

(i.e., macroeconomic and market conditions) to account for any unobserved firm- and country-specific 

characteristics that could influence the relationship between performance and governance (Note 7). 

 

Table 3. List of variables for the analysis of the performance-governance relationship 

Variable name  Variable definition 

DEPENDENT VARIABLES (Perf) 

Return 

ROA Return on average assets 

ROE Return on average equity 

r_i Annualized stock return of bank i 

Risk  

RWA/TA Risk weighted assets/total assets 

NPL/GL Non-performing loans/gross loans 

sd_i Annualized standard deviation of stock returns for bank i 

Risk-adjusted performance 

RoRWA Return on risk weighted assets (net income/RWAs) 

RoTRC Return on total regulatory capital (net income/TRC) 

r_i/sd_i Annualized returns over annualized standard deviation for bank i 

EXPLANATORY VARIABLES 

Arc1 A dummy variable equal to 1 if the bank pertains to Archetype 1 and 0 otherwise 

Arc 2 A dummy variable equal to 1 if the bank pertains to Archetype 2 and 0 otherwise 

Arc 3 A dummy variable equal to 1 if the bank pertains to Archetype 3 and 0 otherwise 

Arc 4 A dummy variable equal to 1 if the bank pertains to Archetype 4 and 0 otherwise  

CONTROL VARIABLES AND OTHER VARIABLES 

Size Natural log of total assets 

Size^2 (Natural log of total assets) squared 

GL/TA Gross Loans/total assets 

DEP/TA Deposits and short-term funding/total assets 

E/TA Equity/total assets 

GDP_g GDP growth rate 

y10bond Yield on 10-year maturity government bond 

r_mkt Annualized index returns of the domestic stock market of bank i 

ISPI Dummy for banks headquartered in Italy, Spain, Portugal, Ireland 

 

4. Results 

4.1 Board Archetypes and SOMs 

From an operative viewpoint, when running the SOM algorithm on our dataset, we examined various grid 

dimensions, choosing the best one with respect to the Quantization Error (QE) index values (Note 8). We 

therefore describe and discuss the results obtained by training a 4×5 map with a rectangular topology, reaching a 
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QE of 0.00316 (very close to zero). 

As already anticipated, to enhance the knowledge discovery process, the detection of clusters at the end of the 

learning procedure may require running an incremental k-means clustering procedure, stopping once the lowest 

average distance between clusters (less within-group distance between data points in the cluster) is reached. The 

ending point of the procedure is chosen according to the elbow point criterion, as shown in Figure 3: if one plots 

the percentage of variance explained by the clusters against the number of clusters, the first clusters will add 

considerable information (explain a lot of variance), but at some point, the marginal gain will drop, giving an 

angle to the graph. The number of clusters is chosen at this point, hence the ―elbow criterion.‖ 

 
Figure 3. Elbow criterion to define the number of clusters 

 

In Figure 3, the number of clusters is on the horizontal axis, and the value of the average distance within clusters 

is given on the vertical axis: the elbow point corresponds to an overall number of four clusters, and we divided 

the SOMs accordingly, as illustrated in Figure 4; hexagons represent the neurons, and the colors associated with 

the clusters represent the distances between neurons. The resulting matrix can be interpreted as a kind of 

U-Matrix adjusted with respect to intra/extra group measures. The colors subsequently aim to identify whether 

the nodes are similar to one another (and hence grouped together) or not (and hence put into different groups). 

 

 

Figure 4. Board archetypes in the SOM 

 

We explored the features of the board ―model‖ adopted by each cluster by using two types of analyses: a visual 

analysis based on the DNA matrix (see Figure 5) and a more traditional investigation based on the descriptive 

statistics of each cluster (i.e., archetype) (Table 4). These tools offer complementary information, working back 

and forth between input and neural space. The DNA matrix, on the one hand, works in the neural space and 

visualizes how close representative neurons (i.e., the neurons mapping banks) are to one another; this, in turn, 

may help in understanding the closeness of the banks mapped therein. The descriptive statistics, on the other 

hand, examine the concept of similarity in the input space: banks clusters obtained by running the SOMs are now 

explored to analyze how close the banks are one to another in the cluster from the statistical viewpoint. 

 

1 4 

3 
2 
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Table 4. Sample means for the full sample and the four Archetypes 

  Archetype  

 PROFILE 1 2 3 4 FULL SAMPLE 

  COMPETENCE  

1 % DEGREE 98.9 79.2 95.2 94.2 91.7 

2 % POST DEGREE 40.7 36.4 37.7 32.6 36.8 

3 % FOREIGN STUDIES 23.7 24.6 20.9 16.9 21.5 

4 B&F SCORE 1.992 2.137 1.486 1.698 1.798 

5 % BANK EXPERIENCE 94.4 99.5 87.8 92 93 

6 % SAME BANK EXPERIENCE 6.3 91.2 12.5 30.6 35 

7 % INTERNAT EXP 47.6 45.4 35.3 40.9 41.6 

8 % BOARD EXPERIENCE 95 93.1 93.3 94.5 93.8 

  DIVERSITY  

9 % WOMEN 25.9 24.2 20.2 20.3 22.4 

10 % FOREIGN 21.5 31.2 11.7 15.9 19.5 

 Average AGE 59.85 57.03 60.85 57.14 58.86 

11 CV Age 0.046 0.057 0.045 0.051 0.057 

 Education       

 % BUSINESS & ECO 43.9 53.6 52.9 55.5 51.9 

 % LAW 24.6 12.4 19.4 23.2 19.5 

 % STEM 16.5 8.7 15.9 7.1 12.3 

 % OTHER degree 13.9 4.5 7 8.3 8 

12 BLAU-education 0.70 0.69 0.65 0.63 0.67 

 Professional experience      

 % ACADEMICS 7.5 1.8 14.8 10.9 9.2 

 % CONSULT 25.2 7.7 23.3 22.4 19.6 

 % MANAGER 11.6 85.3 18.7 42.3 39.2 

 % ENTREPR 8 0 13 0.5 5.9 

 % OTHER experience 47 5.2 30.3 23.2 25.8 

13 BLAU-professional exp 0.69 0.26 0.78 0.71 0.73 

  INDEPENDENCE & BALANCE OF POWERS  

14 % EXECUTIVE 21.1 18.3 21.4 24.0 21.1 

15 % INDEPENDENT 61.6 44.8 47.6 47.3 49.8 

16 POWER CONCENTRATION 24.1 28.4 28.3 25.1 26.8 

  TIME COMMITMENT  

17 PRESENCE AT MEETING (%) 96.5 95.99 95.56 91.45 95.06 

18 OTHER OFFICES 2.88 3.88 4.6 1.92 3.47 

  STRUCTURE  

 CG MODEL prevailing One-tier One-tier One-tier or other Two-tier One-tier 

 Number of Directors 15 13 21.15 20.56 17.75 

 TURNOVER 44.1 53.4 53.6 56.7 52.4 

 Size (Total assets in th Euros) 8,348,486 2,978,956 6,546,855 4,973,841 22,848,138 

 N of banks 8 10 13 9 40 

Note. In this table we find a subset of the variables illustrated in Table 2 plus the following variables (in Italics): CV Age: the coefficient of 

variation of age (computed as the standard deviation of directors age of each board divided by the average age of the board); for the degree, 

BLAU-Degree: the Blau Index for the various categories of degree; BLAU-Professional Exp: the Blau Index for the different categories of 

professional background The Blau Index is computed as 𝑩 = 𝟏− ∑ 𝒑𝒊
𝟐𝒌

𝒊=𝟏 , where p is the percentage of directors in a given category, and k 

is the total number of categories It varies between zero and its maximum (k-1/k) In the case of educational diversity, the maximum value for 

the Blau is 0.75 (four categories) and in the case of professional background it is 0.8 (five categories). 
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Figure 5. ―DNA matrix‖ 

Note. In the figure, each row represents a bank and banks are grouped according to their Archetype. Each column represents one of the 28 

board governance features illustrated in Table 2, with the exception of 3a) that is the average age of directors, instead of the coefficient of 

variation of age. The cells are colored depending on the color associated with each variable in the component maps. Low values are in blue 

and green, higher values are colored in yellow tones. 

 

Multiple reading keys are suggested by the DNA matrix. A preliminary observation reveals that the banks have 

been ordered according to the archetype to which they belong, that is, rows 1–8 collect banks in the first 

archetype; rows 9–18 gather banks in the second archetype; and rows 19–31 and 32–40 group banks in the third 

and fourth archetypes, respectively. 
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By rows, we can search for banks sharing similar DNA, i.e., a similar sequence of colors, and hence similar 

patterns of behavior. Consider, for instance, banks in rows 1–8: looking at how colors alternate by row, we can 

conclude that the archetype groups very homogeneous banks under the profile of all the examined indicators 

except for the bank (the neuron) in row 8; the dissimilarity with respect to other banks in the given archetype 

determines the overall intra-group distance, which justifies the yellow coloring in Figure 5. 

The DNA matrix organization by columns also shows how banks are correlated to the examined variable. A 

homogeneous color by column means that neurons behave in the same way with respect to the examined variable, 

and hence that the mapped banks will move toward the same direction; on the contrary, different column colors 

are associated with non-homogeneous (i.e., not toward the same direction) behavior. 

4.2 Board Archetypes Features and Collective Suitability 

We now outline the features of the four board archetypes, highlighting their proximity to the definition of 

collective suitability provided by the regulation. 

Archetype#1 (Arc1): boards in this group have few directors, that have – on average – strong and diverse 

educational backgrounds (e.g., they have the highest percentage of members with a university degree and a 

post-degree diploma). They also have B&F score above sample average, and 94% of them have worked 

previously in a financial institution and have also frequently worked abroad. Boards show a high degree of 

diversity in terms of gender, age, professional expertise, and geographical provenance of the directors. The 

percentage of independent is high, and boards have the lowest concentration of power among directors. Finally, 

the time commitment of directors is the highest, which is consistent with these board members holding a low 

number of other directorships. 

Archetype#2 (Arc2): these boards have the lowest number of directors, competencies are quite high and pertain 

specifically to the banking and financial sector. Almost all board members have professional experience in a 

financial institution in addition to extensive skills (board members on average have the highest levels of B&F 

scores). Moreover, almost 90% of directors in this group have previously had a professional relationship with the 

same bank. The educational background is mainly in Economics, Management, and/or Accounting studies, 

though the percentage of directors with a university degree is the lowest among all the archetypes. On average, 

the board composition in this group is highly heterogeneous in terms of age, geographical provenance of 

directors, and gender, but less diverse in terms of previous professional experience due to the high percentage of 

bank managers. The percentage of executive directors is lowest in comparison to the other groups. Despite the 

higher number of other mandates/offices of directors, the time committed to the bank is slightly higher than the 

overall average. Power is more concentrated, probably since this Archetype shows the lowest percentage of 

independent directors, i.e., those who usually sit on board committees. 

Archetype#3 (Arc3): educational background shows higher scores than the sample and a good degree of 

diversification in the subjects of study. However, specific skills and competencies in banking and finance are 

rather low (i.e., the lowest B&F score and previous experience in banking and finance), despite board members 

having a diversified professional background. Besides, 30% of them are professional independent directors, also 

consistent with the high average number of other mandates. Gender and nationality diversity is definitely lower, 

powers tend to be concentrated, despite the percentage of independent directors being above the sample average. 

Finally, the average number of board members is the largest in our sample, and their age is the highest. 

Archetype#4 (Arc4): boards have a high number of directors (like Arc3) —probably due to the prevalence of a 

two-tier governance model—but scarcely diversified in terms of gender and nationality and with a higher 

percentage of executives and/or non-independent directors. The participation in board meetings is the lowest, 

despite directors holding fewer other offices. The educational background is concentrated in Economics and/or 

Management, though a significant proportion has a degree in Law, and only a very small proportion have 

postgraduate degrees or have studied abroad. The professional background varies, although most members are or 

have been a manager, board director, or consultant/advisor. Competence in banking and finance is slightly lower 

than average, but a third of board members have working experience in the same institution. 

We now rank the archetypes according to the following interpretation of the regulatory criteria (Figure 6).  

- Competence: the higher the percentage of directors holding a specific competency or skill (e.g., previous 

bank experience) or level of a feature (e.g., B&F score), the closer to the regulatory requirements. 

- Diversity: the higher the level of diversity, the higher the level of suitability. 

- Independence and balance of power: the lower the percentage of executives and the concentration of 

powers and the higher the presence of independent directors, the closer the board to the suitability rules. 
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- Time commitment: the higher the presence at meetings and the lower the number of other offices held by 

directors, the higher the level of suitability. 

We use the variables already used for the SOM (Table 4). However, to better proxy the degree of diversity within 

the board, instead of average age, we take the coefficient of variation of age (―CV Age‖). Similarly, we substitute 

the percentage of directors who graduated in the different areas of study and with different types of professional 

experience, with the respective Blau Index: ―Blau-education‖ and ―Blau-professional exp‖ (Note 9). 

Arc1 and Arc2 almost always appear in the top positions, showing higher compliance with the regulatory 

definition; hence, these can be assumed to be the closest to the collective suitability requirements. Arc3 and Arc4 

hold the last positions in most cases, showing lower levels of diversity and lower levels of competencies. These 

two clusters can, therefore, be considered to be farther away from the regulatory definition of collective 

suitability. The positioning is also confirmed by the median of the various values obtained by the groups. 

Archetype 1 (Arc1) has a median position of 1.5, Arc2 of 2, whereas Arc3 and Arc4 both score 3.0 as median 

position. 

 

Figure 6. Ranking of the four archetypes  

Note. The horizontal lines divide the features used to describe competence, diversity, independence and balance of power (indep & BP) and 

time commitment (time com); 1 indicates the best position in the ranking and 4 the lowest. 

 

4.3 Board Collective Suitability and Bank Performance 

At this stage, we run panel regressions to shed more light on the relationship between board archetypes and 

performance, risk, and risk-adjusted performance. Better governance (in accordance with the definition of the 

CRD4) should be able to control and monitor management, thus yielding better performance and risk 

management for the bank, or in general produce value creation. Below are summarized the results for our 

dependent variables. 

a. performance: results for ROA and ROE (Table 5-Panel A) show that board archetypes influence bank 

performance. Coefficients of the dummies Arc1 and Arc2, i.e., the groups of banks with boards closer to the 

collective suitability paradigm, have a positive sign and are statistically significant. This confirms that board 

quality and, more precisely, its degree of collective suitability have a positive influence on the management of 

the bank, ultimately resulting in better performance. To give a rough idea of the effect of good board governance, 

for banks in Arc1, i.e., the better-positioned cluster in the overall ranking, ROA and ROE are 0.7–0.8% and 8.6–

9.4% higher, respectively, than those of banks in Arc4, which is taken as the benchmark for the analyses. 

When controlling for bank-specific variables, we find a negative sign for GL/TA, suggesting that traditional 

credit intermediaries achieve poorer performance, in line with Bongini et al. (2019), Ayadi et al. (2020), Farnè 
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and Vouldis (2020). Among country-specific variables, we find a negative relationship between performance and 

sovereign interest rates (y10bond): higher spreads not only increase the cost of bank funding but also proxy for 

the country’s poor macroeconomic fundamentals, which also decreases bank profitability. Finally, banks located 

in countries experiencing severe banking crises (ISPI) achieve worse performances, thus confirming the 

systematic nature of the domestic banking sector (Fiordelisi & Marques-Ibanez, 2013). 

Market performance provides similar results for Arc1 thus hinting that shareholders’ prize the overall 

composition and competence of the board. Not surprisingly, bank stock returns are mainly influenced by market 

returns and are less affected by other bank-specific features (Note 10). 

The significance of the models appears quite high, with linear regressions explaining around 25–31% of the data. 

Additionally, the chi-squared statistics confirm the validity of the overall models. 

 

Table 5. Results of the panel regressions Sample period 2014-2016 

Panel A: Financial and market performance 

Variable ROA ROE r_i 

Arc1 0.744 *** 0.756 *** 8.626 * 9.436 * 29.765 * 34.670 * 

Arc2 0.658 *** 0.653 *** 13.672 *** 12.143 *** 27.834  23.128  

Arc3  0.204  0.217  5.764  7.437  20.516  25.866   

Size 3.798  3.742  36.037  26.294  55.122  34.012   

Size^2 -0.103 * -0.101  -0.950  -0.702  -1.420  -0.915   

GL/TA -0.020 ** -1.930 ** -0.301 * -0.149  -0.473  -0.072   

DEP/TA 0.005  0.489  -0.028  -0.023  0.157  0.225   

E/TA     2.553  3.244 *     

GDP_g -0.012  -0.012  -0.390 * -0.310  -4.143 ** -3.742 ** 

y10bond -0.157 ** -0.150 * -3.911 ** -2.391  3.106  7.963 * 

ISPI   -0.060    -10.397 ***   -27.788 * 

r_mkt         2.132 *** 2.070 *** 

Constant -33.829  -33.301  -334.698  -250.954  -544.373  -349.273   

Number of banks 40  40  40  40  40  40  

R2 overall 0.253  0.253  0.283  0.312  0.260   0.284  

Chi-2 31.764  31.804  22.598  26.817  35.019  39.058  

P-value 0.000  0.000  0.012  0.005  0.000  0.000  

 

Panel B: Risk 

Variable RWA/TA NPL/GL sd_i 

Arc1 7.575  4.781  -5.673 * -7.846 ** -10.409 * -10.280 * 

Arc2 -8.767 * -8.238 * -6.819 * -6.219 ** 4.421  1.985  

Arc3  2.961  0.337  1.474  -0.639  -6.995  -6.390  

Size -102.024 *** -98.352 ** -46.896 ** -44.082 *** 6.201  -1.111  

Size^2 2.511 ** 2.452 ** 1.215 ** 1.169 ***  -0.158  0.031  

GL/TA 0.343 ** 0.271  0.236 *** 0.202 ***  0.025  0.094  

DEP/TA -0.035  -0.036  -0.013  -0.032   0.001  -0.038  

GDP_g 0.069  0.045  -0.044  -0.056 ** 0.463  1.102 ** 

y10bond 1.602 *** 1.343 ** 0.926 *** 0.781 *** 5.337 ** 8.396 * 

sd_mkt         2.196 ** 2.617 *** 

ISPI   9.183 *   7.076 **   -7.589  

Constant 1050.082 *** 1002.700 *** 446.763 ** 410.340 **  -73.585  -15.926  

Number of banks 39  39  39  39  40  40  

R2 overall 0.506  0.580  0.540  0.610  0.356   0.381  

Chi-2 92.683  121.240  80.889  131.113  96.799  139.434  

P-value 0.000  0.000  0.000  0.000  0.000  0.000  
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Panel C: Risk-adjusted performance 

Variable RoRWA   RoTRC r_i/sd_i 

Arc1 1.678 *** 1.858 *** 12.444 *** 13.113 *** 0.549 * 0.573  

Arc2  2.094 ***  1.975 *** 13.040 *** 12.537 *** 0.313  0.308  

Arc3  0.545  0.715  5.030  5.673  0.525  0.536  

Size 10.285 * 9.564  45.937  42.981  0.669  0.665  

Size^2  -0.273 * -0.256 * -1.248  -1.178  -0.017  -0.017  

GL/TA -0.040 * -0.028  -0.332 * -0.286  0.011  0.012  

DEP/TA 0.001  0.003  0.058  0.067  -0.001  -0.000  

GDP_g  -0.052  -0.044  -0.259  -0.221  -0.095 *** -0.091 *** 

y10bond -0.529 ** -0.418 * -2.646 * -2.157  -0.157  -0.091  

ISPI   -0.850    -3.329    -0.195  

r_mkt         0.038 *** 0.039 *** 

sd_mkt         -0.055 ** -0.044  

Constant  -93.400  -86.530  -403.209  -357.227  -5.867  -6.232  

Number of banks 40  40  40  40  40  40  

R2 overall 0.317   0.333  0.255  0.261  0.255  0.253  

Chi-2 32.633  33.780  33.571  34.057  75.896  76.453  

P-value 0.000  0.000  0.000  0.000  0.000  0.000  

Note. *, **, *** indicate respectively 10, 5 and 1% significance levels. 

 

b. risk: results are less straightforward and vary depending on the proxy used (Table 5-Panel B). Arc1 and Arc2 

show a negative and significant effect on credit risk (NPL/GL) suggesting that boards closer to collective 

suitability can manage and control risk better. Results are however less clear-cut when we look at overall bank 

riskiness, i.e., risk-weighted assets to total assets (RWA/TA). The control variables show signs that are consistent 

with the expected relationships. ―Size‖ shows a negative sign, whereas ―size^2‖ shows a positive sign: larger 

banks can diversify risk but that the marginal beneficial effect of diversification decreases after a certain 

threshold. As expected, risk is positively affected by gross loans (GL/TA) and y10bond. Finally, banks located in 

ISPI countries present a greater degree of risk. With reference to market risk, results confirm the negative 

coefficient for Arc1, although, results appear to be driven mainly by macroeconomic variables (sd_mkt and 

y10bond). Overall, mixed findings on risk may be consistent with two different hypotheses. The first assumes 

that the deposit guarantee scheme represents an incentive for the board to take on more risk in the interests of 

shareholders (Beltratti & Stulz, 2012). The second assumes that poor-quality boards may not be able to control 

executives, who take fewer risks to protect their benefits.  

c. risk-adjusted performance: Arc1 and Arc2 still have a positive and significant sign bot for RoRWA and 

RoTRC, hence achieving better performance per unit of risk (Table 5-Panel C). The same holds for the adjusted 

market-return, but only for Arc1 (Note 11). Macroeconomic variables confirm their expected signs, in line with 

the results for performance. 

4.3.1 Alternative Specifications 

To tackle potential endogeneity concerns, we perform two additional empirical analyses (Note 12). First, to 

address potential reverse causality issues, we introduce a further time lag and restrict the period of the panel 

analysis to 2015–2016 and hold the archetype dummies fixed at 2014. The overall results confirm that banks 

whose management bodies are more in line with the regulatory paradigm, i.e., Archetypes #1 and #2, enjoy 

better performance in terms of operating performance, risk management, and risk-adjusted performance. 

Second, in line with Grove et al. (2011), we perform cross-sectional regressions using as a dependent variable 

the average performance for the years 2014–2016 or, alternatively, for the years 2015–2016, and independent 

and control variables constant as of the end of 2014. In this way, we reduce the time trend of the dependent 

variable, and we try to curb dynamic endogeneity (Beltratti & Stulz, 2012). The results confirm that in most of 

the specifications tested, proximity to the board suitability paradigm provides the expected results (i.e., Arc1 and 

Arc2 have higher performance, higher risk-adjusted performance, and lower risk). The control variables, 

however, show lower statistical significance than in the panel regression. 

5. Conclusions 

Our study investigates the board governance features of a sample of 40 European banks and contributes to the 

empirical literature on the relationship between board characteristics and performance. We focus on the concept 
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of collective suitability formalized by the CRD4, and, departing from previous contributions, we jointly analyze 

board features and how they combine with one another. For this purpose, we use SOMs, a machine learning 

methodology that is a relatively new approach in studies on governance and allows for a comprehensive and 

inductive analysis of board features. Additionally, we assess whether the proximity to the collective suitability 

regulatory paradigm affects bank performance, risk, and risk-adjusted performance measures.  

As a first contribution, our study identifies four board archetypes characterized by different degrees of collective 

suitability. Among them, two archetypes (Arc1 and Arc2) are shown to be better positioned in terms of the 

collective suitability of the board with respect to most of the governance features we investigate, whereas the 

other two (Arc3 and Arc4) show worse positioning in general both in terms of diversity and competence, 

showing high overall distance from the collective suitability regulatory paradigm. 

As a second contribution, we provide new evidence on the relationship between board archetypes and their 

degree of collective suitability and bank performance. Our results support the hypothesis that the degree of 

collective suitability of the board of directors positively affects bank economic and financial performance and 

risk-adjusted performance, and also, to a lesser extent, the ability to control risks. 

Overall, our results represent, on the one hand, an incentive for banks to further improve their board attributes. 

On the other hand, they confirm that, despite the need for further refinement and harmonization, bank 

governance regulation has been going in the right direction, thereby enhancing prudent and effective 

management. Further research can help in overcoming the possible limitations of our study. It would be 

important to understand how the suitability of the board of directors will evolve over time, employing suitable 

techniques to cope with the empirical challenges described in this paper, and understand also how smaller banks 

can comply with the regulatory requirements on corporate governance, especially in attracting diverse and 

skilled directors.   
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Notes  

Note 1. More specifically, Article 91. 

Note 2. For instance, to synthesize at the board level the attainment of a bachelor’s degree, we compute the 

incidence of graduated directors over the total number of directors. For independence and balance of power, and 

time commitment we compute respectively the percentage of independent directors, non-executive directors 

seated in the board and the average presence at boards’ meetings. For diversity, we compute the relative presence 

of a given feature in the board (e.g., women, foreign directors, percentage of directors with a degree in a specific 

area or specific expertise – such as economics, banking, law, etc.) (see Table 2).  

Note 3. Considering the different governance models included in the sample that rely on different types of 

management bodies, we considered all the directors sitting in any of the management bodies of the bank, e.g., 
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management and supervisory boards for two-tier model; board of directors for one-tier model; board of directors 

and board of auditors for the other models. 

Note 4. The B&F score ranges from 0 to 5. We assign one point for the professional experience made by the 

director in one of the following positions: manager or director of a financial institution, consultant, or 

professor/academic linked to financial systems. As an example, if the director has at least one experience in a 

given category (e.g., the director was manager of one or more banks), we assign 1 point. If the director has 

experience in all the categories, the score is 5 (maximum). The rationale of the score is that the higher the scope 

of the professional experience made by the director in the financial system, the wider and stronger his/her 

knowledge. By construction, this score does not take into account the length of each experience because this 

information is available only seldom. The B&F score of the board is the average of the board members B&F 

scores. 

Note 5. The DNA Matrix works in the neural space and visualizes how close representative neurons (i.e., the 

neurons mapping banks) are one to one another; this, in turn, may help in understanding the closeness of the 

banks therein mapped. 

Note 6. Board Archetypes are generated by SOMs based on governance characteristics as recorded at the end of 

2014. The SOM, in its standard configuration, is not suitable to track changes in governance features over time. 

We could, in fact, apply SOMs algorithm to data related to other years, but each application would generate new 

archetypes that are not comparable with those of previous/following years in terms of number and features. In a 

future perspective applying the T-SOM algorithm of Sarlin et al. (2012) might provide some insight for a 

dynamic understanding of the governance features. 

Note 7. In contrast to other empirical analyses (Anginer et al., 2018; Fan et al., 2019), we cannot address 

potential endogeneity using a panel regression with fixed effect, because the independent variables of interest – 

archetypes – are time-invariant dummies. This characteristic also prevents us from applying dynamic GMM, i.e., 

a methodology that is increasingly exploited in the governance empirical literature (Schultz et al., 2010; Sheikh 

et al., 2018; Wintoki et al., 2012). Both difference and system GMM, in fact, remove the fixed effects within a 

panel when the equations to be estimated are differenced. Another seldom-used approach in the 

governance-performance literature is IV-regression. However, similarly to other studies, we could not find one 

(or more) suitable instrumental variable(s), considering all the board features already included in our analysis 

(see discussion by Aebi et al., 2012) 

Note 8. See Appendix A. 

Note 9. The Blau Index (Blau, 1977) is computed as 𝐵 = 1 − ∑ 𝑝𝑖
2𝑘

𝑖=1 , where p is the percentage of directors in 

a given category, and k is the total number of categories and it varies between 0 (minimum diversity) and (k–1)/k 

(maximum diversity). 

Note 10. As noted by Hermalin and Weisbach (1991), differently from earning measures, stock returns are more 

influenced by investors’ expectations rather than by the actual/recent bank situation. This may explain why the 

stock-market performance is less influenced than ROA and ROE by the governance archetype. 

Note 11. In unreported regressions we employ alpha – computed as the intercept when regressing excess bank 

return on excess market return following the CAPM model – as a measure of market risk-adjusted return; 

however, results are inconclusive and statistically insignificant.  

Note 12. Results are omitted for the sake of synthesis and are available upon request. 

 

Appendix A 

The SOM algorithm 

The SOM algorithm is an ensemble of computational tasks aimed at mimicking the neurobiological process, 

which maps different sensory inputs onto corresponding areas of the cerebral cortex in an orderly fashion The 

key elements in the biological process are competitive learning and the ―winner takes all‖ principle: all the units 

are excited with the same signal, but only one will produce the highest response thus automatically becoming a 

candidate to the receptive basin for that specific pattern The Self-Organizing algorithm goes one-step further, 

generalizing the ―winner takes all‖ idea into that of the winner taking the most According to this principle, when 

a pattern is presented to the SOM, the related information is retrieved not only by the best neuron, but also by its 

closest neighbors, according to a proper (mathematical) similarity criterion In this way, neurons in the map 

organize themselves, and connectivity structures are formed, which are topology-preserving with respect to input 
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data, that is: similar input items are located close to each other in the 2-D projection plane 

The SOM training can be summarized in the following steps performed in a sequential way Let us denote by x 

an input pattern, then: 

1) Evaluate the distance between x and each neuron of the SOM; 

2) Select the neuron (node) with the smallest distance from x This is the winner neuron or Best Matching Unit 

(BMU); 

3) Correct the position of each node according to the results of Step 2, in order to preserve the network 

topology 

Steps 1–3 can be repeated either once or more than once for each input pattern: a good stopping criterion 

generally consists in taking a view to the Quantization Error (QE), i.e., a weighted average over the Euclidean 

norms of the difference between the input vector and the corresponding BMU When QE goes below a proper 

threshold level, say for instance 10
−2

 or lower, it might be suitable to stop the procedure In this way, once the 

learning procedure is concluded, the organization of the SOM is the projection of the input space into a lower 

dimensional space with closer nodes representing neighbor input patterns.  
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