What Do Interindustry Wage Premiums Represent?

Paulo RA Loureiro¹, Jorge Arbache¹, Antônio Nascimento Júnior², Roberto Ellery Júnior¹ & Jos éC. C. O. Neto²

¹ Department of Economics-University of Bras Iia, Distrito Federal, Brazil

² Department of Business Administration-University of Bras Iia, Distrito Federal, Brasil

Correspondence: Paulo RA Loureiro, Department of Economics, University of Bras Iia, Distrito Federal, Campus Darcy Ribeiro - Asa Norte CEP: 70910-900 – Bras Iia. Tel: 55-61-3107-0744. E-mail: pauloloureiro@unb.br

Received: April 8, 2021	Accepted: June 28, 2021	Online Published: June 30, 2021
doi:10.5539/ijef.v13n7p105	URL: https://doi.org/10.5539/ijef.v13n	7p105

Abstract

The aim of this paper is to investigate wage structure in Brazil between 2002 and 2015 based on National Household Surveys (PNADs). Given the nature and simultaneity of economic changes in the assessed period, as well as their potential impacts on the labor market, it is reasonable to assume that, despite the stylized fact that wage structure is quite stable, there have been non-negligible changes in the structure of relative wages. First, the labor market has become highly segmented and complex. Second, changes in wage structure have been observed. Relative wages in some sectors have increased, whereas relative wages in other sectors have decreased, suggesting a tendency towards resource allocation to sectors. There are remarkable potential impacts on income and on labor. Sectors that stand out include petroleum and alcohol, mineral extraction, and civil construction. However, if indirect effects are taken into account, via value chains, the petroleum and civil construction sectors have a major contribution. Fund transfers to these sectors would increase good-quality jobs, productivity, and economic value added. Aside from these changes, the international economy has been put through profound transformation (e.g., financial crisis, changes in relative prices), which has affected the sectors unevenly.

Keywords: wage determination, interindustry wage differential, segmentation, competitiveness, Brazil

JEL Classification: JEL codes: J31.

1. Introduction

Years 2002 to 2015 were important for the Brazilian labor market. The average effective real earnings of people in formal work increased by 189.7% between 2002 (R639.3) and 2015(R 1,852.2) according to the National Household Survey (PNAD), which was way above the real GDP per capita growth (34%), and labor productivity, which practically remained unchanged. Open unemployment went from 9.2% in 2002 to 8.5% or 9.7% in 2015. The informal sector shrank, and was, for the first time, smaller than the formal sector. Labor force participation rate broke some records, discrimination decreased, and participation of women, young individuals, and other minority groups increased in the labor market. At least three factors may be implicated in this movement (Arbache, 2012a). First, the quick demographic transformation Brazil has gone through, which has slowed down the growth rate of the economically active population. Second, the high growth of the service sector which, in general, is highly intensive in terms of unskilled workforce. Third, Brazilian labor laws, which straitjacket the labor market, chiefly in an environment with a lack of skilled labor, as was the case of Brazil in the period. Labor market changes were not homogeneous across sectors. Driven by the increase in family income, regional development, and natural protection barriers, the service sector increased its labor force participation - in 2015, the sector accounted for more than 50% of new formal work opportunities in the private sector, twice as high as the new job openings in 2002. The service and trade sectors together accounted for over 74% of new job openings at the end of the decade. Industry and agriculture had a poor labor force participation. Extractive industries increased their participation, but hiring was down in absolute terms.

The economy has been put through profound transformation. The exchange rate had strong appreciation after 2006 and import penetration increased, followed by stagnation or drop in the export rates of several industrial sectors. At the beginning of the decade, industrial products accounted for most of the exports, but in 2011, their share decreased to slightly over one-third, and commodities, on the other hand, was the dominant sector regarding Brazil's participation in the international trade. The share of the industrial sector in value added

declined, whereas the service and commodities sectors gained momentum in the economy.

In the international scenario, the decade was characterized by strong increases in commodity prices, the outbreak of the international financial crisis in 2008/2010 and its massive deleterious impacts on investments, capital flow, trade, and production. In addition, there were price and market volatilities and, as a response to the crisis, generalized intervention of countries in the economy and the adoption of highly unorthodox fiscal and monetary policies.

Countercyclical policies introduced in Brazil in response to the crisis affected the sectors of activity in different ways. The upswing in civil construction is the most emblematic example.

Given the nature and simultaneity of economic changes in the past decade and their potential impacts on the labor market, it seems reasonable to assume that, despite the stylized fact that wage structure is quite stable (Krueger & Summers, 1987, 1988; Allen, 1995; Arbache, Dickerson, & Green, 2004a), there have been non-negligible changes in relative wages.

This analysis is important because it contributes, on the one hand, to the understanding of labor market dynamics and segmentation, wage inequality, and price setting. On the other hand, by identifying the sectors on the winning and losing ends based on the wage premium index, this analysis sheds further light on perspectives of competition at the sectoral level and it is useful for the formulation of industrial, technological, human capital, investment, and foreign trade policies. This paper is structured as follows. Section 2 looks at interindustry wage premiums. Section 3 describes the method, data, and descriptive statistics. Section 4 presents and assesses interindustry wage premiums at the one-digit and two-digit levels. Section 5 investigates whether the labor market would have been more or less segmented. Section 6 explores the behavior and characteristics of the wage structure. Section 7 looks at the relationship between wage premium and competition. Section 8 concludes.

2. Literature Review

Research into interindustry wage differentials has focused on attempts to contrast competition theories with efficiency wage theories (Krueger & Summers, 1988; Katz & Summers, 1989; Murphy & Topel, 1990; Arbache, 2001). The most common empirical results are: (i) the individual's and firm's control variables are not enough to explain the wage differential; (ii) interindustry wage differentials are persistent over time; (iii) there is strong correlation between wage premium per occupation and firm size and characteristics in the same industry; (iv) efficiency wage models explain, at least in part, the wage differential; (v) certain industries pay all workers high wages, whereas other industries pay all workers (from CEOs to unskilled workers) low wages. The basic conclusion of the literature is that industrial affiliation is the main source of wage dispersion.

Recently, Jayanthakumaran, Sangkaew and O'Brien (2013) investigate trade-related industrial wage premiums from Thailand. They used the methodology of Krueger and Summers (1988), a two-stage estimation procedure to estimate industry wage premiums after controlling for workers' characteristics and linking wage premiums with explanatory variables that reflect the labor market and trade liberalization. After controlling for observable worker characteristics, wage premiums were found to be high in industries identified as capital and technology intensive such as petroleum and chemical products, presumably requiring more skilled workers. The presence of a positive effect of firm size on workers' wages is well documented in the economic literature (Oi & Idson, 1999a). Edin and Zetterberg (1992) and Arai (1994) find considerable differences in wage levels between industries when controlling for the characteristics of individuals and firms. According to Idson and Oi (1992) the theory and evidence is persuasive and supports the conclusion that companies that reach large sizes create jobs (technologies, equipment and work organizations) that must be matched with more productive individuals.

For Brazil, the literature has also described great impact of industrial affiliation on wage differential (Arbache, 2001; Arbache, Dickerson, & Green 2004b, 2001; Arbache & De Negri, 2004; Arbache & Corseuil, 2004; inter alia).

Increasing returns to scale, innovation intensity, technology absorption, changes in market competition structure (e.g., competition with China), and government incentives are among the possible causes for the changes in the structure of interindustry wage premiums in open economies, such as Brazil. Whichever the cause, ceteris paribus, the change in relative wages will lead to reallocation of resources at the sectoral level.

If interindustry wage premiums result from factors such as technology, capital stock per worker, increasing returns, and profitability, they can be viewed as indicators of competitive potential. Accordingly, theories such as the strategic trade policy (Eaton & Grossman, 1986; Brander, 1995; Spencer & Brander, 2008) provide justification for public interventions that promote the development of industries with competitive potential in oligopolies.

More recently, partly as a response to the financial crisis and to China's state capitalism policies, justifications have been provided for vertical public interventions combined with horizontal interventions in favor of growth-enhancing sectors. This category includes sectors with high potential for increased productivity, competition, exports, technological innovation, and welfare (e.g., Nunn & Trefler, 2010; Aghion et al., 2011). If wage premiums capture, at least in part, this potential, then policies should benefit sectors that demonstrate potential increase in wage premium and job creation.

The most usual objective of the wage differential literature is to test the hypothesis of the law of one price and its effect on wage determination. In a competitive labor market, workers with identical characteristics should be paid the same wages and industrial affiliation should not affect wages. In this case, interindustry wage dispersion should be very small or close to zero, since, in principle, one should not expect an employer to pay workers with similar production more than the market wage. Occasional wage differences would be related to differences in workers' production characteristics, working conditions, occupation, etc., but not to industrial affiliation.

Alternative wage determination theories abound, seeking to explain the persistent wage differential.

A good wage determination theory, however, should be able to explain why an employer pays a certain employee more, as this employee could be replaced with another one with a lower wage. The answer to this question is one of the major goals of efficiency wage models. The rationale is that not only do the characteristics of workers, as proposed by the competitive labor market model, but also labor demand affect wage determination. Moreover, institutional issues, such as trade union action, may have decisive effects on the wage determination process.

It is not possible to classify wage differential theories by order of importance, as one theory could be more appropriate than another one to explain specific labor market phenomena. Furthermore, since labor market phenomena are prone to changes, given that social and economic organization changes over time and is influenced by ever-changing institutions and culture – a theory could be relevant to explain a phenomenon in a given period but irrelevant to explain it in another period and/or context.

In recent decades, the theory of labor market segmentation has been extensively investigated, as an attempt to explain problems such as wage dispersion and structure. Numerous factors have been indicated as sources of segmentation, such as geographic regions, workers' demographic characteristics like sex and skin color, unions, labor market regulation, among others. Nevertheless, even before the boom of market segmentation literature in the 1970s, industrial affiliation had been shown to play a crucial role in wage dispersion.

As a matter of fact, a vast number of studies conducted for countries in different stages of development and types of institutions governing the labor market have pointed out industrial affiliation as the source of wage dispersion (e.g. Dickens & Katz, 1987; Krueger & Summers, 1987). This literature underscores that industrial characteristics such as market concentration, capital-labor ratio, profitability, and trade union density have a strong impact on wage determination, changing the perspective of analysis from the supply side to the demand side. The more concentrated the industry, or the more market power held by firms in this industry, the higher the average wages. The most common explanation to the relationship between market concentration, profits, and wage differentials lies in the cost of strikes and other types of protests that affect the normal pace of production operations of firms in concentrated markets, which are usually highly profitable due to monopoly rents. Workers affiliated with industries that adopt expensive technologies and complex production processes are presumably paid higher wages. The rationale behind it is that there is a high degree of complementarity between capital and labor in these sectors and that employee turnover is costly and affects the speed of production.

The rate of union workers in an industry would also affect wage determination. There would be a positive relationship between trade union density and union power to negotiate wages.

Doeringer and Piore (1971) argued that a firm's technology is associated with the domestic labor market. Technologically advanced firms require training that is specific to their needs, which, to a certain extent, are acquired after some time working at the firm. Wages are used to retain workers and to reduce turnover, thus leading to wage differentials. With the advent of efficiency wage models in the 1980s, new emphasis was placed on industrial affiliation as source of wage differential. These models propose an interplay between characteristics of the firm and industry and wage determination, incorporating several aspects of the afore-mentioned theories. The models show that wage differential may stem from an optimal equilibrium.

3. Method, Data, and Descriptive Statistics

3.1 Method

To assess the behavior of interindustry wage premiums and wage structure, wage determination models based on the Mincerian approach were estimated. The model proposed by Haisken-DeNew and Schmidt (1997) was used.

This model corrects and improves the method originally developed and popularized by Krueger and Summers (1988). As approached in Haisken-DeNew and Schmidt (1997), this improved procedure provides more meaningful economic interpretation of coefficients that measures the deviation from an overall average rather than from a base category. Following the Haisken-DeNew and Schmidt (1997) procedure, we employ the exact formula to compute both adjusted and weighted standard deviations of transformed inter-industry wage premiums and a summary measure of the overall variability of industry wage

$$ln\omega_{ij} = \alpha + \beta X_i + \varphi Z_j + \varepsilon_{it} \tag{1}$$

where $\ln w_{ij}$ is the natural logarithm of the real hourly wage paid to worker *i* at industry *j*; X_i is the vector of individual, geographic, and corporate characteristics; Z_i is the vector of dummies for the industry, including all industries; α is the intercept; ε_{if} is the stochastic term for unobservable characteristics inherent to wage statistics; β and φ are the parameter values. As all industry dummies are included in the model, a linear restriction *j* is imposed as follows:

$$\sum_{j} \omega_{j} \eta_{j} \tag{2}$$

where η_j stands for workers' participation at industry j. The estimated coefficients indicate the proportional wage difference for a worker at industry j and for the average worker representative of the whole set of industries analyzed. The coefficients are directly interpretable and have accurate standard errors.

The standard deviation of the wage differential is calculated as follows:

$$SD(\varphi) = \sqrt{\eta' \left(\overline{H}(\varphi_j)\right)} \varphi - \eta' \overline{D} \left(V(\varphi_j)\right)$$
(3)

where σ_j^2 is the variance of the estimator, φ . *SD* provides the adjusted and weighted standard deviation of the coefficients of industries, *H*(.) transforms the column vector into a diagonal matrix, whose diagonal is given by the column vector; *D* denotes the column vector formed by the diagonal matrix elements; and *V* is the variance-covariance matrix.

This technique allows checking whether industrial affiliation is relevant in explaining wages beyond individual, geographic, and corporate characteristics. In other words, it allows identifying a "premium" for being associated with a sector. This premium may be positive or negative, and variables such as technology, market structure, value added, productivity associated with skills that were not measured or captured by conventional statistics, but perceived by firms during recruitment and/or retention of human resources, would be the sources of these premiums.

3.1 Data

National Household Survey (PNAD) data from 2002 to 2015 were used. To minimize measurement bias and sampling errors associated with unobserved variables, the data were filtered as follows: men, aged 18 to 65 years, in the formal sector, with wage from the major job (full-time). The wages were deflated by the National Consumer Price Index (INPC). The variables are described in Table A1 in the Appendix. The sample comprised 689,206 individuals and the average sample per year included 52,860 workers. Industrial affiliation disaggregated data at the one-digit and two-digit levels were used. The paper focuses on two-digit data.

3.2 Descriptive Statistics

Table 1 shows the descriptive statistics for the main variables. Table 2 shows the variables included in the article and their identifications.

Vari áveis	M édia	DP	Vari áveis	M édia	DP
Sal ário	1116,46	1388,79	Norte	0,09	0,29
Grau1	0,3	0,46	Nordeste	0,21	0,41
Grau2	0,5	0,5	Sudeste	0,38	0,48
Grau3	0,14	0,35	Sul	0,21	0,41
Posgrad	0,01	0,08	Coeste	0,11	0,31
Exper	18,44	12,01	Tenuy	4,21	5,76
Exper2	484,24	563,61	Metrop	0,49	0,50
Sind	0,24	0,43	Urban	0,96	0,19
Branca	0,51	0,5			

Table 1. Estat sticas descritivas

Table 2. Variables included in the article

gricultural	AGR	Extraction of non-metallic minerals	ENM
ood-Drinks	FDK	Electricity, gas and hot water	EGW
moke	SMK	Collection, treatment and distribution. Water	CTDW
extiles	TXT	Construction	COM
lothing	CLT	Vehicle trade and repair	VTR
eathers	LEA	Trade intermediaries	TIN
/ood	WOO	Accommodation and food	ACF
ellulose-Paper	CEP	Transport, Warehousing and Communication	TWC
dition-Print	EDP	Water transportation	WTR
il-Alcohol	OAL	Air Transport	ATR
hemicals	CHE	Activ. aux. of transp. ag. on a trip	ATT
ubber-Plastic	RPL	Post and telecommunications	PCM
on-Metallic Minerals	NMM	Education	EDU
asic Metallurgy	BME	Health and social services	HSS
1etal Products	MPR	Urban cleaning and sewage;	UCS
1achines-Equipment	MEQ	Associative activities	AAC
quip. IT	EIT	Recreational, cultural activities	RCA
1achines, Apar. Electrical	MAE	Personal services	PSE
par.Equip. Communications	AEC	Interm. Financ.seg. and previd. Priv.	IFP
quip. from instrum.hospitalares	EIH	Insurance and private pension	IPF
uto-vehicles	AVE	Aux. Activities interm. financial	AIF
quip. Transport	ETR	Real estate activities	RME
1iscellaneous Furniture and Industries	MFI	Car rental, machine. and equip.	CME
ecycling	REC	Computer activities	CAC
xtraction of mineral coal	EMC	Research and Development	RDE
il extraction	OEX	Services provided to companies	SPC

Source: PNAD/IBGE.

Table 3. Participation in employment (%) - 1 digit

Sectors	2002	2003	2004	2005	2006	2007	2008	2009	2011	2012	2013	2014	2015
Agriculture	1,7	1,8	1,9	1,8	1,7	1,6	1,7	1,5	2,4	2,2	2	2	1,9
Extractive industry	0,6	0,7	0,8	0,7	0,8	0,7	0,7	0,8	0,3	0,3	0,3	0,3	0,3
Transfor.n industry	15,9	15,7	16,4	15,8	15,5	15,7	15,3	14,3	15,9	16,1	15,9	15,7	15,4
Construction	6,3	5,4	5,7	5,7	6	6,2	7,4	7,4	5,8	5,9	6,2	6,2	6
Business	19,2	20	18,9	19,9	20	20,3	19,4	20,2	15	14,8	14,7	15	14,9
Accommod. and food	3,4	3,4	3,4	3,4	3,5	3,7	3,4	3,6	4,9	4,7	4,6	4,7	4,9
Tranp, store. Communic	12,9	12,6	12,7	12,1	12,2	12,1	12,4	12,2	14,6	15	16	15,9	16,5
Education and health	5,4	5,6	5,4	5,4	5,4	5,2	5,4	5,5	6,6	6,6	6,6	6,5	6,5
Financial intermed.	29,1	29,1	29	29,7	29,4	28,9	28,7	29,5	27,7	27,8	27,1	27,4	27,3
Subtotal	94,5	94,3	94,2	94,5	94,5	94,4	94,4	95	93,2	93,4	93,4	93,7	93,7
Industries not includ.	5,5	5,7	5,8	5,5	5,5	5,6	5,6	5	6,8	6,6	6,6	6,3	6,3

Source: PNAD/IBGE.

Tables 3 and 4 show the labor structure at the one-digit and two-digit levels, respectively. In general, the labor force participation of sectors remained relatively stable, but important changes occurred. The participation of the industrial and agricultural sectors waned, whereas that of the mineral extraction, civil construction, and service sectors increased. Table 5 and 6 show the behavior of real wages at the two-digit and one-digit levels. It is clear that real wages also rose substantially at this level, but wage dispersion decreased. In fact, the coefficient of variation dropped from 1.28 in 2002 to 1.10 in 2015, suggesting a tendency towards lower wage dispersion over time. Figure 1 shows the average productivity of Brazilian workers during the study period. Labor productivity also varied considerably across sectors. Productivity in the processing industry grew on average 0.9% per year between 2002 and 2015. Productivity rose 0.5% per year in the service sector; 1.8% in the extractive sector; and 4.3% in the agricultural sector (Ipea, 2012). The Brazilian economic period was characterized in the 2000s by significant structural changes in relation to previous decades, many of which were driven by the foreign market, the labor market and, mainly, the economic stabilization policy.

Figure 1. Worker productivity index in industry Brazil: 2002-2015

Source: IBGE

Table 4. Employment participation (%) - 2 digits

Industrial	2002	2003	2004	2005	2006	2007	2008	2009	2011	2012	2013	2014	2015
Agricultural	8,84	9,24	9,47	9,39	8,77	8,23	8,5	7,86	8,74	8,07	8,05	8,08	7,54
Food-Drinks	4,29	4,05	4,14	4,11	4,44	4,34	4,35	4,27	1,32	1,42	1,4	1,3	1,28
Smoke	0,06	0,07	0,07	0,04	0,03	0,05	0,05	0,04	0,02	0,02	0,02	0,02	0,01
Textiles	1,37	0,98	1,05	1,06	0,99	0,94	0,98	0,92	0,45	0,49	0,51	0,52	0,46
Clothing	0,59	0,7	0,72	0,78	0,70	0,78	0,69	0,70	1,15	1,36	1,25	1,15	1,04
Leathers	2,03	2,15	2,04	2,00	1,90	1,88	1,56	1,63	0,52	0,49	0,46	0,44	0,39
wood	1,93	1,76	1,79	1,68	1,52	1,32	1,05	1,09	0,33	0,26	0,28	0,4	0,35
Cellulose-Paper	0,64	0,68	0,68	0,61	0,65	0,7	0,64	0,50	0,17	0,17	0,17	0,16	0,15
Edition-Print	0,98	0,9	0,87	0,89	0,87	0,86	0,86	0,84	0,23	0,23	0,22	0,2	0,21
Oil-Alcohol	0,44	0,45	0,54	0,41	0,41	0,65	0,64	0,72	0,15	0,13	0,11	0,14	0,1
Chemicals	1,95	2,36	2,41	2,02	2,16	2,38	1,61	1,58	0,4	0,36	0,4	0,42	0,39
Rubber-Plastic	1,09	1,1	1,1	1,2	1,13	1,22	1,08	1,03	0,2	0,23	0,2	0,23	0,24
Non-Metallic Minerals	0,16	0,18	0,18	0,2	0,16	0,17	0,2	0,13	0,04	0,05	0,05	0,05	0,04
Basic Metallurgy	1,26	1,39	1,31	1,4	1,49	1,39	2,08	1,58	0,31	0,25	0,25	0,25	0,2
Metal Products	2,11	2,1	2,12	2,05	2,08	2,41	2,12	1,72	0,51	0,49	0,48	0,49	0,48
Machines-Equipment	2,01	2,38	2,54	2,42	2,19	2,37	1,95	2,39	0,56	0,57	0,58	0,54	0,49
Equip. IT	0,09	0,11	0,11	0,1	0,09	0,11	0,11	0,11	0,03	0,02	0,03	0,03	0,02
Machines, Apar. Electrical	0,39	0,41	0,53	0,54	0,49	0,39	0,62	0,52	0,11	0.1	0,09	0,11	0.09
Apar.Equip. Communications	0,34	0,34	0,47	0,41	0,45	0,46	0,28	0,25	0,06	0,06	0,06	0,06	0,06
Equip. from instrum.hospitalares	0,25	0,27	0,28	0,24	0,28	0,22	0,23	0,20	0,08	0,07	0,06	0,07	0,06
Auto-vehicles	1.7	1.67	1.73	1.84	1.76	1.77	1.95	1.73	0.41	0.5	0.47	0.4	0.33
Equip. Transport	0.39	0.4	0.46	0.43	0.49	0.41	0.45	0.52	0.09	0.11	0.11	0.12	0.12
Miscellaneous Furniture and Industries	1.7	1.39	1.43	1.48	1.31	1.33	1.31	1.15	0.71	0.69	0.6	0.47	0.46
Recycling	0.05	0.1	0.14	0.14	0.12	0.12	0.19	0.15	0.05	0.06	0.06	0.07	0.06
Extraction of mineral coal	0.01	0.01	0.01	0.02	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Oil extraction	0.13	0.2	0.28	0.19	0.19	0.18	0.21	0.33	0.07	0.09	0.06	0.09	0.07
Extraction of metallic minerals	0.25	0.21	0.36	0.25	0.40	0.3	0.44	0.41	0.09	0.12	0.12	0.12	0.1
Extraction of non-metallic minerals	0.42	0.52	0.48	0.55	0.49	0.67	0.47	0.53	0.14	0.1	0.11	0.09	0.08
Electricity, gas and hot water	0.6	0.64	0.68	0.63	0.77	0.59	0.58	0.63	0.17	0.17	0.17	0.18	0.17
Collection, treatment and distribution. Water	0.11	0.2	0.24	0.12	0.15	0.17	0.15	0.19	0.12	0.1	0.11	0.13	0.12
Construction	8.43	7.21	7.57	7.65	8.08	8.35	9.91	10.01	6.15	6.35	6.63	6.76	6.25
Vehicle trade and repair	5.3	5.28	4.99	5.25	5.33	5.46	5.47	5.42	2.33	2.36	2.35	2.41	2.34
Trade intermediaries	15.23	16.16	15.06	16.04	16.12	16.24	15.3	16.51	10.35	10.36	10.14	10.58	10.13
Accommodation and food	3.02	3.05	3.01	3.06	3.12	3.26	3.04	3.22	4.94	4.79	4.65	4.8	5.02
Transport, Warehousing and Communication	7.34	7.17	7.09	6.77	6.95	6.68	6.93	6.74	3.06	3.11	3.11	3.1	2.98
Water transportation	0.2	0.18	0.16	0.16	0.16	0.15	0.17	0.20	0.06	0.06	0.06	0.07	0.05
Air Transport	0,26	0,23	0,24	0,22	0,16	0,19	0,15	0,22	0,07	0,07	0,07	0,06	0,05
Activ. aux. of transp. ag. on a trip	0,86	0,92	0,84	0,77	0,86	1,02	0,94	0,99	0,32	0,33	0,33	0,35	0,38
Post and telecommunications	1.19	1.17	1.27	1.31	1.17	1.18	1.26	1.30	0.46	0.48	0.42	0.44	0.4
Education	1.82	1.8	1.78	1.87	1.71	1.76	1.81	1.86	4.05	4.14	4.38	4.42	4.34
Health and social services	1,36	1,55	1,42	1,42	1,49	1,34	1,39	1,42	2,8	3,01	3,19	3,24	3,34
Urban cleaning and sewage;	0,46	0,48	0.5	0,48	0,42	0,44	0,45	0,48	0,1	0,09	0,14	0,15	0,13
Associative activities	0,4	0,46	0,48	0,39	0,44	0,44	0,42	0,46	0,33	0,39	0,31	0,37	0,32
Recreational, cultural activities	1,41	1,28	1,36	1,23	1,25	1,17	1,28	1,21	0,85	0,82	0,81	0,88	0.85
Personal services	0,25	0,31	0,28	0.3	0,36	0.3	0,32	0,38	1,44	1,54	1,55	1,68	1.63
Interm. Financ.seg. and previd. Priv.	1,41	1,43	1,22	1,07	1,18	1,21	1,12	1,01	0,67	0,64	0,68	0,68	0,63
Insurance and private pension	0,29	0,33	0,25	0,24	0,21	0,28	0,33	0,25	0,09	0,09	0,09	0,1	0,09
Aux. Activities interm. financial	0,15	0.2	0,23	0,18	0,18	0,19	0,14	0,18	0,15	0,17	0,17	0,15	0.13
Real estate activities	2,49	2.32	2.48	2,36	2,30	2,17	1.85	2.29	0.64	0.7	0.71	0.71	0,69
Car rental, machine. and equip.	0,22	0,24	0,17	0,23	0,20	0.2	0,16	0,25	0,09	0,08	0,09	0,09	0.08
Computer activities	0,63	0,68	0,66	0,75	0,78	0,84	0,86	0,83	0,43	0,43	0,39	0.4	0.4
Research and Development	0.07	0.05	0.02	0.04	0.04	0.04	0.05	0.04	0.03	0.04	0.04	0.04	0.03
Services provided to companies	7,72	7,73	7,75	8,37	8,20	7,93	8,25	8,49	4,14	4,23	3,89	4,1	3,95

Source:PNAD/IBGE.

.

Table 5. Average real wages (R \$) 2 digits

Sectors	2002	2003	2004	2005	2006	2007	2008	2009	2011	2012	2013	2014	2015
Agricultural	547	617	653	728	744	725	819	885	1132	1250	1380	1367	1528
Food-Drinks	605	644	633	703	815	844	900	944	1130	1291	1384	1530	1561
Smoke	540	622	967	784	1458	2105	1693	1620	1511	1562	2216	1475	2031
Textiles	561	625	709	718	820	861	891	922	1111	1208	1371	1379	1488
Clothing	447	516	538	629	689	763	771	810	903	1104	1193	1266	1256
Leathers	496	532	618	683	826	712	789	793	941	1005	1167	1218	1272
wood	516	651	618	714	726	851	911	1041	1289	1378	1576	1715	1581
Cellulose-Paper	779	1023	1016	923	1014	1107	1246	1531	1399	1508	1776	2057	2208
Edition-Print	1131	1138	1078	1188	1294	1370	1387	1497	1783	1951	2278	2401	2212
Oil-Alcohol	1342	1251	1168	1456	1982	1682	2066	1684	1953	2765	2075	2960	2719
Chemicals	1116	1098	1108	1622	1439	1354	1516	1754	1960	2289	2416	2581	2786
Rubber-Plastic	697	926	887	1024	1057	957	1094	1196	1206	1761	1737	2121	1828
Non-Metallic Minerals	878	759	931	959	837	1165	924	1558	1353	1494	1852	1387	1766
Basic Metallurgy	905	1050	1038	1438	1088	1278	1385	1471	1772	2003	2269	2173	2240
Metal Products	806	848	910	996	991	1115	1150	1296	1393	1664	1879	1869	2173
Machines-Equipment	970	1000	1039	1179	1295	1377	1388	1481	1654	1756	1863	2021	2208
Equip. IT	1309	1299	1140	1431	1678	1280	2267	1346	1724	2021	3227	2564	2974
Machines, Apar. Electrical	975	1216	1095	1386	1045	1192	1232	1294	1679	1789	1836	1975	2263
Apar.Equip. Communications	1056	860	909	1052	1123	1198	1211	1059	1585	1674	1732	1909	1757
Equip. from instrum.hospitalares	954	1054	1095	1175	1348	1454	1652	1757	1916	2152	2260	2328	2983
Auto-vehicles	1004	1144	1304	1214	1418	1427	1606	1717	1882	1973	2201	2454	2617
Equip. Transport	947	965	1076	1331	1338	1371	1418	1782	1663	1742	1928	2418	2262
Miscellaneous Furniture and Industries	640	684	708	803	847	955	958	1064	1287	1414	1587	1686	1777
Recycling	526	614	598	714	569	680	742	1129	1263	1184	1281	1426	1271
Extraction of mineral coal	746	1296	792	1074	2319	1402	1575	4600	1294	1334	2359	1833	3962
Oil extraction	2146	2601	2249	2524	3106	2828	3330	3360	3729	4634	5195	5086	6606
Extraction of metallic minerals	868	824	1151	1094	1289	1309	1691	1719	2103	2549	2899	2855	2897
Extraction of non-metallic minerals	775	906	1151	1081	1122	1268	1418	1836	1492	1879	2015	1906	2244
Electricity, gas and hot water	1309	1516	1551	1740	1890	1997	2238	2227	2422	2486	2977	3246	3299
Collection, treatment and distribution. Water	1024	1187	1192	1409	1448	1683	1451	1499	2174	2212	2289	2914	2553
Construction	736	766	819	939	1006	1043	1086	1141	1367	1563	1736	1803	1985
Vehicle trade and repair	783	891	905	970	1051	1096	1243	1298	1452	1648	1699	1905	1868
Trade intermediaries	761	783	841	912	981	1010	1098	1114	1329	1462	1567	1677	1715
Accommodation and food	556	612	719	760	800	824	875	940	1126	1258	1352	1408	1512
Transport, Warehousing and Communication	794	881	956	982	1070	1158	1278	1338	1454	1616	1759	1847	1874
Water transportation	834	994	1053	1324	1418	1430	1861	1702	2105	2580	2426	2872	3421
Air Transport	1622	1729	1710	1736	1955	2150	2321	2554	3008	3445	3696	3141	3567
Activ. aux. of transp. ag. on a trip	915	952	1105	1157	1178	1232	1409	1540	1748	1843	1830	2092	2320
Post and telecommunications	985	1020	1152	1104	1201	1331	1231	1521	1619	1616	1842	2204	2122
Education	758	828	886	962	1072	1134	1230	1356	1657	1821	1986	2105	2338
Health and social services	979	1082	1168	1239	1319	1385	1496	1626	1866	2014	2280	2410	2529
Urban cleaning and sewage;	456	438	489	571	592	641	722	742	1010	1198	1049	1303	1654
Associative activities	823	769	958	826	1110	1015	1173	1311	1435	1697	1812	1700	2004
Recreational, cultural activities	932	932	1037	1164	1206	1492	1563	1441	1859	1979	2338	2532	2558
Personal services	619	733	677	871	874	974	1099	1152	1324	1384	1405	1588	1680
Interm. Financ.seg. and previd. Priv.	1810	1781	2003	2126	2238	2233	2323	2570	3056	3262	3637	3931	4180
Insurance and private pension	1141	1402	1221	1472	1480	1715	1928	1678	2052	2218	2480	2649	2892
Aux. Activities interm. financial	1505	1383	1680	1667	1529	2305	2396	1850	2670	3035	2619	3475	3226
Real estate activities	657	612	737	741	734	919	958	1058	1476	1484	1601	1713	1912
Car rental, machine. and equip.	870	991	1036	907	1340	1420	1858	1426	2466	2027	2481	2545	2660
Computer activities	1604	1660	1815	2061	1759	2083	2260	2490	2730	2997	3342	3694	3514
Research and Development	1702	1944	1820	2279	2371	2167	2190	2932	3603	3990	4459	4063	4490
Services provided to companies	933	1028	1032	1131	1271	1308	1385	1477	1799	1979	2207	%188	≳344

Source:PNAD/IBGE.

Sectors	2002	2003	2004	2005	2006	2007	2008	2009	2011	2012	2013	2014	2015
Agriculture	543	606	647	724	728	710	802	874	1087	1241	1345	1317	1483
indus_extrativ	1164	1359	1414	1534	1731	1756	1941	2082	2329	2674	2914	3194	3387
Indus_Transf	732	807	833	952	1006	1047	1129	1201	1380	1538	1683	1822	1894
Constr_Civil	736	766	819	939	1006	1043	1086	1141	1367	1563	1736	1803	1985
Business	765	803	852	923	994	1026	1125	1147	1352	1497	1591	1719	1744
Aloj_Alimen	556	612	719	760	800	824	875	940	1126	1258	1352	1408	1512
Tranp_Arm_Com	861	935	1028	1046	1127	1225	1308	1430	1550	1691	1830	1961	2004
Educ_Saude	841	925	991	1067	1167	1231	1335	1460	1742	1902	2109	2233	2420
Serv_Domes	283	318	342	381	429	467	509	565	673	767	841	913	972
Ser-Col-Soc=Pes	759	781	858	941	1020	1142	1246	1247	1515	1636	1752	1905	2018
IntFin_Seg_Priv	1088	1171	1208	1296	1388	1473	1572	1645	2014	2176	2413	2498	2628

Table 6. Average real wages (R\$)-1 digit

Source: PNAD/IBGE.

4. Interindustry Wage Premiums

Figure 1 shows the distribution of average wage premiums. The premiums range from -22.2% to 75.4% and are, therefore, quite disperse, thus confirming the stylized fact that the Brazilian labor market is highly segmented.

Figure 2. Interindustrial salary premium - 2 digits - with control

Source: PNAD/IBGE.

Table 7 shows controlled wage premiums at the two-digit level. The results underscore that industrial affiliation is the primary source of wage determination and differential. Just like at the one-digit level, the inclusion of controls substantially alters the coefficients, especially the relevance of industrial affiliation. In 2015, a worker in the petroleum extraction sector earned 75.4% more than other workers with the same characteristics, whereas a worker in the rubber-plastic sector earned 3.79% less. Note: All coefficients are statistically significant at 1%. The education and health sectors showed an opposite behavior, as wage premiums dropped after the inclusion of controls in the model. The premium plummeted, going from 21.5%, when not controlled for, to less than -1.31%, when controlled for.

Га	at	bl	e	7	.]	Interind	lustrial	sal	lary	premium	- 2	digit	S -	with	control	L
----	----	----	---	---	-----	----------	----------	-----	------	---------	-----	-------	-----	------	---------	---

Industries	2002	2003	2004	2005	2006	2007	2008	2009	2011	2012	2013	2014	2015
Air Transport	61,13	41,08	32,97	49,52	73,31	39,66	35,18	55,01	48,80	46,80	53,10	43,30	42,00
Oil extraction	55,60	59,46	65,49	46,72	63,24	62,22	54,88	56,20	50,20	59,00	58,80	50,40	75,40
Equip. IT	53,93	30,58	11,84	17,11	23,00	20,93	40,94	19,73	11,70	22,70	18,30	36,80	-1,55
Aux. Activities interm. financial	50,43	10,53	22,14	25,50	9,75	12,93	32,63	20,20	9,39	12,60	14,40	11,90	9,66
Interm. Financ.seg. and previd. Priv.	37,66	28,40	24,70	27,42	28,17	26,22	29,82	29,64	29.10	30.70	25.10	29.50	27.00
Computer activities	35,24	27,59	32,21	28,99	17,95	21,24	25,04	27,90	32,10	29,60	27,00	30,00	22,40
Equip. Transport	34,88	15,52	16,23	26,48	24,43	19,06	24,89	24,07	24.80	22.20	32.20	37.70	20.10
Equip. from instrum.hospitalares	34,52	13,57	18,97	15,88	20,00	10,16	15,76	24,84	14.00	7.01	11.10	10.00	7.27
Research and Development	31,71	11,43	92,36	-4,09	-5,22	10,46	-6,97	1,73	43.10	44.20	9.23	12.20	0.93
Electricity, gas and hot water	30,44	22,32	15,21	16,43	20,60	19,49	16,80	27,88	27.80	19.00	29.80	26,90	24.80
Apar.Equip. Communications	28,77	16,38	16,44	19,16	16,16	16,61	12,38	10,84	7.96	19.90	19.50	25.00	-5.96
Auto-vehicles	28,13	25,16	27,41	24,66	25,34	25,99	24,04	22,63	27.60	29.30	22,90	24.60	20.90
Extraction of metallic minerals	27.90	22.30	31.35	20.28	34.29	23.68	38,59	36.20	46.30	46.30	44 60	44 50	21.00
Chemicals	27.12	13.24	13.74	19.08	17.10	12.09	15.33	13.59	18,00	14 80	15 40	12 10	13,80
Edition-Print	26.58	19.63	6.29	14.27	7.80	9.08	10.53	9.52	10,10	6.43	4 46	17 10	7 67
Car rental machine, and equip	25.74	15.43	-4.55	8.30	5.24	11.16	11.90	1.05	7 02	5.08	17.30	-3.92	8.88
Water transportation	22.25	11.29	20.93	19.62	29.20	20.71	10.80	30.26	48.80	46.80	37.80	35.20	27 70
Basic Metallurgy	20.69	13.63	15.28	15 42	15.51	17 80	17.35	19.33	23 30	24 40	23.90	19.60	21,10
Machines-Equipment	20.57	18 20	14.61	21 22	20.15	20.26	19.30	17.06	13.80	15.60	10/10	16.90	15.40
Metal Products	20.50	8.24	12.04	9.01	10.45	11 41	12.95	12.08	14.80	14 20	12 20	15,00	11 90
Smoke	1979	6.36	21 72	6.48	36 36	28.91	29.31	25.01	30.80	5.40	22.20	-5.36	21 70
Extraction of mineral coal	1976	1763	58 15	44 86	159 13	-40.34	48 59	1978	23 10	/3 10	25,20	29.50	63 70
Insurance and private pension	18.62	26.83	1.54	22.04	15.17	9.77	22.67	16.87	20,10	9.68	11 70	8 91	6.96
Non-Metallic Minerals	16.93	9 1 9	2 20	-1.04	3 29	-3.26	7 26	13.53	17.00	18 30	16.90	23.00	14.60
Post and telecommunications	16.82	16.13	14 19	11.51	9.89	8 34	7 20	871	0.10	2 45	7 10	4.23	14,00
Active and telecommunications	15.03	-0.51	8 97	3 94	4 77	743	3.58	5.66	0.29	2,45	5.47	2.91	-1,50
Oil Algobal	15,00	10.43	11.98	21.16	15.61	23.45	24 79	25.42	26.00	30.80	10.20	35.70	23.40
Recreational cultural activities	14.93	1 95	516	4 70	7 52	4 14	6.92	4.83	6.67	8 37	3 01	8.03	23,40
Extraction of non-motallic minorals	12.87	3.94	6.38	23.64	9.79	15.00	10.42	21.64	10.10	12 10	4.05	7.29	-2,20
Transport Warehousing and Commun	1247	7 23	5.61	6 38	5.66	3.83	4 29	5 28	0.07	11 20	9,60	11.00	6.80
Health and social services	12.36	5.72	9.91	4.83	6.05	271	4 23	9,80	2.25	1.00	3,00	1 58	2 10
	1214	-275	-0.81	-2.96	3.61	-4.48	5.44	-1.51	-2,25	-1,00	3.20	3.95	-2,19
Rubben-Plactic	11 99	4.80	3 75	9.84	10.73	6.96	4 4 9	8 59	-2,03	15 70	7/0	-5,05	3 70
Education	11.87	11.99	5.44	6.65	8 4 4	-1.68	3.46	5.67	0,07	3.55	7,43	2 / 1	0.25
Machiner Apen Floatricel	11,07	1316	10.30	11.09	12 00	1 99	1316	19.96	-0,50	10.20	12 10	7 / 2	-0,35
Collection treatment and distribution	9.54	2 74	-7 35	0.23	15,00	6.05	2.28	9.16	5 00	10,20	7 00	12.20	2 72
Collulogo Papor	9.36	0.12	8.53	0,50	1 74	-0.03	517	8.61	-3,00	6 66	7,00	5.50	2,73
Vehicle trade and renain	0.26	5.68	2 1 8	0,00	4.71	1.40	2.00	5.28	7,90	0,00	2,21	5,59	2,00
Construction	6.71	0,66	1.03	214	4.36	3.64	4.48	6.52	14.00	16.00	16.60	19.50	2,50
Textiles	4.52	-0.47	-3.49	-7/18	-4.90	-1.18	-5.73	-2.08	6.21	4 15	10,00	1 / 1	4.04
Requeling	4.00	4.82	-6.05	-13 79	-4.96	-11.62	-13.51	-6.69	2.65	10.00	12.00	2 00	-4,04
Romrigon provided to companies	3.05	-5.17	-4.07	-3.08	-0.99	-4.40	-3.51	-1.01	-2,00	2 20	0.70	-2,55	1.57
Missellaneous Eurpiture and Industri	0.23	-5.55	-4.41	0.24	-2.93	-1.55	-1.99	-0.83	1 15	2,30	1.07	1 74	3.42
Trade intermediaries	-0.14	-8.31	-7 98	-5.10	-7 84	-10.17	-8.23	-7.65	0.15	-3,39	0.06	0.87	13 10
A drigulturgel	-0,14	15.66	1991	1011	-15.83	0.09	2.80	-0.90	-9,15	-0,00	-9,90	-9,07	20.80
wood	-2.06	-11.01	-/ 82	-7/10	-1 08	-3.40	-3.30	-1.44	0.41	0.07	27,40	2 2 1	29,00
Real agtate activiting	-x,30	10.94	10.94	11.02	10 20	1716	14.67	1117	-0,41	4.25	4,50	2,31	-1,20
Read Drinks	-0,00	-18,04	-10,64	-11,86	-18,08	-10,10	-14,00	-11,10	-4,29	-4,00	-5,09	-4,49	-4,07
Accommodation and faced	-0,47	-0,00	-0,94	-0,&0	-14.07	-0,00	-0,00	-4,06	-0,00	-3,04	10,0	-2,13	-0,00
Leethers	1,00	-14,60	0.19	-10,01	-14,00	-10,01	-10,0%	19 10	15.20	-11,50	-12,10	-11,40	-14,20
Densenal comrises	-1,04	-17/40	-3,10	-0,00	-0,01	-3,00	-9,09	-1 40	-10,30	-14,00	-20,00	-10,80	-19,70
Clothing	-1,31	-11.12	-19 39	-1,00	-6,01	-0,70	-16,06	-4,40	-9,99	-11,00	-12,40	-5,90	-9,00
Uppen alconing and cover to	20,10	-11,10	-16,06	11 =0	11 100	17/10	19.00	יי יי <u>+</u> ,01	-10,90	-14,00	-10,00	-10,50	-22,20
orban deaning and sewage	-‰∪,±0	-60,00	-61,10	-11,09	-14,70	∣ ⁻ ⊥(,40	-10,00	-11,11	-9,90	1 - I I, IU	-17,30	-0,/4	-9.21

Source: PNAD/IBGE.

This suggests that workers in these sectors were relatively underpaid for the activities they per- formed. A similar situation was observed among workers in financial institutions, where wages decreased after the inclusion of controls. The uptrend of wage premium in the processing industry is noteworthy, as it occurred during the period in which the sector lost share in value added and productivity dropped.

Firstly, this may be explained by the fact that, despite the lower participation of the sector in the economy, the industry's decline might not have taken place yet and the sector might have kept its more advanced and sophisticated characteristics, where some of the least competitive firms might have taken themselves off the market, leading to a composition effect.

Secondly, there was remarkable growth of production in the industry in the period, but at lower rates than in other sectors, which could have maintained profit in the sector.

Thirdly, the sector might have invested in technologies that require luring and keeping skilled workers, either observable or unobservable human capital.

Fourthly, given the ever-growing lack of skilled workforce and the uncertainties surrounding the future, the

sector might have retained at least some of the most skilled workers. Also, it is important to consider that low share in the GDP and/or in labor does not always mean that the sector has a lesser importance. More sophisticated indicators, such as industrial density, and international comparisons (Arbache, 2012b) suggest that the industry may influence the paths of the economy even if its direct share in the GDP is not high, as largely witnessed in the USA. While the industry accounts for only 11% of the value added and 9% of labor in the USA, it employs 35% of engineers and 68% of R &D in the private sector, and accounts for 90% of patents issued annually and creates, in general, good job opportunities, with wages way above the average and with health insurance and pension plans included (Katz & Hamp, 2013).

4.1 Interindustry Wage Premiums

To analyze the results of wage premiums in more detail, the following sections verify whether the market was more or less segmented, as well as the behavior of the wage structure and the characteristics of the industries that pay higher and lower wages. Controlled and Uncontrolled wage premiums at the one-digit level are reported in Tables 8 and 9, respectively. The coefficients show the proportional difference between the wage of a worker from the agricultural sector and the average weighted wage of a worker from all sectors. In 2015, a worker in the agricultural sector was paid, on average, 24.4% less than on the market, whereas a worker from the extractive sector earned 33.4% more. These results might, however, be underestimated or overestimated, as it is reasonable to assume a bias in the selection of workers based on the characteristics of the industry they are affiliated with, and also on factors associated with geographic nd demographic diversity not captured by the data. To minimize the problem, the wage models with individual, geographic, and corporate variables are controlled for. Once controlled, wage premiums change substantially (Table 8). In 2015, the wage in the agricultural sector was 30.6% lower than that paid on the market. The premium for workers in the extractive sector was 21.5%. There is no single explanation for the change in industrial affiliation coefficients after the control, but selection bias, unmeasured skills and their interaction with industrial affiliation and specification problems are often amongst the major reasons (Gibbons & Katz, 1992; Arbache, 2001). Results indicate that the wage premium of the extractive sector, which was already high, increased over the decade.

Table 8. Estimated equation with linear restriction for the formal private market with 1 digit and WITHOUT CONTROL for the period 2002-2015

Variables	2002	2003	2004	2005	2006	2007	2008	2009	2011	2012	2013	2014	2015
Agriculture	-0.327	a - 0.340	a-0.304	$4^{a}-0.283$	a - 0.251	a-0.253	a - 0.225	a - 0.245	a - 0.275	a - 0.139	$a^{a}-0.328$	a - 0.158	$3^{c}-0.244^{a}$
	(-18.9))(-21.4))(-20.3)	(-20.6)	(-17.8)	(-19.1)	(-17.2)	(-19.1))(-6.61))(-1.83)	(-4.52))(-2.38)	(-4.0)
ExtraIndus	0.311^{a}	0.342^{a}	0.317^{a}	0.270^{a}	0.340^{a}	0.304^a	0.345^a	0.355^{a}	0.348^{a}	0.334^{a}	0.371^{a}	0.312^a	0.334^{a}
	(7.58)	(9.82)	(10.4)	(8.89)	(12.3)	(10.8)	(12.5)	(13.8)	(13.89)	(12.7)	(14.1)	(13.0)	(13.1)
TransfIndus	0.020	0.039^a	0.023°	0.0459	⁴ 0.036 ⁴	0.040^a	0.029^a	0.027^{a}	0.002	0.007	0.001	0.011	0.011
	(1.90)	(4.00)	(2.52)	(5.25)	(4.34)	(4.81)	(3.63)	(3.55)	(0.17)	(0.61)	(0.05)	(1.01)	(1.07)
Construc	-0.167	a-0.164	a - 0.141	a - 0.133	a - 0.130	a - 0.105	a - 0.137	a-0.133	a-0.034	$^{b}-0.038$	$^{b}-0.002$	2 - 0.010	-0.001
	(-12.0))(-12.0))(-11.1))(-11.1	(-11.7)	(-9.2)	(-13.9))(-13.8))(-3.0)	(-2.94)	(-0.12))(-0.86)	(-0.04)
Commerce	-0.166	$3^{a}-0.151$	a_0.175	$5^{a}-0.137$	a-0.155	$5^{a}-0.161$	a-0.164	a-0.164	a-0.162	a - 0.180	a-0.169	a-0.189	$a-0.191^{a}$
	(-15.3)	(-14.9))(-18.5)	(-15.4)	(-18.5))(-19.2))(-20.2))(-21.7))(-18.6)	(-15.6)	(-15.1))(-18.2)	(-18.8)
AccommFood	-0.293	$a^{a}-0.318$	a - 0.333	$a^{a}-0.298$	$a^{a}-0.315$	$5^{a}-0.281$	a - 0.282	a - 0.285	a - 0.292	a - 0.291	a - 0.276	a - 0.298	$a^{a}-0.286^{a}$
	(-15.3)	(-17.3))(-20.1)	(-18.8))(-23.0))(-19.9))(-21.0))(-21.5))(-25.7))(-21.3))(-20.5))(-24.2)	(-22.5)
TranArmCom	0.100^{a}	0.109^{a}	0.104^{a}	0.090^{a}	0.056^{a}	0.068^{a}	0.043^{a}	0.052^{a}	0.069^{a}	0.047^{a}	0.078^{a}	0.050^{a}	0.050^{a}
	(7.79)	(8.72)	(8.61)	(7.94)	(5.15)	(6.21)	(4.32)	(5.20)	(6.1)	(3.52)	(5.76)	(4.11)	(4.05)
HeathEduc	0.442^{a}	0.403^{a}	0.477^{a}	0.412^{a}	0.390^{a}	0.336^{a}	0.337^{a}	0.363^{a}	0.227^{a}	0.169^a	0.190^a	0.182^a	0.215^{a}
	(14.9)	(14.3)	(17.6)	(16.3)	(15.7)	(13.9)	(14.1)	(16.3)	(17.1)	(11.3)	(13.1)	(13.3)	(15.3)
InFinSegPrv	0.080^{a}	0.079^{a}	0.032^{b}	0.034^{b}	0.029^{b}	0.053^{a}	0.053^{a}	0.030^{b}	0.120^{a}	0.105^{a}	0.133^{a}	0.010^a	0.110^{a}
	(5.70)	(5.89)	(2.62)	(2.97)	(2.64)	(4.79)	(4.95)	(2.91)	(11.3)	(8.13)	(10.3)	(8.45)	(9.0)
Constant	3.030^{a}	3.421^{a}	3.713^{a}	4.085^{a}	4.777^{a}	4.501^{a}	4.318^a	4.711^{a}	4.455^{a}	4.680^a	4.759^{a}	4.752^{a}	4.328^{a}
	(383)	(481)	(553)	(649)	(806)	(748)	(739)	(862)	(589)	(436)	(462)	(492)	(468)
Observ.	29417	29868	32304	34147	35173	36053	37571	38173	54846	57324	57826	59358	55217

Source: PNAD/IBGE. (t) statistics in parentheses ${}^ap < 0.10$, ${}^bp < 0.05$, ${}^cp < 0.01$.

Variables	2002	2003	2004	2005	2006	2007	2008	2009	2011	2012	2013	2014	2015
Grade1	$0, 128^{a}$	$0,135^{a}$	$0,081^{a}$	$0, 103^{a}$	$0, 100^{a}$	$0,106^a$	$0,125^{a}$	$0,091^{a}$	$0,073^a$	$0,043^{c}$	$0,037^{b}$	0,015	0,034
(t)	(7, 13)	(7, 20)	(4, 23)	(5, 64)	(5, 29)	(6, 32)	(7, 77)	(5, 31)	(4, 46)	(2, 42)	(1, 81)	(0, 83)	(1, 52)
Grade2	$0,500^{a}$	$0,482^{a}$	$0,419^{a}$	$0,419^{a}$	$0, 393^{a}$	$0,398^a$	$0,398^{a}$	$0,348^{a}$	$0,293^a$	$0,235^{a}$	$0,217^{a}$	$0, 187^{a}$	$0, 196^{a}$
(t)	(24, 7)	(23, 6)	(20, 3)	(20, 9)	(19, 4)	(21, 5)	(22, 7)	(18, 9)	(16, 5)	(12, 3)	(10, 1)	(0, 08)	(8, 19)
Undergrad	$1,471^{a}$	$1,424^{a}$	$1,375^{a}$	$1,316^{a}$	$1,306^{a}$	$1,276^{a}$	$1,250^{a}$	$1,121^{a}$	$1,013^{a}$	$0,922^{a}$	$0,885^{a}$	$0,837^{a}$	$0,800^{a}$
(t)	(52, 9)	(51, 0)	(49, 7)	(51, 2)	(50, 6)	(53, 9)	(55, 0)	(47, 8)	(49, 7)	(43, 5)	(37, 3)	(40, 9)	(30, 9)
Graduate	$2,190^{a}$	$2,184^{a}$	$2,011^{a}$	$2,035^{a}$	$2,013^{a}$	$1,957^{a}$	$2,037^{a}$	$1,837^{a}$	$1,817^{a}$	$1,638^{a}$	$1,615^{a}$	$1,616^{a}$	$1,554^{a}$
(t)	(26, 9)	(28, 8)	(28, 7)	(30, 7)	(30, 7)	(32, 7)	(39, 5)	(30, 4)	(33, 1)	(33, 1)	(33, 2)	(32, 7)	(28, 3)
exper	$0,034^{a}$	$0,032^{a}$	$0,034^{a}$	$0,028^{a}$	$0,028^{a}$	$0,027^{a}$	$0,024^{a}$	$0,025^{a}$	$0,025^{a}$	$0,019^{a}$	$0,017^{a}$	$0,018^{a}$	$0,0181^{a}$
(t)	(24, 4)	(22, 6)	(25, 6)	(22, 0)	(23, 5)	(23, 4)	(22, 4)	(22, 3)	(25, 8)	(20, 8)	(17, 1)	(21, 5)	(18, 0)
exper2	-0,000	$1^{a}-0,00$	$1^{a}-0,00$	$1^{a}-0,001$	$1^{a}-0,001$	a = 0,001	$1^{a}-0,001$	$1^{a}-0,001$	$a_{-0,001}$	$a_{-0,00}$	$1^{a}-0,001$	$a_{-0,00}$	1ª-0,001ª
(t)	(-16, 9)	(-14, 5)	5(-17, 5)	5(-14, 0)	(-14, 9)	(1-14, 9)	(-14, 0)	(-14, 6)	5(-16, 9)	(-15, 6)	5(-12, 3)	3(-16, 7)	(-13, 7)
West	$0,292^{a}$	$0,316^{a}$	0,311a	$0,309^{a}$	$0,279^{a}$	$0,273^{a}$	$0,267^{a}$	$0,244^{a}$	$0,204^{a}$	$0,243^{a}$	$0,226^{a}$	$0,239^{a}$	$0,288^{a}$
(t)	(19, 2)	(21,1)	(21, 2)	(22, 1)	(22, 4)	(21.8)	(22, 4)	(20, 6)	(19.0)	(23, 6)	(19, 4)	(26, 0)	(24, 9)
South	0.297^{a}	0.296^{a}	0.291^{a}	0.292^{a}	0.254^{a}	0.244^{a}	0.247^{a}	0.263^{a}	0.174^{a}	0.195^{a}	0.177^{a}	0.243^{a}	0.253^{a}
(t)	(22, 1)	(23, 0)	(24, 1)	(25, 3)	(23, 8)	(22.8)	(23, 6)	(25, 3)	(18, 1)	(21, 7)	(18, 1)	(30, 6)	(28, 7)
Southeast	0.328^{a}	0.342^{a}	0.298^{a}	0.299^{a}	0.271^{a}	0.269^{a}	0.258^{a}	0.244^{a}	0.213^{a}	0.227^{a}	0.190^{a}	0.242^{a}	0.298^{a}
(†)	(29, 4)	(32, 1)	(29, 2)	(30, 8)	(29, 6)	(29.5)	(29.8)	(27, 7)	(24.8)	(28, 6)	(21.8)	(33, 6)	(36, 8)
North	0.157^{a}	0.166^{a}	0.169^{a}	0.183^{a}	(20, 0) 0 174 ^a	$(20,0)^{a}$	(20,0) 0 143 ^a	0.14^{a}	(21,0) 0 122 ^a	0 1514	0.167^{a}	0.194^{a}	0.169^{a}
(†)	(9.38)	(10.5)	(11.5)	(13, 0)	(13, 6)	(15, 3)	(11.9)	(12, 2)	(10.4)	(13, 7)	(13, 2)	(18, 2)	(15.4)
Tenure	0.025^{a}	0.022^{a}	0.022^{a}	0.021^{a}	0.0194	0.0184	0.0194	0.017	(10, 4) 0 128 ^a	0.018ª	0 0194	0.0184	0.0174
(+)	(27.8)	(26.8)	(26.2)	(26.5)	(25.4)	(24 5)	(27.5)	(25.2)	(20, 0)	(28.2)	(28.2)	(31 0)	(27.3)
Urban	0.0844	(20, 0) 0 102 ^a	0.066ª	0.066ª	(20, 4) 0.037 ^a	0.0614	0.0474	0.044	0.011	(20, 2) 0 042 ^a	0.0534	0.016	0.0336
(+)	(3 68)	(5, 82)	(4 07)	(4, 62)	(2.82)	(4 66)	(3 52)	(3 18)	(0, 77)	(3, 55)	(4, 21)	(1 20)	(3.05)
Metron	0.0854	0.0564	0.0504	0.0514	0.0544	0.0404	0.0224	0.0204	0.0804	0.0814	0.0814	0.0724	(3,03)
Hetrop	(10.9)	(C 05)	(6.98)	(6 9)	(7 69)	(65)	(4 04)	(5 79)	(14 5)	(14.0)	(12 1)	(12 6)	(17, 7)
(L)	(10, 2)	(0, 65)	(0, 20)	(0, 0)	(1,00)	(,05)	(4, 94)	(0, 10)	(14, 5)	(14, 0)	(13, 1)	(13, 0)	(11, 1)
Union (+)	$(10, 102^{-1})$	(11, 1)	(14.5)	(11 0)	(12.2)	(11 5)	(11, 1)	$(10, 080^{-1})$	(12 5)	$(10, 095^{-1})$	(12, 7)	(14, 1)	(10, 7)
(t)	(10, 7)	(11, 1)	(14, 5)	(11,9)	(12, 2)	(11, 5)	(11, 1)	(10, 2)	(13, 5)	(12, 7)	(12,7)	(14, 1)	(10,7)
Npespriv	(15 7)	(12, 0)	0.130-	(10.144^{-1})	0.119-	(14^{-1})	(10.0)	(10.7)	(15.0)	(14.7)	(12, C)	0.015	(12.0)
(t)	(15,7)	(13,0)	(14, 4)	(10, 1)	(14, 4)	(14, 1)	(10, 8)	(13,7)	(15,9)	(14, 7)	(13, 6)	(10, 2)	(13, 9)
White	0,134	0,140°	0,135	0,114	0,1174	0,116	0,105	0,102	0,1054	0,103*	°0,110°	0,0984	0,100
(t)	(15, 2)	(16, 2)	(16, 4)	(14, 7)	(16, 1)	(15,8)	(14, 9)	(14, 5)	(15, 6)	(16, 19	(16, 6)	(16, 7)	(14, 1)
Agriculture	-0,21	$1^{\circ}-0, 360$	$5^{-0}, 209$	9 = 0,209	$9^{-0,119}$	y = 0, 110	5-0, 170	0-0,387	(°=-0, 199	9-0,25	$2^{-0}, 380$	$0^{-0}, 212$	290,306
(t)	(-2, 15)	01 - 3,77	(1-2, 02)	2(-2,0)	(1, 15)	$j_{-1,50}$	0(-2, 37)	(1-5, 30)	$\eta = 5, 37$	()3,76	5)(-5, 55)	0 (-3, 43)	3(-5,71)
ExtraIndus	0,1784	0,186"	0, 195"	0,2004	0, 212 ^a	0,193"	0,2094	$0,272^{a}$	0,221ª	0,2544	$0,262^{a}$	0,2474	0,2154
(t)	(6, 28)	(7, 39)	(7, 83)	(8, 31)	(9, 84)	(9, 22)	(10, 1)	(13, 5)	(10, 4)	(12, 08))(11,8)	(11, 5)	(9, 82)
TransfIndus	0,029	0,066	$0,042^{a}$	$0,052^{a}$	0,0384	0,048	0,0474	$0,059^{a}$	0,022	0,0215	0,0371	0,0188	0,0289
(t)	(1, 98)	(4, 57)	(2, 89)	(3, 63)	(2, 64)	(4, 09)	(4, 22)	(5, 32)	(2, 68)	(2,06)	(3, 47)	(1, 92)	(3, 10)
Construc	0,025	$0,043^{a}$	$0,033^{c}$	$0,027^{c}$	$0,031^{c}$	$0,045^{a}$	$0,046^{a}$	$0,071^{a}$	$0,118^{a}$	$0, 142^{a}$	$0,176^{a}$	$0,159^{a}$	$0,166^{a}$
(t)	(1, 49)	(2, 57)	(2, 01)	(1, 70)	(1, 95)	(3, 38)	(3, 79)	(5, 74)	(11, 8)	(12, 1)	(14, 3)	(14, 5)	(14, 6)
Commerce	-0,033	30-0,022	2-0,052	$2^{a}-0,03'$	$7^{a}_{-0},068$	3ª-0,069	$9^{a}-0,063$	$3^{a}_{-}0,049$	$9^{a}-0,078$	$3^{a}_{-}0,07$	$7^{a}_{-}0,063$	$5^{a}_{-0}, 100$	$0^{a}-0,085^{a}$
(t)	(-2, 14)	(-1, 46)	5(-3, 43)	3(-2, 49)	0(-4, 61)	(-5, 73)	3(-5, 51)	(-4, 27)	(-9, 81)	(-7, 45)	5(-6, 17)	(-10, 4)	2)-9,45)
AccommFood	-0, 12	$7^{a}_{-0}, 11^{a}_{-0}$	$^{1}-0,130$	$5^{a}-0, 134$	$4^{a}-0, 159$	$a^{a}-0, 131$	$1^{a}-0, 103$	$5^{a}-0,090$	$0^{a}-0, 147$	$7^{a}_{-0}, 13$	$5^{a}-0, 113$	$3^{a}_{-0}, 142$	$2^{a}-0, 124^{a}$
(t)	(-5, 75)	5(-5, 39)	9)(-6,77	(-6, 84)	(8, 72)	(-7, 90)	0(-6, 66)	5(-5, 73)	(-13, 6)	5(-10, 5)	5(-8, 65)	5(-12, 2	2(-10, 4)
TranArmCom	$0,089^{a}$	$0, 108^{a}$	$0,080^{a}$	$0,076^{a}$	$0,053^{a}$	$0,058^{a}$	$0,042^{a}$	$0,069^{a}$	$0,092^{a}$	$0,084^{a}$	$0, 109^{a}$	$0,074^{a}$	$0,085^{a}$
(t)	(5, 34)	(6, 71)	(4, 85)	(4, 71)	(3, 32)	(4, 30)	(3, 30)	(5, 37)	(8, 59)	(6, 88)	(8, 49)	(6, 53)	(7, 45)
HeathEduc	0,038	$0,084^a$	$0,059^{a}$	0,032	0,031	0,015	0,007	$0,049^c$	$0,052^a$	$0,062^{c}$	$0,067^{a}$	$0,050^{a}$	0,013
(t)	(1, 52)	(3, 50)	(2, 47)	(1, 42)	(1, 33)	(0, 70)	(0, 36)	(2, 42)	(4, 50)	(4, 70)	(5, 04)	(4, 06)	(1, 04)
InFinSegPrv	0,013	0,014	0,013	0,007	0,019	0,014	0,012	$0,006^c$	$0,022^c$	$0,025^c$	$0,040^{a}$	0,005	$0,033^{b}$
(t)	(0, 78)	(0, 88)	(0, 83)	(0, 46)	(1, 21)	(1, 03)	(0, 95)	(0, 50)	(2, 40)	(2, 26)	(3, 42)	(0, 48)	(3, 13)
Constant	$1,549^{a}$	$1,952^{a}$	$2,351^{a}$	$2,783^{a}$	$3,550^{a}$	$3,273^{a}$	$3,122^{a}$	$3,563^{a}$	$3,401^{a}$	$3,676^{a}$	$3,789^{a}$	$3,823^{a}$	$3,307^{a}$
(t)	(44, 9)	(61, 5)	(76, 9)	(93, 8)	(126)	(126)	(126)	(140)	(143)	(155)	(140)	(157)	(121)
Observ.	23208	23498	25527	27224	28251	29399	30446	31494	48856	51131	51705	53221	49793

Table 9. Estimated equation with linear restriction for the formal private market with 1 digit and WITH CONTROL for period 2002-2015

Source: PNAD/IBGE. (t) statistics in phDentheses $^ap < 0.10, \ ^bp < 0.05, \ ^cp < 0.01.$

This is likely due, in part, to the substantial increase of commodity prices of ores and petroleum and to the large profits made by firms in this sector. Civil construction, a traditional low-paying sector in Brazil, experienced a hike in wage premium after inclusion of controls in the models. The premium went from 0.5% in 2015 to 16.8% after including controls in the model. This upswing apparently mirrors the boom of civil construction in Brazil in the past decade, pushed by credit and large government-subsidized works and their effects on demand for labor, including skilled labor.

5. Has the Labor Market Become More or Less Segmented?

If larger integration of the world economy contributes to increasing the market dynamics of wage determination,

then it would be reasonable to expect convergence of interindustry wage premiums in Brazil and, consequently, a reduction in labor market segmentation. To test this hypothesis, analysis of variance and the coefficient of variation of wage premiums were estimated.

The analysis of variance (Figure 3) shows that the inclusion of controls in the model increases the average coefficient of determination from 8.8% to 47.6%. Hence, the controls are important to explain wage determination. However, the controls fail to explain wages, as the coefficient of determination decreases monotonically, going from 47.6% in 2002 to 29.3% in 2015. As a matter of fact, the coefficients of the controls shrink over time, including unions, race, geographic regions, schooling, and metropolitan area. Trade union affiliation, for instance, had a 12.1% impact on wages in 2004, but the coefficient plummeted thereafter, going down to 7.7% in 2015.

These results are intriguing. Firstly, they indicate lower wage segmentation associated with controls included in the model. Secondly, the sharper reduction in the coefficient of determination of the model with control indicates relative increase in the importance of industrial affiliation in the share explained in the model. Thus, it is reasonable to assume that industrial affiliation might have become relatively more important to explain wage determination. Thirdly, the decrease in the coefficients of determination suggests greater importance of variables not included in the model in explaining wage dispersion and suggests that wage determination became more complex over the decade.

Figure 3. Analysis of variance - 2 digits

Figure 4 shows the coefficient of variation (CV) of wage premiums. The higher the CV, the lower the wage dispersion. The decrease in CV indicates increase in wage dispersion. Dispersion increased in 2002 to 2003 and decreased thereafter until 2015. Therefore, in general, segmentation increased from 2009 onwards, which is likely associated, at least in part, with industrial affiliation and with unmeasured variables.

Figure 4. Coefficient of variation, 2 digits with control

6. Behavior and Characteristics of the Wage Structure

6.1 Changes in Wage Structure

Table 10 shows that, notwithstanding the changes in labor market, wage structure remained relatively stable from 2002 to 2015. However, the irregular magnitude of the correlation coefficients and the presence of a statistically nonsignificant coefficient (2013-2014) indicate non-negligible changes in interindustry wage structure (Irregular coefficients are not consistent with similar exercises carried out for Brazil based on comparable data, from the previous period (Arbache, Green, & Dickerson, 2004a). Although it is reasonable to assert that sectors that paid better (worse) at the beginning of the decade kept playing better (worse) throughout the period, there was a "musical chairs game."

This discrepancy suggests that changes in the wage structure would be associated with the interplay between industrial affiliation, controls, and unmeasured variables.

Table 10. Correlogram of controlled wage premiums at two-digit level

	a2002	a2003	a2004	a2005	a2006	a2007	a2008	a2009
a2002	1.0000							
a2003	0.9192	1.0000						
a2004	0.9216	0.9075	1.0000					
a2005	0.9365	0.9282	0.9346	1.0000				
a2006	5 0.8401	0.9115	0.8927	0.8781	1.0000			
a200	0.8865	0.9224	0.9241	0.9252	0.9594	1.0000		
a2008	0.8593	0.8538	0.9165	0.8703	0.9196	0.9413	1.0000	
a2009	0.8561	0.8569	0.9146	0.8770	0.9428	0.9378	0.9415	1.0000
a2011	0.8302	0.7937	0.8889	0.8447	0.8062	0.8504	0.8806	0.9069
a2012	0.8779	0.8594	0.8938	0.8917	0.8263	0.8889	0.8428	0.8770
a2013	0.8963	0.8830	0.9108	0.9039	0.9323	0.9399	0.9254	0.9463
a2014	0.8788	0.8955	0.8433	0.8988	0.8637	0.8935	0.8247	0.8402
a2015	0.8293	0.8729	0.8922	0.8719	0.9107	0.9271	0.8853	0.9206
	a2011	a2012	a2013	a2014	a2015			
a2011	1.0000							
a2012	0.9001	1.0000						
a2013	0.8987	0.9099	1.0000					
a2014	0.7985	0.9067	0.8997	1.0000				
a2015	0.8339	0.8232	0.9077	0.8125	1.0000			

The 2002 ranking was used as reference. The results confirm the "musical chairs game." The coefficients of the correlogram with uncontrolled premiums (Table 11) are high and stable, which is at odds with the correlogram for controlled premiums (Table 10).

Computer equipment and ancillary financial intermediation activities are among the industries whose relative wages sank, whereas petroleum and alcohol and tobacco are among those industries whose relative wages were pushed up.

Table 11. Correlogram of uncontrolled wage premiums at two-digit level

a2002 1.0000 a2003 0.9947 1.0000 a2004 0.9932 0.9974 1.0000 a2005 0.9919 0.9971 0.9993 1.0000 a2006 0.9691 0.9876 0.9858 0.9866 1.0000 a2007 0.9632 0.9047 0.9055 1.0000	2009
a2003 0.9947 1.0000 a2004 0.9932 0.9974 1.0000 a2005 0.9919 0.9971 0.9993 1.0000 a2006 0.9651 0.9876 0.9858 0.9866 1.0000 a2007 0.9820 0.9032 0.0477 0.9045 0.0055 1.0000	
a2004 0.9932 0.9974 1.0000 a2005 0.9919 0.9971 0.9993 1.0000 a2006 0.9691 0.9876 0.9858 0.9866 1.0000 a2007 0.9832 0.9032 0.0477 0.9858 1.9866 1.0000	
a2005 0.9919 0.9971 0.9993 1.0000 a2006 0.9691 0.9876 0.9858 0.9866 1.0000 -2007 0.9829 0.9032 0.0477 0.2658 1.0000	
a2006 0.9691 0.9876 0.9858 0.9866 1.0000	
-2007 0.0020 0.0022 0.0047 0.0045 0.0059 1.0000	
a2007 0.9820 0.9953 0.9947 0.9945 0.9958 1.0000	
a2008 0.9663 0.9844 0.9846 0.9850 0.9969 0.9969 1.0000	
a2009 0.9593 0.9805 0.9790 0.9795 0.9989 0.9928 0.9969 1.	0000
a2011 0.9659 0.9820 0.9811 0.9819 0.9956 0.9945 0.9978 0.	9964
a2012 0.9514 0.9708 0.9684 0.9689 0.9917 0.9880 0.9950 0.	9948
a2013 0.9423 0.9622 0.9607 0.9601 0.9871 0.9828 0.9909 0.	9917
a2014 0.9383 0.9596 0.9605 0.9610 0.9867 0.9835 0.9922 0.	9912
a2015 0.9474 0.9648 0.9668 0.9676 0.9864 0.9862 0.9928 0.	9900
a2011 a2012 a2013 a2014 a2015	
a2011 1.0000	
a2012 0.9978 1.0000	
a2013 0.9947 0.9987 1.0000	
a2014 0.9939 0.9979 0.9980 1.0000	
a2015 0.9960 0.9975 0.9965 0.9984 1.0000	

To assess wage structure, we decomposed the within-group and between-group components of wage premium variance (Wage premium variance can be decomposed into premium variance within each industry over time (within-group component) and premium variance between industries over time (between-group component). If the wage structure is actually very strict, then, ceteris paribus, one should expect the between-group component to be similar to or lower than the within-group component. However, if the wage structure experienced remarkable changes, one should expect the between-group component to be much higher than the within-group component. The within-group component was 8.01%, whereas the between-group component was 14.71%, nearly twice as high, corroborating important changes in the wage structure.

T-11-10	Daul-in a	1 - ····		0 1:		a a 4 a 1
Table 12.	Ranking	salarv	bremium	-2 digits -	with	control
			- · · ·			

Industries	2002	2003	2004	2005	2006	2007	2008	2009	2011	2012	2013	2014	2015
Air Transport	1	2	4	1	2	2	5	2	3	3	2	4	3
Oil extraction	2	1	2	2	3	1	1	1	1	1	1	1	1
Equip. IT	3	3	24	18	10	9	3	16	24	24	17	6	36
Aux. Activities interm. financial	4	25	9	7	26	17	6	14	29	29	22	24	20
Interm. Financ.seg. and previd. Priv.	5	4	8	5	7	4	7	5	9	9	10	10	6
Computer activities	6	5	5	4	14	8	9	6	6	6	8	9	9
Equip. Transport	7	16	16	15	9	13	10	11	13	13	5	5	14
Equip. from instrum.hospitalares	8	19	13	20	13	22	17	10	20	20	26	26	25
Research and Development	9	22	1	43	47	21	44	37	5	5	28	22	32
Electricity, gas and hot water	10	8	17	19	11	12	16	7	10	10	6	12	7
Apar.Equip. Communications	11	13	14	15	16	15	21	24	32	32	14	13	46
Auto-vehicles	12	7	7	8	8	5	12	12	11	11	12	14	13
Extraction of metallic minerals	13	9	6	13	5	6	4	5	4	4	3	2	12
Chemicals	14	20	20	17	15	18	18	20	16	16	21	23	18
Edition-Print	15	10	29	22	28	24	24	26	25	25	35	18	23
Car rental, machine. and equip.	16	17	42	27	32	20	22	38	34	34	18	45	22
Water transportation	17	23	11	14	6	10	23	4	2	2	4	8	3
Basic Metallurgy	18	18	16	21	18	14	16	17	14	14	11	16	11
Machines-Equipment	19	11	18	11	12	11	14	18	22	22	15	19	15
Metal Products	20	28	22	26	23	19	20	23	18	18	24	20	19
Smoke	21	30	10	29	4	3	8	9	7	7	13	47	10
Extraction of mineral coal	22	12	3	3	1	53	2	15	15	15	9	11	2
Insurance and private pension	23	6	37	10	19	23	13	19	8	8	25	28	26
Non-Metallic Minerals	24	27	34	40	37	40	26	21	26	26	36	30	44
Post and telecommunications	25	14	19	23	24	25	27	28	31	31	34	38	38
Activation of transpage on a trip	26	41	26	33	33	26	35	33	30	30	33	35	21
Oil-Alcohol	27	26	23	12	17	7	11	8	12	12	16	7	8
Recreational, cultural activities	28	37	32	32	29	30	28	36	35	35	37	27	40
Extraction of non-metallic minerals	29	35	28	9	25	16	25	13	17	17	19	15	17
Transport, Warehousing and Communication	30	29	30	30	31	31	33	34	27	27	27	25	27
Health and social services	31	31	25	31	30	33	34	25	42	42	42	38	39
Associative activities	32	42	38	41	36	44	29	43	41	41	41	44	47
Rubber-Plastic	33	34	33	25	22	27	31	30	38	38	30	32	28
Education	34	24	31	28	27	39	36	32	40	40	46	42	33
Machines, Apar, Electrical	35	21	12	24	21	29	19	22	19	19	23	23	24
Collection, treatment and distribution. Water	36	36	46	38	20	28	38	27	45	45	29	21	30
Cellulose-Paper	37	39	27	36	38	36	30	29	33	33	38	23	31
Vehicle trade and repair	38	32	35	34	34	34	39	35	28	28	32	31	29
Construction	39	38	36	35	34	34	39	35	21	21	20	17	16
Textiles	40	40	39	49	43	37	43	44	47	47	43	40	42
Recycling	41	33	45	53	44	49	51	48	43	43	48	43	35
Services provided to companies	42	44	44	42	39	43	42	41	37	37	40	39	37
Miscellaneous Furniture and Industries		45	41	37	41	38	40	39	36	36	39	37	41
Trade intermediaries		47	47	44	49	48	45	49	48	48	47	50	50
Agricultural		15	21	16	53	35	37	40	23	23	7	3	4
wood	46	48	43	48	45	41	41	42	39	39	34	36	34
Real estate activities	47	50	50	51	50	50	52	51	44	44	45	45	43
Food-Drinks	48	46	48	47	46	45	47	45	45	46	44	41	46
Accommodation and food	49	51	52	52	51	51	49	50	51	51	49	51	51
Leathers	50	43	49	45	42	46	48	52	52	53	53	53	52
Personal services	51	52	40	39	40	42	50	46	50	50	50	48	49
Clothing	52	49	51	46	48	47	46	47	53	53	52	52	53
Urban cleaning and sewage	53	53	53	50	52	52	53	53	49	51	51	49	48

Source: PNAD/IBGE.

7. Characteristics of Sectors That Pay Better and Worse

Table 13 shows the 12 sectors with the highest and lowest wage premiums. Commodities sectors and those sectors with highly concentrated markets, such as air transport, petroleum extraction, mineral coal extraction, financial institutions, and automotive industry, and more technology-intensive sectors are among those which

pay the highest premiums. On the other hand, sectors with more competitive markets, such as clothing, foods, recycling, and trade, sectors that use less technology, such as urban cleaning, housing, and wood, and sectors that require less capital stock are among those which pay the lowest premiums

Smallest	Averages	Larger	Averages
T êxteis	-15,21	Oil extraction	58,28
Food-Drinks	-12,13	Air Transport	47,84
Recycling	-12,12	Extraction of mineral coal	39,43
Personal services	-11,57	Extraction of metal minerals	33,64
Trade intermediaries	-8,89	Interm. Fin.seg.previd. Priv.	28,73
Real estate activities	-8,16	Water transportation	27,80
Leathers	-8,00	Computer activities	27,48
Accommodation-ood	-5,91	Auto-vehicles	25,28
Clothing	-5,87	Equip. Transport	24,81
Urban cleaning-ewage	-3,22	Equip. IT	23,54
Wood	-2,60	Electricity, gas-hot water	22,88
Miscell. Furniture. ndustries	-1,51	Oil-Alcohol	21,79

Table	e 13.	12	Minors	and	largest	averages	salary	premi	ums	average	value	es
-------	-------	----	--------	-----	---------	----------	--------	-------	-----	---------	-------	----

Source: PNAD/IBGE.

Table 14 compares the 2002 and 2015 rankings and shows the sectors whose premiums increased and decreased the most. Among the sectors whose premiums increased the most are those directly or indirectly linked to the primary sector, such as mineral extraction, mineral coal, non-metallic minerals, petroleum and alcohol, and tobacco. Among the sectors whose premiums decreased the most are those industries with various characteristics, including sectors that experienced substantial increase in international competition during the period. Negative and statistically significant correlation between wage premium and labor force participation suggests that better-paying sectors have fewer job openings and vice versa. In fact, the sectors that pay the lowest 12 premiums employ 39.6% of workers, whereas sectors that pay the highest premiums employ 5.9% of workers.

Table 14. Most significant changes comparing the 2002 and 2015 rankings

Industries	2002	2015	Movement
Water transportation	17	5	Elevation
Tobacco Industry	21	10	Elevation
Extraction of mineral coal	22	2	Elevation
Oil-Alcohol	27	8	Elevation
Extraction of non-metallic minerals	29	17	Elevation
Construction	39	16	Elevation
Agricultural	46	4	Elevation
Equip. IT	3	36	Fall
Aux. Activities interm. financial	4	20	Fall
Equip. Transport	7	14	Fall
Equip. from instrum.hospitalares	8	25	Fall
Research and Development	9	32	Fall
Apar.Equip. Communications	11	46	Fall
Edition-Print	15	23	Fall
Non-Metallic Minerals	24	44	Fall

Source: PNAD/IBGE.

8. Wage Premium and Competition

This section assesses the prospects of cross-sector competition and welfare based on the behavior and dynamics of interindustry wage premium. The goal is to identify sectors that simultaneously experience an increase in premium and in job creation.

Three sectors unequivocally meet the established criteria: petroleum and alcohol, extraction of metallic minerals,

and civil construction. Of these three sectors, two in the commodities market, prices increased in the period thanks to the favorable economic scenario in Brazil and to the boost in demand from China. In the case of petroleum, the sector benefited from discoveries of, and investments in, pre-salt. The tertiary sector, civil construction, is concerned with essentially domestic activities that benefited from public policies. Informatics activities also fall under this metric, but only from the mid-2000s onwards.

Although these sectors have offered more job openings, the petroleum and alcohol, and metallic minerals sectors employ far fewer workers in relative terms – in 2015, they accounted for a little bit more than 1% of total labor (Table 4). The petroleum sector is, however, extremely prosperous, because oil reserves in the pre-salt layer are subject to several restrictions that prevent its extraction by the available technologies. Moreover, the distance between the coast and the future oil wells increases logistics complexity. To circumvent these problems, tens of billion dollars would have to be invested in new technologies. Since technologies are not properly mastered yet, there are a huge variety of opportunities for investing in knowledge and industrial advances. If developed by universities and research centers in Brazil and incorporated by the industry, this knowledge and these competencies may have profound impact on several other industrial sectors, with unprecedented economic and social effects. This frontier of development shows great potential for the creation of high-quality jobs, static and dynamic increasing returns, externalities, productivity gains, high value added, and development of skills and competencies. The presence of a positive effect of firm size on workers' wages is well documented in the economic literature (Oi & Idson, 1999a). Edin and Zetterberg (1992) and Arai (1994) find considerable differences in wage levels between industries when controlling for the characteristics of individuals and firms.

Furthermore, this is the biggest opportunity known so far for investments, consolidation, and stimulation of production chains in Brazil. Pre-salt should therefore be viewed from the perspective of strategic economic policy.

The mineral extraction sector, in turn, has a much shorter production chain and fewer chances of improving Brazil's systemic productivity and competitiveness. Its most visible positive impact lies in the balance of trade. No matter how much the sector grows, it will not be an essential integral part of the equation for the increase in competitiveness and welfare, unless it is associated with specific fiscal policies and value-added industrial policies.

Civil construction accounts for a significant share of labor (6.25%), outranked only by trade (10.1%) and agriculture (6.54%). Given the large housing deficit in Brazil, the big infrastructure challenges, and the long production chain of this sector, the growth of civil construction may have significant impact on income and labor, especially if followed by an increase in technological knowledge, innovation, and labor productivity.

Some sectors do not meet the criteria established herein, but their wage premiums are high and employ a relatively large share of workers. According to this metric, the following sectors were identified: transport and storage, trade, and vehicle, machinery, and equipment repair.

9. Conclusions

This paper revisits interindustry wage differential in Brazil in a period of quick and intense labor market and output changes. The major conclusions of this study are described in what follows. First, the labor market was more segmented and more complex. On the one hand, there was a decrease in wage dispersion associated with variables that are typically used in studies of this nature. On the other hand, there was a relative increase in the importance of industrial affiliation and a significant increase in the importance of variables not measured by conventional statistics to explain wage dispersion. Owing to the larger integration of the Brazilian economy with the international economy, these results are in line with the expectations, suggesting that the labor market may have gone through extensive changes.

Secondly, there were changes in wage structure. Relative wages increased in some sectors but decreased in others. These changes suggest a tendency towards the reallocation of resources at the sectoral level.

As the dynamics of interindustry wage premium is associated with competitive potential, our analysis may be useful for the formulation of industrial, technological, innovation, human capital, foreign trade, labor, and income policies. The transfer of funds to sectors whose premiums show a tendency towards growth would increase, ceteris paribus, good-quality jobs, productivity, and value added.

The petroleum and alcohol, mineral extraction, and civil construction sectors have a large potential for increase in value added and labor. However, if indirect effects are taken into account, notably through value chains, the petroleum and alcohol and civil construction sectors would make major contributions.

Sectors such as transport and storage, trade, and vehicle, machinery, and equipment repair have potential, albeit more moderate, for an increase in income and value added due to the high level of wage premium and of labor.

References

- Aghion, P., Dewatripont, M., Du, L., Harrison, A. E., & Legros, P. (2011). Industrial policy and competition. SSRN #1811643. https://doi.org/10.2139/ssrn.1811643
- Allen, S. (1995). Update Notes on the Inter-industry Wage Structure: 1890-1990. *Industrial and Labor Relations Review*, 48, 305-21. https://doi.org/10.1177/001979399504800207
- Arai, M. (1994). An Empirical Analysis of Wage Dispersion and Efficiency Wages. Scandinavian Journal of Economics, 96, 31-50. https://doi.org/10.2307/3440665
- Arbache, J. (2001). Wage differentials in Brazil: Theory and evidence. *Journal of Development Studies, 38*, 109-130. https://doi.org/10.1080/00220380412331322281
- Arbache, J. (2012a). Transforma ção demográfica e competitividade internacional da economia brasileira. *Revista do BNDES*, *36*, 365-392.
- Arbache, J. (2012b). Is Brazilian manufacturing losing its drive? SSRN #2150684. https://doi.org/10.2139/ssrn.2150684
- Arbache, J., & Corseuil, C. H. (2004). Liberalização comercial e estruturas de emprego e salários. *Revista Brasileira de Economia*, 58, 485-505. https://doi.org/10.1590/S0034-71402004000400002
- Arbache, J., & De Negri, J. A. (2004). Diferenciais de salários interindustriais no Brasil: Evidências e implicações. *Revista Brasileira de Economia*, 58, 159-184. https://doi.org/10.1590/S0034-71402004000200002
- Arbache, J., Dickerson, A., & Green, F. (2001), A picture of wage inequality and the allocation of labor through a period of trade liberalization: The case of Brazil. *World Development*, 29, 1923-1939. https://doi.org/10.1016/S0305-750X(01)00071-7
- Arbache, J., Dickerson, A., & Green, F. (2004a). Assessing the Stability of the Inter-industry Wage Structure in the Face of Radical Economic Reforms. *Economics Letters*, 83, 149-155. https://doi.org/10.1016/j.econlet.2003.10.013
- Arbache, J., Dickerson, A., & Green, F. (2004b). Trade liberalization and wages in developing countries. *Economic Journal*, 114, 73-96. https://doi.org/10.1111/j.0013-0133.2004.00188.x
- Brander, J. (1995). Strategic trade policy. NBER WP 5020.https://doi.org/10.3386/w5020
- Dickens, W. T., & Katz, L. F. (1987). Inter-industry Wage Differences and Industry Characteristics. In K. Lang, & J. Leonard (Eds.), Unemployment and the Structure of Labor Markets. Oxford: Basil Blackwell. https://doi.org/10.3386/w2271
- Doeringer, P. B., & Piore, M. J. (1971). Internal labor markets and manpower analysis. Lexington: D.C. Health & Co.
- Eaton, J., & Grossman, G. N. (1986). Optimal trade and industrial policy under oligopoly. *Quarterly Journal of Economics*, 101, 383-406. https://doi.org/10.2307/1891121
- Gibbons, R., & Katz, L. (1992). Does Unmeasured Ability Explain Inter-Industry Wage Differen- tials? *Review* of Economic Studies, 59, 515-535. https://doi.org/10.2307/2297862
- Haisken-DeNew, J. P., & Schmidt, C. M. (1997). Inter-Industry and Inter-Region Differentials: Mechanics and Interpretation. *Review of Economics and Statistics*, 79, 516-521. https://doi.org/10.1162/rest.1997.79.3.516
- IPEA. (2012). Produtividade no Brasil nos anos 2000-2009: An dise das Contas Nacionais. *Comuni- cados IPEA No. 133.*
- Jayanthakumaran, K., Piyapong, S., & Martin, O. (2013). Trade liberalisation and manufacturing wage premiums: Evidence from Thailand. *Journal of Asian Economics*, 29, 15-23. https://doi.org/10.1016/j.asieco.2013.08.001
- Katz, B., & Hamp, P. (2013). The U.S. must 'race to the shop' to spur economic growth. *Brookings, Series:* Remaking Federalism, #21.
- Katz, L. F., & Summers, L. H. (1989). Industry Rents: Evidence and Implications. Brookings Papers on Economic Activity, Microeconomics, 209-275. https://doi.org/10.2307/2534722
- Krueger, A. B., & Summers, L. H. (1987). Reflections on Inter-Industry Wage Structure. In K. Lang, & J. Leonard (Eds.), Unemployment and the Structure of Labor Markets. Oxford: Basil Blackwell.

https://doi.org/10.3386/w1968

- Krueger, A. B., & Summers, L. H. (1988). Efficiency Wages and The Inter-Industry Wage Structure. *Econometrica*, 56, 259-293. https://doi.org/10.2307/1911072
- Murphy, K. M., & Topel, R. H. (1990). Efficiency Wages Reconsidered: Theory and Evidence. In Y. Weiss, & G. Fishelson (Eds.), Advances in Theory and Measurement of Unemployment. London: Macmillan. https://doi.org/10.1007/978-1-349-10688-2_8
- Nuun, N., & Trefler, D. (2010). The structure of tariffs and long-term growth. American Economic Journal: Macroeconomics, 2, 158-194. https://doi.org/10.1257/mac.2.4.158
- Oi, W. Y., & Idson, T. L. (1999a). Firm Size and Wages. In O. Ashenfelter, & D. Card (Eds.), *Handbook of labor economics* (3rd ed.). Amsterdam: North-Holland,
- Per-Anders, E., & Johnny, Z. (1992). Interindustry Wage Differentials: Evidence from Sweden and a Comparison with the United States. *American Economic Review*, 82, 1341-49.
- Spencer, B., & Brander, J. A. (2008). Strategic trade policy. In S. N. Durlauf, & L. E. Blume (Eds.), *The New Palgrave Dictionary of Economics*. Palgrave Macmillan. https://doi.org/10.1057/978-1-349-95121-5 2264-1
- Todd, L. I., & Walter, Y. O. (1999b). Workers Are More Productive in Large Firms. *The American Economic Review*, 89(2). Papers and Proceedings of the One Hundred Eleventh Annual Meeting of the American Economic Association (May, 1999), pp. 104-108. https://doi.org/10.1257/aer.89.2.104

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).