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Abstract 

We solve the Dirac equation for the Manning-Rosen plus shifted Deng-Fan potential including a Coulomb-like tensor 

potential with arbitrary spin–orbit coupling quantum number κ. In the framework of the spin and pseudospin (pspin) 

symmetry, we obtain the energy eigenvalue equation and the corresponding eigenfunctions in closed form by using the 

Nikiforov–Uvarov method. Also Special cases of the potential as been considered and their energy eigen values as well as 

their corresponding eigen functions are obtained for both relativistic and non-relativistic scope. 

Keywords: Dirac equation, Manning-Rosen potential, shifted Deng-Fan potential, spin and pseudospin symmetry, 

Nikiforov-Uvarov Method 

1. Introduction 

In 1957, in an effort to find a suitable diatomic potential to describe the vibrational spectrum, Deng and Fan proposed a 

molecular exponential-type potential called Generalized Morse potential (Ikot et al., 2014). This potential is also known 

as Deng-Fan molecular potential, DF, and it is a modification of the Morse potential. This potential has been a subject 

of numerous studies by researchers in various applications (Oyewumi et al., 2013), and can be used to describe the 

mobility of nucleons in the mean field produced from the interactions of the nuclei (Maghsoodi et al., 2012). In 2012, 

Hamzavi et al. proposed a modified form of the DF called Shifted Deng-Fan potential, sDF (Hamzavi and Ikhdair, 

2012). In the modification the DF potential shifted by dissociation energy α. It was demonstrated in their work that sDF 

and Morse potential are closely similar for values of r in the regions r ≈ re and r > re however they differ at r ≈ 0. In 

recent years numerous studies on the approximate analytical solution of Schrödinger equation with Manning-Rosen 

potential has been conducted (Awoga et al., 2013). The manning-Rosen potential was put forward to delineate the 

appropriate properties of diatomic molecules (Sameer Ikhdair, 2011). This potential is classified under exactly solvable 

and has been intensely studied. When spectrum of continuous range of values of the potential parameter could be 

determined analytically, such potentials are referred to as exactly solvable potentials (Min-Cang et al., 2010). Exactly 

solutions of wave equations with certain physical potential are of great interest in quantum mechanics. This is because 

the analysis makes the abstract understanding of the physical system and provides facts in affirming the impeccability 

of the quantum theory. This solution is paramount in examining and perfecting models and numerical methods 

employed for solving complex physical systems (Schiff, 1955). Recently, We reported the solution of the Dirac equation 

for the Manning-Rosen plus shifted Deng-Fan potential including a Yukawa-like tensor potential with arbitrary spin–

orbit coupling quantum number κ where, in the framework of the spin and pseudospin (pspin) symmetry, we obtained 

the energy eigenvalue equation and the corresponding eigenfunctions in closed form by using the Nikiforov–Uvarov 
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method. We also considered special cases of the potential and their energy eigen values as well as their corresponding 

eigen functions were obtained for both relativistic and non-relativistic scope (Louis et al., 2018).  In this work, our aim 

is to solve the Dirac equation for the Manning-Rosen plus shifted Deng-Fan (MRsDF) potential in the presence of spin 

and pspin symmetries and by including a Coulomb-like tensor potential. The MRsDF potential takes the following 

form: 

  𝑉(𝑟) = − *
𝐶𝑒−∝𝑟:𝐷𝑒−2∝𝑟

(1;𝑒−∝𝑟)2
+ + 𝐷𝑒 *

𝑏2

(𝑒𝛼𝑟;1)2
−

2𝑏

(𝑒𝛼𝑟;1)
+  b = 𝑒𝛼𝑟𝑒 − 1,                (1a) 

Thus eq. (1a) can be further expressed as  

  𝑉(𝑟) = − *
𝐶𝑒−∝𝑟:𝐷𝑒−2∝𝑟

(1;𝑒−∝𝑟)2
+ + 𝐷𝑒 *

𝑏2𝑒−2∝𝑟

(1;𝑒−∝𝑟)2
−

2𝑏𝑒−∝𝑟

(1;𝑒−∝𝑟)
+                  (1b) 

where α is the screening parameter, C, D are potential depths, 𝐷𝑒  is the Dissociation energy, where 𝑟𝑒  is the 

equilibrium bond length. 

This paper is organized as follows. In section 2, we briefly introduce the Dirac equation with scalar and vector 

potentials with arbitrary spin–orbit coupling quantum number κ including tensor interaction under spin and pspin 

symmetry limits. The Nikiforov–Uvarov (NU) method is presented in section3.The energy eigenvalue equations and 

corresponding eigenfunctions are obtained in section 4. In section 5, we discussed some special cases of the potential. 

Finally, our conclusion is given in section 6. 

1.1 The Dirac Equation With Tensor Coupling Potential 

The Dirac equation for fermionic massive spin-1/2 particles moving in the field of an attractive scalar potential 𝑆(𝑟), a 

repulsive vector potential 𝑉(𝑟) and a tensor potential𝑈(𝑟) (in units ħ = c = 1) is 

 [�⃗� ∙ �⃗� + 𝛽(𝑀 + 𝑆(𝑟)) − 𝑖𝛽�⃗� ∙ 𝑟𝑈(𝑟)]𝜓(𝑟) = [𝐸 − 𝑉(𝑟)]𝜓(𝑟).          (2) 

where 𝐸 is the relativistic binding energy of the system, 𝑝 = −𝑖�⃗⃗� is the three-dimensional momentum operator and 𝑀 

is the mass of the fermionic particle. �⃗� and 𝛽 are the 4×4 usual Dirac matrices given by 

  �⃗� = (0 �⃗�
�⃗� 0

),  𝛽 = (
𝐼 0
0 −𝐼

),                     (3) 

where 𝐼 is the 2×2 unitary matrix and  �⃗� are three-vector spin matrices 

  𝜎1 = (
0 1
1 0

) ,   𝜎2 = (
0 −𝑖
𝑖 0

),   𝜎3 = (
1 0
0 −1

)           (4) 

The eigenvalues of the spin–orbit coupling operator are 𝜅 = (𝑗 +
1

2
) > 0 and 𝜅 = −(𝑗 +

1

2
) < 0 for unaligned spin 

𝑗 = 𝑙 −
1

2
 and aligned spin 𝑗 = 𝑙 +

1

2
, respectively. The set (𝐻2, 𝐾, 𝐽2, 𝐽𝑧)  can be taken as the complete set of 

conservative quantities with 𝐽 being the total angular momentum operator and 𝐾 = (�⃗�. �⃗⃗� + 1) is the spin–orbit where 

�⃗⃗� is the orbital angular momentum of the spherical nucleons that commutes with the Dirac Hamiltonian. Thus, the 

spinor wave functions can be classified according to their angular momentum 𝑗, the spin–orbit quantum number 𝜅 and 

the radial quantum number 𝑛. Hence, they can be written as follows: 

 𝜓𝑛,𝜅(𝑟) = (
𝑓𝑛,𝜅(𝑟)

g𝑛,𝜅(𝑟)
) =

1

𝑟
(
𝐹𝑛,𝜅(𝑟) 𝑌𝑗𝑚

𝑙 (𝜃, 𝜑)

𝑖𝐺𝑛,𝜅(𝑟) 𝑌𝑗𝑚
𝑙 (𝜃, 𝜑)

),                  (5) 

where 𝑓𝑛,𝜅(𝑟) is the upper (large) component andg𝑛,𝜅(𝑟) is the lower (small) component of the Dirac spinors. 

𝑌𝑗𝑚
𝑙 (𝜃, 𝜑) and 𝑌𝑗𝑚

𝑙 (𝜃, 𝜑) are spin and pspin spherical harmonics, respectively, and 𝑚 is the projection of the angular 

momentum on the 𝑧 − 𝑎𝑥𝑖𝑠. Substituting equation (5) into equation (2) and making use of the following relations 

  (�⃗� ∙ 𝐴)(�⃗� ∙ �⃗⃗�) = 𝐴 ∙ �⃗⃗� + 𝑖�⃗� ∙ (𝐴 × �⃗⃗�),                 (6a) 

  (�⃗� ∙ �⃗⃗�) = �⃗� ∙ �̂� (�̂� ∙ �⃗⃗� + 𝑖
�⃗⃗⃗�∙�⃗⃗�

𝑟
),              (6b) 

together with the properties 
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         (�⃗� ∙ �⃗⃗�)𝑌𝑗𝑚
𝑙 (𝜃, 𝜑) = (𝜅 − 1)𝑌𝑗𝑚

𝑙 (𝜃, 𝜑), 

   (�⃗� ∙ �⃗⃗�)𝑌𝑗𝑚
𝑙 (𝜃, 𝜑) = −(𝜅 − 1)𝑌𝑗𝑚

𝑙 (𝜃, 𝜑),                           (7) 

         (�⃗� ∙ �̂�)𝑌𝑗𝑚
𝑙 (𝜃, 𝜑) = −𝑌𝑗𝑚

𝑙 (𝜃, 𝜑), 

         (�⃗� ∙ �̂�)𝑌𝑗𝑚
𝑙 (𝜃, 𝜑) = −𝑌𝑗𝑚

𝑙 (𝜃, 𝜑), 

one obtains two coupled differential equations whose solutions are the upper and lower radial wave functions 𝐹𝑛,𝜅(𝑟) 

and 𝐺𝑛,𝜅(𝑟) as 

 (
𝑑

𝑑𝑟
+
𝜅

𝑟
− 𝑈(𝑟)) 𝐹𝑛,𝜅(𝑟) = (𝑀 + 𝐸𝑛𝜅 − Δ(𝑟)) 𝐺𝑛,𝜅(𝑟),           (8a) 

 (
𝑑

𝑑𝑟
−
𝜅

𝑟
+ 𝑈(𝑟)) 𝐺𝑛,𝜅(𝑟) = (𝑀 − 𝐸𝑛𝜅 + Σ(𝑟)) 𝐹𝑛,𝜅(𝑟),           (8b) 

where 

     Δ(𝑟) = 𝑉(𝑟) − 𝑆(𝑟),                               (9a) 

   

     Σ(𝑟) = 𝑉(𝑟) + 𝑆(𝑟),                              (9b) 

After eliminating 𝐹𝑛,𝜅(𝑟) and 𝐺𝑛,𝜅(𝑟) in equations (8), we obtain the following two Schrodinger-like differential 

equations for the upper and lower radial spinor components: 

*
𝑑2

𝑑𝑟2
−
𝜅(𝜅:1)

𝑟2
+
2𝜅

𝑟
𝑈(𝑟) −

𝑑𝑈(𝑟)

𝑑𝑟
− 𝑈2(𝑟)+ 𝐹𝑛,𝜅(𝑟) +

𝑑Δ(𝑟)

𝑑𝑟

𝑀:𝐸𝑛𝜅;Δ(𝑟)
(
𝑑

𝑑𝑟
+
𝜅

𝑟
− 𝑈(𝑟))𝐹𝑛,𝜅(𝑟)=[(𝑀 + 𝐸𝑛𝜅 − Δ(𝑟))(𝑀 − 𝐸𝑛𝜅 +

Σ(𝑟))]𝐹𝑛,𝜅(𝑟)           (10) 

*
𝑑2

𝑑𝑟2
−
𝜅(𝜅;1)

𝑟2
+
2𝜅

𝑟
𝑈(𝑟) +

𝑑𝑈(𝑟)

𝑑𝑟
− 𝑈2(𝑟)+ 𝐺𝑛,𝜅(𝑟) +

𝑑Σ(𝑟)

𝑑𝑟

𝑀;𝐸𝑛𝜅:Σ(𝑟)
(
𝑑

𝑑𝑟
−
𝜅

𝑟
+ 𝑈(𝑟)) 𝐺𝑛,𝜅(𝑟)=[(𝑀 + 𝐸𝑛𝜅 − Δ(𝑟))(𝑀 − 𝐸𝑛𝜅 +

Σ(𝑟))] 𝐺𝑛,𝜅(𝑟),          (11) 

respectively, where 𝜅(𝜅 − 1) = 𝑙(𝑙 + 1) and 𝜅(𝜅 + 1) = 𝑙(𝑙 + 1). 

The quantum number κ is related to the quantum numbers for spin symmetry 𝑙 and pspin symmetry 𝑙 as 

  𝜅 =

{
  
 

  
 −(𝑙 + 1) = −(𝑗 +

1

2
) (𝑠1 2⁄ , 𝑝3 2⁄ , 𝑒𝑡𝑐)

𝑗 = 𝑙 +
1

2
,   𝑎𝑙𝑖𝑔𝑛𝑒𝑑 𝑠𝑝𝑖𝑛 (𝜅 < 0),

+𝑙 = +(𝑗 +
1

2
) (𝑝1 2⁄ , 𝑑3 2⁄ , 𝑒𝑡𝑐)

𝑗 = 𝑙 −
1

2
,   𝑢𝑛𝑎𝑙𝑖𝑔𝑛𝑒𝑑 𝑠𝑝𝑖𝑛 (𝜅 > 0) ,

                        (12) 

and the quasidegenerate doublet structure can be expressed in terms of a pspin angular momentum  �̂� = 1/2 and 

pseudo-orbital angular momentum  𝑙, which is defined as   

  𝜅 =

{
  
 

  
 − 𝑙 = −(𝑗 +

1

2
) (𝑠1 2⁄ , 𝑝3 2⁄ , 𝑒𝑡𝑐)

𝑗 =  𝑙 −
1

2
,   𝑎𝑙𝑖𝑔𝑛𝑒𝑑 𝑠𝑝𝑖𝑛 (𝜅 < 0),

+( 𝑙 + 1) = +(𝑗 +
1

2
) (𝑑3 2⁄ , 𝑓5 2⁄ , 𝑒𝑡𝑐)

𝑗 =  𝑙 +
1

2
,   𝑢𝑛𝑎𝑙𝑖𝑔𝑛𝑒𝑑 𝑠𝑝𝑖𝑛 (𝜅 > 0) ,

                   (13) 

where 𝜅 = ±1,±2, . . .. For example, (1𝑠1/2, 0𝑑3/2) and (0𝑝3/2, 0𝑓5/2) can be considered as pspin doublets 
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1.2 Spin Symmetry Limit 

In the spin symmetry limit, 
𝑑Δ(𝑟)

𝑑𝑟
= 0 or Δ(𝑟) = 𝐶𝑠 =constant, with  Σ(𝑟) taking as the MRsDF potential eq. (1b) and 

the coulomb-like tensor potential. i.e  

Σ(𝑟) = 𝑉(𝑟) = − *
𝐶𝑒−∝𝑟:𝐷𝑒−2∝𝑟

(1;𝑒−∝𝑟)2
+ + 𝐷𝑒 *

𝑏2𝑒−2∝𝑟

(1;𝑒−∝𝑟)2
−

2𝑏𝑒−∝𝑟

(1;𝑒−∝𝑟)
+,                 (14) 

𝑈(𝑟) = −
𝐻

𝑟
, 𝐻 =

𝑍𝑎𝑍𝑏𝑒
2

4𝜋𝜀0
, 𝑟 ≥ 𝑅𝑐,                  (15) 

where 𝑅𝑐 = 7.78 fm is the Coulomb radius and Za and Zb denote the charges of the projectile a and the target nuclei b, 

respectively[]. Under this symmetry, equation (10) is recast in the simple form 

*
𝑑2

𝑑𝑟2
−
𝜅(𝜅:1)

𝑟2
−
2𝜅𝐻

𝑟2
−

𝐻

𝑟2
−
𝐻2

𝑟2
+ 𝐹𝑛,𝜅(𝑟)=*𝛾 (− *

𝐶𝑒−∝𝑟:𝐷𝑒−2∝𝑟

(1;𝑒−∝𝑟)2
+ + 𝐷𝑒 *

𝑏2𝑒−2∝𝑟

(1;𝑒−∝𝑟)2
−

2𝑏𝑒−∝𝑟

(1;𝑒−∝𝑟)
+) + 𝛽2+ 𝐹𝑛,𝜅(𝑟)    (16a) 

where 𝜅 =  𝑙 and 𝜅 =  −𝑙 − 1 for κ < 0 and κ > 0, respectively. Also, 𝛾 = (𝑀 + 𝐸𝑛𝜅 − 𝐶𝑠) and 𝛽2 = (𝑀 −
𝐸𝑛𝜅)(𝑀 + 𝐸𝑛𝜅 − 𝐶𝑠) .          (16b) 

1.3 Pseudospin Symmetry Limit 

Lucha and Schober (2011) showed that there is a connection between pspin symmetry and near equality of the time 

component of a vector potential and the scalar potential, 𝑉(𝑟) ≈ −𝑆(𝑟). After that, Ikhdair (2012) derived that if 

𝑑Σ(𝑟)

𝑑𝑟
= 0 or Σ(𝑟) = 𝐶𝑝𝑠 =constant, then pspin symmetry is exact in the Dirac equation. Here, we are taking Δ(𝑟) as 

the MRsDF potential eq. (1b) and the tensor potential as the Coulomb-like potential. thus, equation (11) is recast in the 

simple form 

*
𝑑2

𝑑𝑟2
−
𝜅(𝜅;1)

𝑟2
−
2𝜅𝐻

𝑟2
+

𝐻

𝑟2
−
𝐻2

𝑟2
+ 𝐺𝑛,𝜅(𝑟)=*�̃� (− *

𝐶𝑒−∝𝑟:𝐷𝑒−2∝𝑟

(1;𝑒−∝𝑟)2
+ + 𝐷𝑒 *

𝑏2𝑒−2∝𝑟

(1;𝑒−∝𝑟)2
−

2𝑏𝑒−∝𝑟

(1;𝑒−∝𝑟)
+) + �̃�2+ 𝐺𝑛,𝜅(𝑟)   (17a) 

where 𝜅 =  −𝑙 and 𝜅 =  𝑙 + 1 for κ < 0 and κ > 0, respectively. Also, �̃� = (𝐸𝑛𝜅 −𝑀 − 𝐶𝑝𝑠) and 𝛽2 = (𝑀 +

𝐸𝑛𝜅)(𝑀 − 𝐸𝑛𝜅 + 𝐶𝑝𝑠) .                  (17b) 

to obtain the analytic solution, we use an approximation for the centrifugal term as (Louis et al., 2018) (Ita et al., 2018) 

1

𝑟2
=  

𝛼2

(1; 𝑒−𝛼𝑟)2
                (18) 

Finally, for the solutions to equations (16) and (17) with the above approximation, we will employ the NU method, 

which is briefly introduced in the following section 

2. The Nikiforov–Uvarov (NU) Method 

The NU method is based on the solutions of a generalized second order linear differential equation with special 

orthogonal functions. The hypergeometric (Ita et al., 2018) method has shown its power in calculating the exact energy 

levels of all bound states for some solvable quantum systems.  

 Ψn
  ′′(s) + 

𝜏 ̃(𝑠)

𝜎 (𝑠)
 Ψn

  ′(s) + 
𝜎 (𝑠)

𝜎2(𝑠)
 Ψn(s) = 0                 (19) 

Where σ(s) and 𝜎(s) are polynomials at most second degree and 𝜏 ̃(s) is first degree polynomials. The parametric 

generalization of the N-U method is given by the generalized hypergeometric-type equation 

𝛹′′(𝑠) + 
𝑐1; 𝑐2𝑠

𝑠(1; 𝑐3𝑠)
𝛹′(𝑠) + 

1

𝑠2(1; 𝑐3𝑠)
2
[−𝜖1𝑠

2  +  𝜖2𝑠 − 𝜖3]𝛹(𝑠) = 0         (20) 

Thus eqn. (2) can be solved by comparing it with equation (3) and the following polynomials are obtained 

             𝜏 ̃(𝑠) =  (𝑐1 − 𝑐2𝑠), 𝜎(𝑠) = 𝑠(1 − 𝑐3𝑠), 𝜎(𝑠) =  −𝜖1𝑠
2  +  𝜖2𝑠 − 𝜖3          (21) 

The parameters obtainable from equation (4) serve as important tools to finding the energy eigenvalue and 

eigenfunctions. They satisfy the following sets of equation respectively 

𝑐2𝑛 – (2𝑛 + 1)𝑐5 + (2𝑛 + 1)(√𝑐9 + 𝑐3√𝑐8) + 𝑛(𝑛 − 1)𝑐3 + 𝑐7 + 2𝑐3𝑐8 + 2√𝑐8𝑐9  =  0        (22) 
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(𝑐2 − 𝑐3)𝑛 + 𝑐3𝑛
2 – (2𝑛 + 1)𝑐5 + (2𝑛 + 1)(√𝑐9 + 𝑐3√𝑐8) + 𝑐7 + 2𝑐3𝑐8 + 2√𝑐8𝑐9 =  0               (23) 

While the wave function is given as 

𝛹𝑛(𝑠) = 𝑁𝑛,𝑙𝑆
𝑐12(1 − 𝑐3𝑠)

;𝑐12;
𝑐13
𝑐3 𝑃𝑛

(𝑐10;1,
𝑐11
𝑐3
; 𝑐10; 1)(1 − 2𝑐3𝑠)           (24) 

Where  

𝑐4 =
1

2
(1 − 𝑐1), 𝑐5 = 

1

2
(𝑐2 − 2𝑐3), 𝑐6 = 𝑐5

2 + 𝜖1, 𝑐7 = 2𝑐4𝑐5 - 𝜖2, 𝑐8 = 𝑐4
2 + 𝜖3,  

𝑐9 = 𝑐3𝑐7 + 𝑐3
2𝑐8 + 𝑐6, 𝑐10 = 𝑐1 + 2𝑐4 +  2√𝑐8 , 𝑐11 = 𝑐2 − 2𝑐5 +  2(√𝑐9 +  c3√𝑐8)  

𝑐12 = 𝑐4 + √𝑐8 , 𝑐13 = 𝑐5 − (√𝑐9 +  c3√𝑐8)       (25) 

and 𝑃𝑛is the orthogonal polynomials. 

3. Solutions to the Dirac Equation 

We will now solve the Dirac equation with the MRsDF potential and tensor potential by using the NU method. 

3.1 The Spin Symmetric Case 

To obtain the solution to equation (16), by using the transformation 𝑠 = 𝑒;𝛼𝑟, we rewrite it as follows: 

𝑑2𝐹𝑛,𝜅(𝑠)

𝑑𝑠2
+

(1;𝑠)

𝑠(1;𝑠)

𝑑𝐹𝑛,𝜅(𝑠)

𝑑𝑠
+

1

𝑠2(1;𝑠)2
*−𝜂𝜅(𝜂𝜅 − 1) +

𝛾

𝛼2
(𝐶𝑠 + 𝐷𝑠2 − 𝐷𝑒𝑏

2𝑠2 + 2𝐷𝑒𝑏𝑠(1 − 𝑠)) −
𝛽2

𝛼2
(1 − 𝑠)2+ 𝐹𝑛,𝜅(𝑠) = 0,   (26) 

Eq. (26) is further simplified as 

𝑑2𝐹𝑛,𝜅(𝑠)

𝑑𝑠2
+

(1;𝑠)

𝑠(1;𝑠)

𝑑𝐹𝑛,𝜅(𝑠)

𝑑𝑠
+

1

𝑠2(1;𝑠)2
*− (

𝛽2

𝛼2
−
2𝛾𝐷𝑒𝑏

𝛼2
+
𝛾𝐷𝑒𝑏

2

𝛼2
−
𝛾𝐷

𝛼2
) 𝑠2 + (

2𝛽2

𝛼2
+
2𝛾𝐷𝑒𝑏

𝛼2
+
𝛾𝐶

𝛼2
) 𝑠 − (

𝛽2

𝛼2
+ 𝜂𝜅(𝜂𝜅 − 1))+ 𝐹𝑛,𝜅(𝑠) = 0,  (27) 

where 𝜂𝜅 = 𝜅 + 𝐻 + 1, Comparing eq. (27) with eq. (20), we obtain  

         𝑐1 = 1,    𝜖1 =
𝛽2

𝛼2
−
2𝛾𝐷𝑒𝑏

𝛼2
+
𝛾𝐷𝑒𝑏

2

𝛼2
−
𝛾𝐷

𝛼2
  

  𝑐2 = 1,    𝜖2 =
2𝛽2

𝛼2
+
2𝛾𝐷𝑒𝑏

𝛼2
+
𝛾𝐶

𝛼2
                  (28) 

         𝑐3 = 1,    𝜖3 =
𝛽2

𝛼2
+ 𝜂𝜅(𝜂𝜅 − 1)   

and from eq. (25), we further obtain 

𝑐4 = 0,                                                         𝑐5 = −
1

2
,  

𝑐6 =
1

4
+
𝛽2

𝛼2
−
2𝛾𝐷𝑒𝑏

𝛼2
+
𝛾𝐷𝑒𝑏

2

𝛼2
−
𝛾𝐷

𝛼2
,                     𝑐7 = −(

2𝛽2

𝛼2
+
2𝛾𝐷𝑒𝑏

𝛼2
+
𝛾𝐶

𝛼2
),  

𝑐8 =
𝛽2

𝛼2
+ 𝜂𝜅(𝜂𝜅 − 1),                             𝑐9 = (𝜂𝜅 −

1

2
)
2
−
𝛾𝐷

𝛼2
−
𝛾𝐶

𝛼2
+
𝛾𝐷𝑒𝑏

2

𝛼2
,  

𝑐10 = 1 + 2√
𝛽2

𝛼2
+ 𝜂𝜅(𝜂𝜅 − 1), 

𝑐11 = 2 + 2(√(𝜂𝜅 −
1

2
)
2
−
𝛾𝐷

𝛼2
−
𝛾𝐶

𝛼2
+
𝛾𝐷𝑒𝑏

2

𝛼2
+√

𝛽2

𝛼2
+ 𝜂𝜅(𝜂𝜅 − 1)),      (29) 

𝑐12 = √
𝛽2

𝛼2
+ 𝜂𝜅(𝜂𝜅 − 1), 

𝑐13 = −
1

2
− (√(𝜂𝜅 −

1

2
)
2

−
𝛾𝐷

𝛼2
−
𝛾𝐶

𝛼2
+
𝛾𝐷𝑒𝑏

2

𝛼2
+√

𝛽2

𝛼2
+ 𝜂𝜅(𝜂𝜅 − 1)) 

In addition, the energy eigenvalue equation can be obtained by using eq. (23) as follows: 
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(𝑛 +
1

2
+ √(𝜂𝜅 −

1

2
)
2
−
𝛾𝐷

𝛼2
−
𝛾𝐶

𝛼2
+
𝛾𝐷𝑒𝑏

2

𝛼2
+√

𝛽2

𝛼2
+ 𝜂𝜅(𝜂𝜅 − 1))

2

=
𝛽2

𝛼2
−
𝛾𝐷

𝛼2
+
2𝛾𝐷𝑒𝑏

𝛼2
+
𝛾𝐷𝑒𝑏

2

𝛼2
  (30) 

By substituting the explicit forms of 𝛾 𝑎𝑛𝑑 𝛽2 after equation (16) into equation (30), one can readily obtain the closed 

form for the energy formula. 

(𝑛 +
1

2
+ √(𝜂𝜅 −

1

2
)
2
−

𝐷

𝛼2
(𝑀 + 𝐸𝑛𝜅 − 𝐶𝑠) −

𝐶

𝛼2
(𝑀 + 𝐸𝑛𝜅 − 𝐶𝑠) +

𝐷𝑒𝑏
2

𝛼2
(𝑀 + 𝐸𝑛𝜅 − 𝐶𝑠) +

√
1

𝛼2
((𝑀 − 𝐸𝑛𝜅)(𝑀 + 𝐸𝑛𝜅 − 𝐶𝑠)) + 𝜂𝜅(𝜂𝜅 − 1))

2

=
1

𝛼2
((𝑀 − 𝐸𝑛𝜅)(𝑀 + 𝐸𝑛𝜅 − 𝐶𝑠)) −

𝐷

𝛼2
(𝑀 + 𝐸𝑛𝜅 − 𝐶𝑠) +

𝐷𝑒𝑏
2

𝛼2
(𝑀 + 𝐸𝑛𝜅 −

𝐶𝑠) +
2𝐷𝑒𝑏

𝛼2
(𝑀 + 𝐸𝑛𝜅 − 𝐶𝑠)         (31) 

On the other hand, to find the corresponding wave functions, referring to equation (29) and eq. (24), we obtain the upper 

component of the Dirac spinor from eq. 24 as 

𝐹𝑛,𝜅(𝑠) = 𝐵𝑛,𝜅𝑠
√𝛽

2

𝛼2
:𝜂𝜅(𝜂𝜅;1)(1 − 𝑠)

1

2
:√(𝜂𝜅;

1

2
)
2
;
𝛾𝐷

𝛼2
;
𝛾𝐶

𝛼2
:
𝛾𝐷𝑒𝑏

2

𝛼2 𝑃𝑛
(2√

𝛽2

𝛼2
:𝜂𝜅(𝜂𝜅;1),2√(𝜂𝜅;

1

2
)
2
;
𝛾𝐷

𝛼2
;
𝛾𝐶

𝛼2
:
𝛾𝐷𝑒𝑏

2

𝛼2
)
(1 − 2𝑠) (32) 

where 𝐵𝑛,𝜅 is the normalization constant. The lower component of the Dirac spinor can be calculated from equation 

(8a) 

  𝐺𝑛,𝜅(𝑟) =
1

(𝑀:𝐸𝑛𝜅;𝐶𝑠)
(
𝑑

𝑑𝑟
+
𝜅

𝑟
− 𝑈(𝑟))𝐹𝑛,𝜅(𝑟)      (33) 

where 𝐸𝑛𝜅 ≠ −𝑀 + 𝐶𝑠 . 

3.2 The Pseudospin Symmetric Case 

To avoid repetition in the solution of equation (17), we follow the same procedures explained in section 4.1and hence 

obtain the following energy eigenvalue equation: 

(𝑛 +
1

2
+ √(ᴧ𝜅 −

1

2
)
2
−
�̃�𝐷

𝛼2
−
�̃�𝐶

𝛼2
+
�̃�𝐷𝑒𝑏

2

𝛼2
+ √

�̃�2

𝛼2
+ ᴧ𝜅(ᴧ𝜅 − 1))

2

=
�̃�2

𝛼2
−
�̃�𝐷

𝛼2
+
�̃�𝐷𝑒𝑏

2

𝛼2
+
2�̃�𝐷𝑒𝑏

𝛼2
   (34) 

By substituting the explicit forms of �̃� 𝑎𝑛𝑑 �̃�2after equation (17b) into equation (34), one can readily obtain the closed form for the 

energy formula as 

(𝑛 +
1

2
+ √(ᴧ𝜅 −

1

2
)
2
−

𝐷

𝛼2
(𝐸𝑛𝜅 −𝑀 − 𝐶𝑝𝑠) −

𝐶

𝛼2
(𝐸𝑛𝜅 −𝑀 − 𝐶𝑝𝑠) +

𝐷𝑒𝑏
2

𝛼2
(𝐸𝑛𝜅 −𝑀 − 𝐶𝑝𝑠) +

√
1

𝛼2
((𝑀 + 𝐸𝑛𝜅)(𝑀 − 𝐸𝑛𝜅 + 𝐶𝑝𝑠)) + ᴧ𝜅(ᴧ𝜅 − 1))

2

=
1

𝛼2
((𝑀 + 𝐸𝑛𝜅)(𝑀 − 𝐸𝑛𝜅 + 𝐶𝑠)) −

𝐷

𝛼2
(𝐸𝑛𝜅 −𝑀 − 𝐶𝑝𝑠) +

𝐷𝑒𝑏
2

𝛼2
(𝐸𝑛𝜅 −𝑀 −

𝐶𝑝𝑠) +
2𝐷𝑒𝑏

𝛼2
(𝐸𝑛𝜅 −𝑀 − 𝐶𝑝𝑠)         (35) 

and the corresponding wave functions for the upper Dirac spinor as 

𝐺𝑛,𝜅(𝑟) = �̃�𝑛,𝜅𝑠
√�̃�

2

𝛼2
:ᴧ𝜅(ᴧ𝜅;1)(1 − 𝑠)

1

2
:√(ᴧ𝜅;

1

2
)
2
;
�̃�𝐷

𝛼2
;
�̃�𝐶

𝛼2
:
�̃�𝐷𝑒𝑏

2

𝛼2 𝑃𝑛
(2√

�̃�2

𝛼2
:ᴧ𝜅(ᴧ𝜅;1),2√(ᴧ𝜅;

1

2
)
2
;
�̃�𝐷

𝛼2
;
�̃�𝐶

𝛼2
:
�̃�𝐷𝑒𝑏

2

𝛼2
)
(1 − 2𝑠)     (36) 

were ᴧ𝜅 =  𝜅 + 𝐻  and �̃�𝑛,𝜅  is  the normalization constant. Finally, the Upper-spinor component of the Dirac 

equation can be obtained via equation (8b) as 

  𝐹𝑛,𝜅(𝑟) =
1

(𝑀;𝐸𝑛𝜅:𝐶𝑝𝑠)
(
𝑑

𝑑𝑟
−
𝜅

𝑟
+ 𝑈(𝑟))𝐺𝑛,𝜅(𝑟)      (37) 

where 𝐸𝑛𝜅 ≠ 𝑀 + 𝐶𝑝𝑠 . 

4. Discussion 

In this section, we are going to study some special cases of the energy eigenvalues given by Eqs. (31) and (35) for the 

spin and pseudospin symmetries, respectively. 

Case 1. If one sets 𝐶𝑠 = 0 , 𝐶𝑝𝑠 = 0, 𝐷𝑒 = 0 in eq. (31) and eq. (35), we obtain the energy equation of Manning-Rosen 

potential for spin and pseudospin symmetric Dirac theory respectively,  
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(𝑛 +
1

2
+ √(𝜂𝜅 −

1

2
)
2
−

𝐷

𝛼2
(𝑀 + 𝐸𝑛𝜅) −

𝐶

𝛼2
(𝑀 + 𝐸𝑛𝜅) + √

1

𝛼2
((𝑀 − 𝐸𝑛𝜅)(𝑀 + 𝐸𝑛𝜅)) + 𝜂𝜅(𝜂𝜅 − 1))

2

=
1

𝛼2
((𝑀 − 𝐸𝑛𝜅)(𝑀 +

𝐸𝑛𝜅)) −
𝐷

𝛼2
(𝑀 + 𝐸𝑛𝜅)         (38) 

and 

(𝑛 +
1

2
+ √(ᴧ𝜅 −

1

2
)
2
−

𝐷

𝛼2
(𝐸𝑛𝜅 −𝑀) −

𝐶

𝛼2
(𝐸𝑛𝜅 −𝑀) + √

1

𝛼2
(𝑀 + 𝐸𝑛𝜅)(𝑀 − 𝐸𝑛𝜅) + ᴧ𝜅(ᴧ𝜅 − 1))

2

=
1

𝛼2
(𝑀 + 𝐸𝑛𝜅)(𝑀 − 𝐸𝑛𝜅) −

𝐷

𝛼2
(𝐸𝑛𝜅 −𝑀)          (39) 

Case 2: If one sets 𝐶𝑠 = 0 , 𝐶𝑝𝑠 = 0, 𝐶 = 𝐷 = 0 in eq. (31) and eq. (35), we obtain the energy equation of shifted 

Deng-Fan potential for spin and pseudospin symmetric Dirac theory respectively,  

(𝑛 +
1

2
+ √(𝜂𝜅 −

1

2
)
2
+
𝐷𝑒𝑏

2

𝛼2
(𝑀 + 𝐸𝑛𝜅 − 𝐶𝑠) + √

1

𝛼2
((𝑀 − 𝐸𝑛𝜅)(𝑀 + 𝐸𝑛𝜅 − 𝐶𝑠)) + 𝜂𝜅(𝜂𝜅 − 1))

2

=
1

𝛼2
((𝑀 − 𝐸𝑛𝜅)(𝑀 + 𝐸𝑛𝜅 −

𝐶𝑠)) +
𝐷𝑒𝑏

2

𝛼2
(𝑀 + 𝐸𝑛𝜅 − 𝐶𝑠) +

2𝐷𝑒𝑏

𝛼2
(𝑀 + 𝐸𝑛𝜅 − 𝐶𝑠)           (40) 

and 

(𝑛 +
1

2
+ √(ᴧ𝜅 −

1

2
)
2
+
𝐷𝑒𝑏

2

𝛼2
(𝐸𝑛𝜅 −𝑀 − 𝐶𝑝𝑠) + √

1

𝛼2
((𝑀 + 𝐸𝑛𝜅)(𝑀 − 𝐸𝑛𝜅 + 𝐶𝑝𝑠)) + ᴧ𝜅(ᴧ𝜅 − 1))

2

=
1

𝛼2
((𝑀 + 𝐸𝑛𝜅)(𝑀 − 𝐸𝑛𝜅 +

𝐶𝑠)) −
𝐷

𝛼2
(𝐸𝑛𝜅 −𝑀 − 𝐶𝑝𝑠) +

𝐷𝑒𝑏
2

𝛼2
(𝐸𝑛𝜅 −𝑀 − 𝐶𝑝𝑠) +

2𝐷𝑒𝑏

𝛼2
(𝐸𝑛𝜅 −𝑀 − 𝐶𝑝𝑠)         (41) 

Case 3: Let us now discuss the relativistic limit of the energy eigenvalues and wavefunctions of our solutions. If we take 

𝐶𝑠 = 0,𝐻 = 0, 𝜅 → 𝑙   and put 𝑆(𝑟) = 𝑉(𝑟) = Σ(𝑟), the nonrelativistic limit of energy equation 31 for MRsDF 

potential and wave function  32 under the following appropriate transformations 𝑀 + 𝐸𝑛𝜅 →
2𝜇

ђ2
, and 𝑀 − 𝐸𝑛𝜅 →

−𝐸𝑛𝑙 becomes 

𝐸𝑛𝑙 = −
𝛼2ћ2

2𝜇
{*

2𝑙(𝑙:1);
2𝜇𝐶

𝛼2ћ2
:
4𝜇𝐷𝑒
𝛼2ћ2

𝑏:(𝑛2:𝑛:
1

2
):(2𝑛:1)√(𝑙:

1

2
)
2
;
2𝜇𝐶

𝛼2ћ2
;
2𝜇𝐷

𝛼2ћ2
:
2𝜇𝐷𝑒
𝛼2ћ2

𝑏2

(2𝑛:1):2√(𝑙:
1

2
)
2
;
2𝜇𝐶

𝛼2ћ2
;
2𝜇𝐷

𝛼2ћ2
:
2𝜇𝐷𝑒
𝛼2ћ2

𝑏2
+

2

−  𝑙(𝑙 + 1)}    (42) 

and the associated wave functions 𝐹𝑛𝜅(𝑠) → 𝑅𝑛,𝑙(𝑠) are 

𝑅𝑛,𝑙(𝑠) = 𝑁𝑛,𝑙𝑠
𝑈
2⁄ (1 − 𝑠)

(𝑉;1)
2⁄ 𝑃𝑛

(𝑈,𝑉)(1 − 2𝑠),       (43) 

where 𝑈 = 2√
2𝜇𝐸𝑛𝑙

∝2ћ2
+ 𝑙(𝑙 + 1) and 𝑉 = 2√(𝑙 +

1

2
)
2
−

2𝜇𝐶

𝛼2ћ2
−

2𝜇𝐷

𝛼2ћ2
+
2𝜇𝐷𝑒

𝛼2ћ2
𝑏2     (44) 

Case 4: If  𝐷𝑒 = 0 in eq. (42), we obtain the energy equation of Manning-Rosen potential in the non-relativistic limit 

𝐸𝑛𝑙 = −
𝛼2ћ2

2𝜇
{*

2𝑙(𝑙:1);
2𝜇𝐶

𝛼2ћ2
:(𝑛2:𝑛:

1

2
):(2𝑛:1)√(𝑙:

1

2
)
2
;
2𝜇𝐶

𝛼2ћ2
;
2𝜇𝐷

𝛼2ћ2

(2𝑛:1):2√(𝑙:
1

2
)
2
;
2𝜇𝐶

𝛼2ћ2
;
2𝜇𝐷

𝛼2ћ2

+

2

−  𝑙(𝑙 + 1)}     (45) 

Case 5:  If 𝐶 =  𝐷 = 0 in eq. (42), we obtain the energy equation of the shifted Deng-Fan potential in the non-relativistic limit 

𝐸𝑛𝑙 = −
𝛼2ћ2

2𝜇
{*

2𝑙(𝑙:1):
4𝜇𝐷𝑒
𝛼2ћ2

𝑏:(𝑛2:𝑛:
1

2
):(2𝑛:1)√(𝑙:

1

2
)
2
:
2𝜇𝐷𝑒
𝛼2ћ2

𝑏2

(2𝑛:1):2√(𝑙:
1

2
)
2
:
2𝜇𝐷𝑒
𝛼2ћ2

𝑏2
+

2

−  𝑙(𝑙 + 1)}     (46) 

5. Conclusion 

In this work, using the parametric generalization of the NU method, we have obtained approximately energy 

eigenvalues and the corresponding wave functions of the Dirac equation for the Manning-Rosen plus shifted Deng-Fan 

potential including a Coulomb-like tensor potential with arbitrary spin–orbit coupling quantum number κ. The 

corresponding unnormalized eigen functions are evaluated in terms of Jacobi polynomials. Interestingly, the 



http://ijc.ccsenet.org                      International Journal of Chemistry                        Vol. 10, No. 3; 2018 

106 

 

Klein-Gordon and Dirac equation with the arbitrary angular momentum values for this potential can be solved by this 

method. The resulting eigen energy equations can be used to study the spectroscopy of some selected diatomic atoms 

and molecules. 
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