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Abstract  
Colorimetric sensor arrays incorporating red, green, and blue (RGB) image analysis use value changes from multiple 
sensors for the identification and quantification of various analytes. RGB data can be easily obtained using image 
analysis software such as ImageJ. Subsequent chemometric analysis is becoming a key component of colorimetric array 
RGB data analysis, though literature contains mainly principal component analysis (PCA) and hierarchical cluster 
analysis (HCA). Seeking to expand the chemometric methods toolkit for array analysis, we explored the performance of 
nine chemometric methods were compared for the task of classifying 631 solutions (0.1 to 3 M) of acetic acid, malonic 
acid, lysine, and ammonia using an eight sensor colorimetric array. PCA and LDA (linear discriminant analysis) were 
effective for visualizing the dataset. For classification, linear discriminant analysis (LDA), (k nearest neighbors) KNN, 
(soft independent modelling by class analogy) SIMCA, recursive partitioning and regression trees (RPART), and hit 
quality index (HQI) were very effective with each method classifying compounds with over 90% correct assignments. 
Support vector machines (SVM) and partial least squares – discriminant analysis (PLS-DA) struggled with ~85 and 39% 
correct assignments, respectively. Additional mathematical treatments of the data set, such as incrementally increasing 
the exponents, did not improve the performance of LDA and KNN. The literature precedence indicates that the most 
common methods for analyzing colorimetric arrays are PCA, LDA, HCA, and KNN. To our knowledge, this is the first 
report of comparing and contrasting several more diverse chemometric methods to analyze the same colorimetric array 
data.  
Keywords: chemometric analysis, colorimetric sensor array, hierarchical cluster analysis (HCA), hit quality index 
(HQI), k nearest neighbor analysis (KNN), linear discriminant analysis (LDA), soft independent modelling by class 
analogy (SIMCA), support vector machines (SVM) 
1. Introduction 
The examination of digital images in analytical chemistry has increased by more than 87% from 2005 to 2015, tracking 
with the increased availability of imaging devices (Capitán-Vallvey, López-Ruiz, Martínez-Olmos, Erena, & Palma, 
2015). In particular, colorimetric tests and arrays have greatly benefited from the enhanced qualitative and quantitative 
analysis provided by that color space techniques (Askim, Mahmoudi, & Suslick, 2013). Colorimetric arrays are 
typically composed of 3-40 sensors that can interact with analytes and change color upon molecular interactions (Burks 
et al., 2010; Li, Jang, Askim, & Suslick, 2015; Salles, Meloni, de Aaujo, & Paixão, 2014). Various types of color 
changing sensors have been utilized in sensor arrays including pH indicators, metalloporphyrins, solvatochromic dyes, 
redox indicators, metal salts, ionic liquids, and nanoparticles (Askim et al., 2013; Galpothdeniya et al., 2015). Potential 
analyte – sensor interactions leading to colorimetric changes include Lewis acid/base interactions, hydrogen bonding, 
π-π interactions, and dipole-dipole interactions. Array sensor selection typically depends on an analyte’s chief mode of 
interaction. For example, an acidic or basic analyte would warrant pH indicators as sensors, while the detection of a 
metal ion would point to complexometric sensors (Ariza-Avidad et al., 2014). The previously mentioned analyte – 
sensor interactions allow for a dynamic versatility and high applicability of colorimetric sensor arrays (Suslick, 2004). 
Effective arrays typically have the following criteria: high selectivity, high sensitivity, the ability to detect many 
analytes with the fewest numbers of sensors, and yield RGB data that can be analyzed via statistical analysis methods 
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were prepared by dissolving each into aliquots of a solvent mixture consisting of acetate buffer (0.1 M, pH 5), ethylene 
glycol, triethylene glycol monobutyl ether, and glycerol in a ratio of 14:1.6:1:3.2. The sensor solutions sonicated for 1 
hour in a bath sonicator (30 ºC), followed by 5 minutes mixing with a probe sonicator, and then vacuum filtered twice 
through Whatman #1 filter paper. Acetic acid (0.1 – 3 M) and ammonia (0.1 – 3 M) solutions were prepared by diluting 
concentrated reagent solutions with milli-Q water (18 MΩ-cm). Solutions of malonic acid (0.1 – 2 M) and lysine (HCl 
salt, 0.1-2 M) were prepared by dissolving appropriate amount of the analytes in milli-Q water. The sensor array was 
laid out in a 96-well plate as shown in Figure 2 by dispensing 100 µL of each sensor in designated rows. The same 
volume of an analyte or control were added to the 12 columns of the well plate. To explore reproducibility, each plate 
contained 4 replicates of a water control and 8 replicates of each analyte.  

Figure 2. Sensor array housed in a 96-well plate, with each sensor was placed in a designated row. For each array, the 
first four columns are controls (water), and the final eight columns are analyte (shown above: 0.5 M lysine). The black 

boxes highlight color differences between the control (water) and the analyte (0.5 M lysine). 
All array images, including Figure 2, were collected as 24-bit color images using an Epson Perfection V700 desktop 
scanner in transparency mode. To eliminate interferences from stray light, the scanner was draped in black cloth. The 
images were analyzed with ImageJ (Schneider, Rasband, & Eliceiri, 2012), and the extraction of mean RGB values for 
each well was automated with a macro (Lyon et al., 2012; Soldat, Barak, & Lepore, 2009). No attempts were made to 
correct for image-to-image variation by subtracting a control row, as our previous work showed such a correction to be 
unnecessary (Kangas 2018). The RGB dataset is provided in the supplemental information as SI.4 to facilitate further 
chemometric studies.  
All statistical analysis was performed using the statistical programming language R. PCA was performed using the 
function prcomp. The data was mean-centered, but was not scaled to unit variance because all of the data was on a 
consistent scale of 0 to 255 RGB units. Loading plots are included in the supplemental information as SI.2. Score plots 
of the resulting data were constructed using the function pca2d from the library pca3d (Weiner, 2017). Hierarchical 
clustering was conducted in agglomerative mode using Ward’s method based on Euclidean distances using the hclust 
function from the stats library (R Core Team, 2017). LDA was performed using the MASS library (Venables & Ripley, 
2002) and the classification ability of the LDA model was tested by using all but one cross validation. The 
concentrations of each analyte were treated as a separate class, and for classification the prior probabilities were equal 
for all classes. KNN based on Euclidean distances was performed for k=1, 3, 5, 7, and 9 using the class package 
(Venables & Ripley, 2002). HQI values were calculated using a custom R program given in the supplemental 
information (Supplementary Figure, SI.1. Classification was performed using all but one cross-validation, and 
classifications were assigned based on the library sample with the highest HQI value. PLS-DA was performed using the 
plsDA function from the DiscriMiner library with leave one out cross validation (Sanchez, 2013). For RPART, SVM, 
and SIMCA, the data was randomly split into a training set containing 75% of the data and a test set comprised of the 
remaining 25%, and the analysis was repeated in triplicate with different train/test sets. RPART was conducted using the 
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rpart package (Therneau, Atkinson, & Ripley, 2017). SVM was performed using the rrcovHD package (Todorov, 2016). 
SIMCA was performed using the CSIMCA function from the rrcovHD package. 
3. Results and Discussion  
In the present study, the selected sensors were chosen for many of the reasons listed in the Introduction, plus our 
previous work (Kangas, 2018) showed these sensors to be well-suited for the qualitative and quantitative classification 
of NaOH and HCl solutions. As shown in Figure 2, some color differences between the control and analyte test wells 
are easily visible to the naked eye. However, some sensor changes more subtle and are not immediately visible to a user. 
Thereby, with chemometric analysis the investigator can more easily detect and use subtle color changes identified by 
image analysis for the identification and quantification of analytes.  
3.1 Principal Component Analysis 
PCA is one of the more commonly used chemometric analysis methods for large data sets collected from colorimetric 
tests or sensor arrays (Capitán-Vallvey et al., 2015). PCA is an algorithm that uses an orthogonal transformation a set of 
observable - and possibly related - variables to change them into a set of linearly uncorrelated variables known as 
principal components (Graham, 1993). Usually, for use with colorimetric sensors, this means that the principal 
components are statistically weighted combinations of the R,G and B values from all the sensors. Although calculated in 
multiple components, only a few components are typically needed to visualize and analyze trends in the data set. In this 
study, for each array, 24 variables were available in the original data set (i.e. 8 sensors x 3 channels = 24 variables). 
However, only 4 principal components were required to assess 95% of the variance in the data set. The number of 
components needed to describe the variance in the data set was consistent with observations from other colorimetric 
sensor array studies (Li et al., 2015; Salinas et al., 2014). 
When analyzing with PCA, variables that are strongly correlated typically remain closely related when converted to the 
new components. Similarly, data points that are clustered in the original data set can usually be found together in the 
principal component space, thereby allowing the visualization of similar data when multiple component are plotted 
together (Graham, 1993). In our work here, the biplots of PC1 and PC2 (Figure 3) show that water, each acid, and each 
base create distinct clusters in the plot. These grouping indicate the ease with which each analyte of study can be 
identified, whereas the biplot of all analytes (Figure 3) struggles to distinguish malonic from acetic acid in the same 
space. However, in the biplot of PC2 and PC3 (Supplementary Figure SI.2), the distinction of acetic and malonic acid is 
much more apparent while the distinction of water, ammonia and lysine are less so. The individual concentrations of the 
analytes were also observed via plotting in the PC1 vs PC2 biplot. Again, the acids did not perform well with very little 
selective grouping to mark the concentration changes while ammonia showed very distinct clusters of grouping by 
concentration below 2 M. It was also observed that the low concentrations of lysine, 0.1-1 M, were very difficult to 
distinguish from one another while there was a distinct separation between those and the 2 M samples. However, some 
distinction arises in all groups by concentration when viewed in the PC2 vs PC3 biplot suggesting that this space is a 
better space to observe the clustering and concentration differences found by the PCA analysis (Supplementary Figure 
SI.2).  
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Figure 3. Biplots of PCA results of acetic acid, ammonia, lysine, malonic acid, and water by concentration and all 
analytes together showing analyte and concentration grouping as viewed by the first and second components. PC1 and 

PC2 are the first two components from PCA, respectively 
By observing the principle component values for each channel, PCA analysis can be used to also determine the sensors 
with the most influence within each component. For instance, as observed in Supplemental figure SI.3, PC1 appears to 
be dominated by the red channels of CR, EB, AY, and UV and the green channels of AY and PH. In PC2, the red 
channels of EB and AY are strongly influential while the red channels of CR, UV and BB and green channels of AY and 
PH are only mildly so. Finally, PC3 is strongly dominated by the red channel of UV and BB and the blue channel of AY 
while only mildly influenced by the green channel of AY. This may explain why the acid samples are not well 
distinguished in the PC1 and PC2 biplot as both channels are strongly dominated by similar red channels, especially EB 
and AY, while the PC3 is strongly influenced by other dyes in different channels. In addition to visualizing the data with 
the scores plot, PCA can also be used to determine which sensors are responsible for the analyte discrimination by 
analyzing the loading plots (Supplementary Figure, SI.3). This information could be used for sensor selection and array 
optimization as the loading plots reveal which sensors make the biggest contributions toward analyte detection as 
evidenced by the highest loadings on the y-axis.   
Overall, the plots show that PC1 and PC2 space provide excellent separation of ammonia, lysine, and water, but not 
acetic and malonic acid. This is likely because PC1 and PC2 are strongly dominated by similar principle components. 
To achieve separation of the acids and their concentrations, one must look at PC2 and PC3 space which provides better 
separation but loses the separation of the bases, which like the acids, seems to coincide with sensor pKa values and the 
complementary color change. This indicates that simply relying on two dimensions of PCA is not best for identifying 
the acids and bases tested in this study, and at least three components should be used. Furthermore, by viewing the 



http://ijc.ccsenet.org                      International Journal of Chemistry                        Vol. 10, No. 2; 2018 

41 
 

single component variables (Supplementary Figure, SI.2), the array of dyes can be improved by noting those sensors 
which strongly influence each components (i.e. CR, EB, AY, UV, BB, PH) and those that have very little influence in 
the first three components, (i.e. CV and ER). It may be advisable to use other components to see if those sensors have 
any influence elsewhere in the space or exchange non-influential sensors for others which may provide more 
information. 
3.2 Hierarchical Cluster Analysis 
Similar to PCA, HCA is an unsupervised, no bias multivariate clustering analysis that is commonly used to analyze 
colorimetric arrays (Bueno, Meloni, Reddy, & Paixão, 2015; Capitán-Vallvey et al., 2015). When performing HCA, the 
analysis receives no information on the classes of the samples except for the 24 variable values per sample. Therefore, 
the grouping of samples is determined by closeness, typically a Euclidean distance, in that 24 dimension space. This 
clustering is an iterative process resulting in a tree of relational closeness where well-related samples are near to one 
another on the tree while samples with less relation are further away. Compared to other clustering algorithms, HCA has 
two main advantages: (1) it provides a quantitative metric for the similarity of groups and (2) it defines clusters in all 
size scales, ranging from individual samples up to a single group that contains all samples (Graham, 1993). Figure 4 
shows the clustering results of the analyte group means, with all variables averaged within a particular sample label, 
from the colorimetric data to provide a more visually appealing example of the clustering capabilities. When viewing 
the HCA plot, each of the T junctions are flexible when interpreting similarity within the plot. What this means is that 
groups within the same branch, but not necessarily samples within the same region of the graph, are considered similar. 
For example, all of the ammonia samples fall within the same branch noting their similarity. However, 2 M ammonia is 
equally similar to 0.5 M ammonia as it is to 1 M ammonia due to the flexibility of the branch junctions. Furthermore, in 
the branch containing lysine and water, 1 M lysine and 2 M lysine are classified equally similar to water although 0.5 M 
lysine is less similar to water than 1 M lysine. Ammonia and all the rest of the data form the largest groupings showing 
that ammonia is the least similar to all of the rest of the samples. Within the next tier, lysine-water and the acids form 
the next families demonstrating how quickly HCA is able to discern the selected acids from the bases. While lysine and 
ammonia are easily distinguished, HCA struggles with the individual acids especially in the low concentrations, such as 
in the case of 0.1 M malonic and 1 M acetic acid.  
Overall, HCA provided useful analysis for understanding similarities and differences in the data sets and was able to 
distinguish ammonia and lysine as having distinct signal from the acids. However, given that the branches of the 
dendromer are freely rotating, HCA was unable to distinguish the variables of lysine as being uniquely basic or distinct 
from water. Furthermore, HCA does not indicate why the groups were clustered as they were or how each individual 
variable contributes to the classification, which would – as in the case of PCA – be helpful sensor array optimization 
data. Although HCA is a powerful classification tool that provides sufficient analysis of the data set, we judge it inferior 
to PCA in the ability to draw conclusions on the sufficiency of the sensor array as HCA provides little insight into how 
the classification may be improved.  

Figure 4. Dendrogram from HCA of 0.1 – 3 M acetic acid, 0.1-3 M ammonia, 0.1-2 M lysine, 0.1-2 M malonic acid and 
water. Distinct clusters formed for water, ammonia, and lysine 
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3.3 Linear Discriminant Analysis 
Like PCA, LDA is also a method that generates new variables called discriminants which consist of linear combinations 
of the original variables and has been applied in colorimetric sensor array analysis (Minami et al., 2013; Zhang et al., 
2014). Unlike PCA, LDA considers and exploits the differences in the group means and often outperforms PCA in the 
separation of groups (Askim et al., 2013). The main disadvantage of LDA is that it requires a data set larger than that 
required for PCA (Wold, Johansson, Jellum, Bjørnson, & Nesbakken, 1981). In addition, the size and composition of the 
classes within a dataset will affect the discriminant and result of LDA, thus influencing LDA’s ability to correctly 
identify analytes and their concentrations. Figure 5 shows a panel of plots from the first and second discriminants of 
LDA analysis which was input as groups by concentration. In the plot of analytes it is observed that LDA appears to 
cluster acetic acid, malonic acid and ammonia as distinct groups for analysis and identification of analyte while lysine is 
hardly distinguishable from water. Malonic acid was easily separated into of concentration groups, while acetic acid and 
ammonia solutions were well-resolved at lower concentrations but distinguishing between higher concentrations - 
especially 2 and 3 M acetic acid and 1, 2, and 3 M ammonia – was a challenge. For this particular data set it appears 
that LDA is superior to PCA at a two dimensional separation of acetic and malonic acid with regard to class and 
concentration, but is more comparable to HCA in the ability to distinguish lysine from water.  
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Figure 5. LDA for 0.1 -3 M acetic acid, and 0.1-3 M ammonia, 0.1-2 M lysine, 01-2 M malonic acid and water. LD1 
and LD2 are the first and second discriminants from LDA, respectively 

An advantage of LDA over PCA is LDA’s ability to report quantitative means of classifying unknown compounds. 
Table 1 shows the classification of the LDA analysis in which groups were input by concentration. LDA was able to 
correctly classify samples by analyte identity and concentration in 626 out of 631 samples (99.2%). When 
misclassifications occurred, the analysis was often still able to classify an analyte as an acid or a base. For example, one 
3 M ammonia sample was misclassified as 1 M ammonia and one 0.1 malonic acid sample was misclassified as 0.5 M 
acetic acid. As mentioned previously, LDA analysis struggled most with lysine samples, misclassifying one sample of 
0.1 M acetic acid as 0.1 M lysine and one sample of water as 2 M lysine. One sample of 0.5 M ammonia could not be 
classified, as replicate trials resulted in different classifications. In addition, subsequent analysis of the posterior 
probabilities indicated a modeling error in the analysis. This result was likely the result of unusually low RGB values 
for phenolphthalein other possibilities include a shadow or air bubble in the image of the well. LDA was also used to 
qualitatively classify analytes correctly 622 out of 631 (98.6%). The previously observed trends were also true when 
considering only analyte classification with one sample of acetic acid misclassified as lysine (struggles with lysine) and 
seven samples of malonic acid classified as acetic acid (still classifies acids as acids). Overall, LDA was observed to 
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classify the data 99.2% correctly when considering analyte identify and concentration, while data classification was 
98.6% correct when only analyte identity was considered. Although PCA has an advantage of better grouping lysine 
samples, LDA clearly has the advantage of quantitative classification results which may be more useful in certain 
reporting schemes. 
Table 1. Summary of LDA sample classification (grouped by [Analyte]) 

Analyte Total Correct Incorrect Misclassified 

0.1 M acetic 24 23 1 0.1 M lysine 
0.5 M acetic 24 24 0 - 
1 M acetic 24 24 0 - 
2 M acetic 24 24 0 - 
3 M acetic 24 24 0 - 
0.1 M ammonia 24 24 0 - 
0.5 M ammonia 24 23 1 Modeling Error 
1 M ammonia 24 24 0 - 
2 M ammonia 24 24 0 - 
3 M ammonia 24 23 1 1 M ammonia 
0.1 M lysine 24 24 0 - 
0.5 M lysine 24 24 0 - 
1 M lysine 24 24 0 - 
2 M lysine 24 24 0 - 
0.1 M malonic 24 23 1 0.5 M acetic 
0.5 M malonic 24 24 0 - 
1 M malonic 24 24 0 - 
2 M malonic 24 24 0 - 
Water 199 198 1 2 M lysine  
Overall 631 626 5 

Table 2. Summary of LDA sample classification (grouped by analyte) 
Analyte Total Correct Incorrect Misclassified 

acetic acid 120 199 1 lysine 
ammonia 120 119 1 Modeling Error 
lysine 96 96 0 - 
malonic acid 96 89 7 7*acetic acid 
water 199 199 0 - 
Overall 631 622 5 

3.4 K Nearest Neighbor 
KNN is another chemometric method which classifies unknown samples by comparing them to a library of known 
samples. Previous applications of KNN include pH determination using a sensor array (Capel-Cuevas, Cuéllar, 
Orbe-Payá, Pegalajar, & Capitán-Vallvey, 2010) and melting point estimation of organic compounds (Nigsch et al., 
2006). With KNN, the classification of the unknown is determined by measuring the distance to the most similar known 
samples. The unknown is then identified by association with the predetermined “K” number of nearest neighbors, with 
the nearest neighbor defined as the known samples with the shortest distance to the unknown (Ma, Yang, & Cheng, 
2014). For example, if K = 1 the unknown is identified as the classification of the one closest known sample whereas if 
K = 4 then the unknown is classified with the identity of the four closest neighbors. KNN classification treats the data 
sets as points in dimensional space equal to the number of variables (Balabin, Safieva, & Lomakina, 2010). In this study 
with 24 values per array, there are 24 dimensions, this makes the calculation of the distance between points and the 
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implementation of KNN relatively straight-forward. Furthermore, KNN often performs as well as or better than more 
complicated classifiers, such as SVM (Ma et al., 2014).  
For our work, K was varied and the Euclidean distance was calculated for KNN analysis. Increasing the k value has 
previously been shown to influence method performance and accuracy, but the relationship between k and performance 
can vary (Ma et al., 2014). In our study, increasing K = 1 to K = 9 resulted in lower classification accuracy (Table 3). 
Overall, KNN was used to correctly identify 98.1% of samples for K = 1, decreasing to 93.0% for K=9. This indicates 
that K = 1 was the optimal parameter. Table 4 contains K = 1 classification data. Our results indicate that KNN is a very 
robust method for sample classification for this sample size since the least accurate run with the largest number of 
neighbors (K = 9) is able to classify samples correctly 93.0% of the time. Some of the mislabeled samples involved the 
correct analyte, but the wrong concentration, such as 0.1 M lysine was identified as 0.5 M lysine or 0.5 M acetic acid 
was identified as 1 M. Six misclassifications occurred in acetic acid.   
Comparing the two classification methods, KNN (K = 1) is comparable to LDA with 98.1% accuracy and 98.6% 
accuracy, respectively. While LDA utilizes input variables with optimal weights to separate the group means and KNN 
gives equal significance to all of the variables, both methods still result in similar results. Alternative KNN algorithms 
do apply various transformations to the dataset to optimize the accuracy of KNN. However, these methods were not 
pursued in this study (Nigsch et al., 2006). 
Table 3. Effect of K on K nearest neighbor (KNN) accuracy 

K Total Correct Incorrect  

1 631 619 12  
3 631 611 20   
5 631 598 33 
7 631 592 39 
9 631 587 44 

Table 4. Summary of k nearest neighbor (KNN) sample classifications. (K = 1) 
Analyte Total Correct Incorrect Misclassified  

0.1 M acetic acid 24 23 1 0.5 M lysine 
0.5 M acetic acid 24 23 1 1 M acetic acid 
1 M acetic acid 24 21 3 2* 0.5 M acetic acid, 0.1 M malonic acid
2 M acetic acid 24 23 1 3 M acetic acid 
3 M acetic acid 24 23 1 1 M acetic acid 
0.1 M ammonia 24 24 0 - 
0.5 M ammonia 24 23 1 3 M ammonia 
1 M ammonia 24 24 0 - 
2 M ammonia 24 24 0 - 
3 M ammonia 24 24 0 - 
0.1 M lysine 24 23 1 0.5 M lysine 
0.5 M lysine 24 24 0 - 
1 M lysine 24 24 0 - 
2 M lysine 24 23 0 - 
0.1 M malonic acid 24 24 1 1 M acetic acid 
0.5 M malonic acid 24 23 0 - 
1 M malonic acid 24 22 2 0.5 M malonic acid, 2 M malonic acid  
2 M malonic acid 24 24 0 - 
Water 199 194 5 2 M lysine, 3 * 3 M malonic acid 
Overall 631 619 12 



http://ijc.ccsenet.org                      International Journal of Chemistry                        Vol. 10, No. 2; 2018 

46 
 

3.5 Hit Quality Index 
HQI is commonly used as a spectral comparison method when working with an unknown FTIR or Raman spectra and a 
database of known spectra (Gryniewicz-Ruzicka, Rodriguez, Arzhantsev, Buhse, & Kauffman, 2012; Lee, Lee, & 
Chung, 2013, p. 201). HQI treats the unknown spectra as vectors in 24 dimensional space by calculating the dot product 
according to the following equation: 

ܫܳܪ  =  ሺ௫∙௬ሻ∗ሺ௫∙௬ሻሺ௫∙௫ሻ∗ሺ௬∙௬ሻ (1) 
The terms x and y are the unknown and one of the many known spectra in the database, respectively. Classification is 
then assigned by assessing the closeness of fit which is determined by the result of the dot product being close to 1. The 
use of HQI in comparative colorimetric studies have shown similar accuracies to other chemometric methods we 
compare (Gryniewicz-Ruzicka et al., 2012; Lee et al., 2013, p. 201). 
In the present study, HQI showed an overall 98% accuracy for analyte identity and concentration when classifying 
acetic acid, malonic acid, lysine and ammonia (see Table 5 for results). Common misclassifications include 
concentrations within the same analyte (6 samples), such as 1 M acetic acid misclassified as 0.5 M acetic acid and 0.5 
M lysine misclassified as 0.1 M lysine. Two samples were classified outside their analyte; 0.5 M lysine misclassified as 
0.1 M acetic acid and 0.1 M malonic acid misclassified as 1 M acetic acid. Similar to KNN, HQI underperformed both 
LDA and PCA, especially with respect to classifying by concentration within an analyte. These results are similar to our 
previous work with NaOH and HCl which also showed a high level of accuracy for analyte classification efficacy while 
suffering in the concentration identification within analytes, especially high concentration HCl (Kangas, 2018). HQI is a 
straightforward, mathematical analysis method which could be useful as an alternative or additional chemometric 
analysis of colorimetric arrays. However, it suffers from inaccuracies which make it inferior to LDA and PCA- 
especially in the acetic acid concentrations tested in the present study (Table 5).  
Table 5. Summary of hit quality index (HQI) sample classifications 

Analyte Total Correct Incorrect Misclassified 

0.1 M acetic acid 24 23 1 0.5 M lysine 
0.5 M acetic acid 24 23 1 1 M acetic acid 
1 M acetic acid 24 21 3 0.5 M acetic acid, 0.1 malonic acid
2 M acetic acid 24 23 1 3 M acetic acid 
3 M acetic acid 24 23 1 1 M acetic acid 
0.1 M ammonia 24 24 0 - 
0.5 M ammonia 24 24 0 - 
1 M ammonia 24 24 0 - 
2 M ammonia 24 24 0 - 
3 M ammonia 24 24 0 - 
0.1 M lysine 24 23 1 0.5 M lysine 
0.5 M lysine 24 24 0 - 
1 M lysine 24 24 0 - 
2 M lysine 24 24 0 -  
0.1 M malonic acid 24 23 1 1 M acetic acid 
0.5 M malonic acid 24 24 0 - 
1 M malonic acid 24 22 2 0.5 malonic acid, 2 M acetic acid 
2 M malonic acid 24 24 0 - 
Water 199 199 0 - 
Overall 631 620 11  

3.6 Partial Least Squares Discriminant Analysis 
PLS-DA is an extension of the PLS methodology used for classifying samples. Briefly, PLS or PLS-DA are performed 
by generating components similar to those in PCA, but the components are selected to correlate with y-values or classes, 
respectively (Brereton & Lloyd, 2014). Our PLS-DA results for classifying samples into groups based on the analyte 
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and concentration are given in Table 6. Unlike the other classification methods used in this study, PLS-DA was only 
able to correctly classify water and the most concentrated ammonia samples (3 M), resulting in an overall accuracy of 
39%. The poor performance may be ascribed to PLS-DA using a one-versus-all approach for multiple class problems 
(Brereton & Lloyd, 2014). With the present data set, the samples in target class may be very similar to those in the rest 
of the dataset. Since water was the majority of our observations, the class weights may have been affected.  For 
example, when classifying 0.5 M acetic acid, both 0.1 and 1 M acetic acid would be in the other class. PLS-DA also can 
have problems setting the boundaries when there are groups of unequal sizes (Brereton & Lloyd, 2014), which would 
also be present with the one-versus-all groupings. PLS-DA analysis with groups based on the analytes rather than both 
the analytes and concentration resulted in a much higher accuracy with 610 of 631 correct, data not shown. In this case, 
the one-versus-all groupings should be more distinct and the classes should be closer in size, and there are fewer classes 
to assign observations to. 
Table 6. Summary of partial least squares discriminant analysis (PLS-DA) sample classifications 

Analyte Total Correct Incorrect Misclassified 

0.1 M acetic acid 24 0 24 24 * water 
0.5 M acetic acid 24 0 24 24 * water 
1 M acetic acid 24 0 24 24 * water 
2 M acetic acid 24 0 24 24 * water 
3 M acetic acid 24 0 24 24 * water 
0.1 M ammonia 24 0 24 24 * water 
0.5 M ammonia 24 0 24 24 * 3 M ammonia 
1 M ammonia 24 0 24 24 * 3 M ammonia 
2 M ammonia 24 0 24 24 * 3 M ammonia 
3 M ammonia 24 24 0 - 
0.1 M lysine 24 0 24 24 * water 
0.5 M lysine 24 0 24 24 * water 
1 M lysine 24 0 24 24 * water 
2 M lysine 24 0 24 24 * water 
0.1 M malonic acid 24 0 24 17 * 3 M malonic acid, 7 * water 
0.5 M malonic acid 24 0 24 24 * 3 M malonic acid 
1 M malonic acid 24 0 24 24 * 3 M malonic acid 
2 M malonic acid 24 0 24 - 
Water 199 199 0 - 
Overall 631 247 384 

3.7 Recursive Partitioning 
RPART is fast and simple to implement (Miller, 2001) classification method that generates a decision tree to classify 
samples. At each branch, the value of a single variable is tested with a rule. For example, a classifier for patients may 
use rules like is the patient age >18, while a classifier for colorimetric data may test the intensity of a specific sensor. 
Examples of the usage of RPART in the chemical literature include calculating phase diagrams for surfactants (Bell, 
2016) and identifying new pharmaceutical and antibiotic compounds (Rusinko, Farmen, Lambert, Brown, & Young, 
1999; Wang et al., 2014). An advantage of RPART is that only the most important variables from the dataset are used in 
the rules, and variables that have a low impact on classification are ignored.  
Figure 6 shows the decision tree used for classifying the samples. As shown in Figure 6, the first rule is based on the 
blue intensity of AY. The numbers below the groups indicate the confidence in that classification with the training set. 
The 0.1 M lysine sample was the only one with a confidence less than 1, and is consistent with the classification results 
for the test set, where there were acetic acid samples classified as 0.1 M lysine and lysine samples classified as acetic 
acid. In addition, the decision tree shows that phenolphthalein and eriochrome black T were not used in any rules, while 
bromophenol blue and alizarin yellow were the most utilized sensors. 
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For RPART, the data was randomly split with R into a training set which acts as the database with 473 samples and a 
testing set which acts as the unknowns with 158 samples. To test the reproducibility, the analysis was repeated in 
triplicate with a new training and testing set of data randomly chosen for each trial. The classification accuracies for the 
three trials were 95.6%, 97.4%, and 96.2% for an average accuracy of 96.4%, and the classification results for trial 1 are 
summarized in Table 7. The decision tree for trial 1 is shown in Figure 6. 
As shown in Table 7, there were 7 incorrect classifications including three acetic acid samples that were classified as the 
correct analyte but the wrong concentration. The remaining four samples were classified as the wrong analyte. These 
include two lysine samples (0.1 and 1 M) that were classified as 0.1 M acetic acid and two acetic acid samples (0.1 M) 
that were classified as lysine (0.1 M). These results are consistent with the results for KNN and LDA (98% and 98.6%, 
respectively), which also showed some confusion between dilute acetic acid and lysine. This is likely due to the 
similarity in pH between the two compounds. 
Table 7. Summary of RPART sample classifications 

Analyte Total Correct Incorrect Misclassified 

0.1 M acetic acid 9 7 2 2 * 0.1 M Lysine 
0.5 M acetic acid 5 5 0 - 
1 M acetic acid 6 5 1 2 M acetic acid 
2 M acetic acid 9 8 1 1 M acetic acid 
3 M acetic acid 7 7 0 - 
0.1 M ammonia 8 8 0 - 
0.5 M ammonia 3 3 0 - 
1 M ammonia 6 6 0 - 
2 M ammonia 5 5 0 - 
3 M ammonia 9 8 1 2 M ammonia 
0.1 M lysine 5 4 1 0.1 M acetic acid 
0.5 M lysine 5 5 0 - 
1 M lysine 6 5 1 0.1 M acetic acid 
2 M lysine 5 5 0 - 
0.1 M malonic acid 7 7 0 - 
0.5 M malonic acid 7 7 0 - 
1 M malonic acid 10 10 0 - 
2 M malonic acid 5 5 0 - 
Water 41 41 0 - 
Overall 158 151 7  
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Figure 6. Decision tree generated with trial one of RPART 
Each branch provides a freely rotating, more selective classification of the samples. The blue boxes at the bottom show 
the classes and the confidence in that assignment. Variables used in the rules are indicated as R, G, or B for the color 
channel and an abbreviation for the sensor. Sensors are defined as Congo red (CR), erythrosin B (EB), alizarin yellow R 
(AY), crystal violet (CV), eriochrome black T (ER), phenolphthalein (PH), universal indicator (UV), and bromophenol 
blue (BB). 
3.8 Support Vector Machines 
Support vector machines were utilized to investigate whether more novel and less reported learning schemes could 
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improve the classification results of our data set. SVMs establish a space complete with hyperplanes that are based on a 
training set of data with known classifications. This gives maximum distance between groups clearly dividing the 
possible combinations of data. When an unknown sample is added to the space, the sample is subsequently classified 
based on its closeness to a particular hyperplane receiving the identity of the training samples which made up that 
hyperplane. For colorimetric sensor arrays, SVMs has been applied for the detection, prediction, and classification of 
various explosives (Askim, Li, LaGasse, Rankin, & Suslick, 2016). 
Table 8 demonstrates one trial of SVM identification and classification with the presented dataset. Out of 158 samples, 
140 were identified correctly in analyte identity and concentration. Most misclassifications occurred within the acetic 
acid samples. However, it was only the concentrations of the acetic acid samples there were misidentified but not the 
analyte itself - such as 1 M of acetic acid was misclassified as 0.5 and 2 M acetic acid. Only two concentrations were 
misclassified in the ammonia dataset: 1 M of ammonia was predicted to be 0.5 M of ammonia. In the end, the accuracy 
of SVMs was 89%, which makes the performance of SVMs comparable to other learning schemes such KNN (98%), 
LDA (98.6%), etc. 
Table 8. Summary of Support Vector Machines (SVM) sample classifications 

Analyte Total Correct Incorrect Misclassified 

0.1 M acetic acid 4 4 0 - 
0.5 M acetic acid 7 3 4 4 *2 M acetic 
1 M acetic acid 5 2 3 0.5 M acetic acid, 2 * 2 M acetic acid
2 M acetic acid 4 4 0 - 
3 M acetic acid 12 3 9 9 * 2 M acetic acid 
0.1 M ammonia 7 7 0 - 
0.5 M ammonia 6 6 0 - 
1 M ammonia 7 5 2 2 * 0.5 M ammonia 
2 M ammonia 6 6 0 - 
3 M ammonia 4 4 0 - 
0.1 M lysine 4 4 0 - 
0.5 M lysine 10 10 0 - 
1 M lysine 4 4 0 - 
2 M lysine 12 12 0 - 
0.1 M malonic acid 5 5 0 - 
0.5 M malonic acid 4 4 0 - 
1 M malonic acid 7 7 0 - 
2 M malonic acid 10 10 0 - 
Water 40 40 0 - 
Overall 158 140 18 

3.9 Soft Independent Modelling by Class Analogy 
Soft and hard chemometric methods have been developed to analyze data obtained from chemical systems (Kakhki & 
Abedi, 2012). SIMCA is usually defined as soft method, meaning that samples can be classified in one group, multiple 
groups, or no groups. SIMCA is also an independent modelling method, which means that a sample can be categorized 
into to more than one group. Unlike many other classification algorithms, in SIMCA, a sample could be assigned to 
multiple groups in the case of orthogonal or hierarchical groups. For each class in the training set, PCA performed and a 
model describing the group is generated. Afterwards each unknown sample is projected into all of the models for the 
groups, and the unknown can be assigned to a group based on the similarity with the group (Gemperline, 2006). In 
addition, outliers can be rejected from all classes. Other advantages of SIMCA include the ability to work well with data 
sets with small numbers of variables and large numbers of variables (Esbensen, Guyot, Westad, & Houmøller, 2010). 
There are many examples of SIMCA in in the chemical literature including classifying samples of spray paint using 
FTIR spectra (Muehlethaler, Massonnet, & Esseiva, 2014), identifying contaminated pharmaceuticals with Raman 
spectroscopy (Gryniewicz-Ruzicka et al., 2012), identifying potential pharmaceutical compounds (Tominaga, 1999), 
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and classifying healthy brain tissue samples from GC-MS chromatograms (Wold et al., 1981). 
Similar to RPART, SVM, and PLS-DA the data set was randomly split into a training set and a test set using R. To check 
the reproducibility, the analysis was performed in triplicate, with new training and test sets each time, providing 
accuracies of 97%, 89%, and 92% with an average of 92%. These results are comparable to the results from KNN 
(98%), RPART (96.4%), HQI (98%), and LDA (98.6%). A summary of the classification results for SIMCA trial 1 are 
given below in Table 9. Of the five misclassifications, four were the correct analyte but the wrong concentration. The 
final misclassification was a sample of 0.5 M lysine which was classified as 0.1 M acetic acid. Misclassifications 
between lysine and dilute acetic acid were also observed with RPART. 
Table 9. Summary of SIMCA sample classifications 

Analyte Total Correct Incorrect Misclassified 

0.1 M acetic acid 9 9 0 - 
0.5 M acetic acid 6 6 0 - 
1 M acetic acid 6 5 1 0.5 M acetic acid 
2 M acetic acid 3 2 1 3 M acetic acid 
3 M acetic acid 7 6 1 1 M acetic acid 
0.1 M ammonia 6 6 0 - 
0.5 M ammonia 7 7 0 - 
1 M ammonia 4 4 0 - 
2 M ammonia 7 7 0 - 
3 M ammonia 9 9 0 - 
0.1 M lysine 5 5 0 - 
0.5 M lysine 7 6 1 0.1 M acetic acid 
1 M lysine 5 5 0 - 
2 M lysine 8 8 0 - 
0.1 M malonic acid 8 8 0 - 
0.5 M malonic acid 2 2 0 - 
1 M malonic acid 6 5 1 0.1 M malonic acid 
2 M malonic acid 6 6 0 - 
Water 47 47 0 - 
Overall 158 153 5 

4. Conclusions and Future Outlook  
Colorimetric sensor arrays are rapidly becoming a common tool for the identification and quantification of analytes. 
The multidimensional nature of colorimetric data is well-served by the use of chemometric methods. While HCA and 
PCA are popular chemometric methods, we sought to explore the use of other algorithms to compare and contrast their 
usefulness in qualitative and quantitative analysis. In this work, an eight sensor colorimetric array was used to compare 
the performance of PCA, HCA, LDA, KNN, HQI, PLS-DA, RPART, SVM, and SIMCA for efficacy in identification 
and quantification of acetic acid, malonic acid, ammonia, and lysine. PCA, HCA, and LDA were used to qualitatively 
visualize the data and relationships between the analytes. In PCA, PC1 and PC2 provide excellent separation of 
ammonia, lysine, and water - but not acetic and malonic acid. These analytes were separated much better with PC2 and 
PC3, indicating that greater than bidimensional PCA components should be evaluated to obtain optimal clustering of 
analytes. HCA was unable to distinguish the variables of lysine as being uniquely basic or distinct from water, making 
this method not as effective for classification as PCA for our selected analytes. The two dimensional separation of acetic 
and malonic acid with regard to class and concentration was achieved with LDA, making this method for our data set 
superior to PCA. However, the lysine separation from water was similar in performance to HCA. Therefore, for the 
present data set and presented methods, the effectiveness in regards to visualization and classification can be arranged 
as LDA > PCA (if only PC 1 and 2 are used) > HCA. 
LDA, KNN, HQI, PLS-DA, RPART, SVM, and SIMCA were used to quantitatively classify the samples. LDA is unique 
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in that it can achieve visualization of the data as well as report quantitative means of classifying unknown compounds 
with high accuracy (>99% in this data set). KNN is advantageous because it is relatively simple to execute, performing 
similar to HQI (98% accuracy when k = 1) and better than PLS-DA, RPART, SVM, and SIMCA. PLS-DA was the lease 
discriminating chemometric method for this data set as it was only able to correctly classify water and the most 
concentrated ammonia samples (3 M), resulting in an overall accuracy of 39%. RPART results were consistent with 
KNN and LDA showing misclassifications between dilute acetic acid and lysine. In comparison to all methods except 
for PLS-DA (39%), SVM under performed (85% correct classification). Therefore, the effectiveness of the quantitative 
methods for this dataset for an analyte concentration range from 0.1M to 3.0M can be ranked as LDA > HQI > KNN > 
SIMCA > RPART > SVM >> PLS-DA. This coincides with our previously published ranking of LDA> HQI > KNN for 
classifications and quantification of HCl and NaOH. (Kangas paper) Therefore, it appears that these classification 
methods follow a general trend for inorganic and organic acids and bases. If other analytes were to be analyzed, it is 
recommended that all these chemometric methods are examined for effectiveness as analytes and sensors can have 
completely different mechanistic interactions that lead to different types of color changes, different RGB values, and 
data sets. However, based on the fact that PLS-DA was much more inferior to the other methods with only 39% 
accuracy, it may also not perform well for other datasets with a high number of analytes. Also, depending on the number 
of samples, LDA may not work because it requires a large data set, while KNN, HQI and SIMCA can accommodate 
smaller data sets. Finally, KNN can be employed if an easy algorithm and quick results are desired if a slightly lower 
accuracy is acceptable.  
Table 10. Summary of quantitative chemometric analysis of data by method. LOO = Leave one out, all but one. T/T = 
Train and Test 

Method Validation Trial% (Avg) Classification % 
LDA LOO N/A 99.2 
KNN  LOO N/A 98.1 
HQI LOO N/A 98.3 
SVM T/T 88.6 85.0 

82.3 
84.2 

SIMCA T/T 96.8 92.4 
88.6  
91.8 

RPART T/T 95.6 96.4 
97.5 
96.2 

PLS-DA LOO N/A 39.1
Herein nine chemometric methods were applied to the data set. The data set is provided in the supplemental information 
(SI.4) to the readers for analysis with the many other methods available for further processing and comparison. The 
methods that were reported here offer a suitable balance that was reached between data set requirements, analysis time, 
and robustness of response for our chemical classification application.   
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