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Abstract

Colorimetric sensor arrays incorporating red, green, and blue (RGB) image analysis use value changes from multiple
sensors for the identification and quantification of various analytes. RGB data can be easily obtained using image
analysis software such as ImagelJ. Subsequent chemometric analysis is becoming a key component of colorimetric array
RGB data analysis, though literature contains mainly principal component analysis (PCA) and hierarchical cluster
analysis (HCA). Seeking to expand the chemometric methods toolkit for array analysis, we explored the performance of
nine chemometric methods were compared for the task of classifying 631 solutions (0.1 to 3 M) of acetic acid, malonic
acid, lysine, and ammonia using an eight sensor colorimetric array. PCA and LDA (linear discriminant analysis) were
effective for visualizing the dataset. For classification, linear discriminant analysis (LDA), (k nearest neighbors) KNN,
(soft independent modelling by class analogy) SIMCA, recursive partitioning and regression trees (RPART), and hit
quality index (HQI) were very effective with each method classifying compounds with over 90% correct assignments.
Support vector machines (SVM) and partial least squares — discriminant analysis (PLS-DA) struggled with ~85 and 39%
correct assignments, respectively. Additional mathematical treatments of the data set, such as incrementally increasing
the exponents, did not improve the performance of LDA and KNN. The literature precedence indicates that the most
common methods for analyzing colorimetric arrays are PCA, LDA, HCA, and KNN. To our knowledge, this is the first
report of comparing and contrasting several more diverse chemometric methods to analyze the same colorimetric array
data.

Keywords: chemometric analysis, colorimetric sensor array, hierarchical cluster analysis (HCA), hit quality index
(HQI), k nearest neighbor analysis (KNN), linear discriminant analysis (LDA), soft independent modelling by class
analogy (SIMCA), support vector machines (SVM)

1. Introduction

The examination of digital images in analytical chemistry has increased by more than 87% from 2005 to 2015, tracking
with the increased availability of imaging devices (Capitan-Vallvey, Lopez-Ruiz, Martinez-Olmos, Erena, & Palma,
2015). In particular, colorimetric tests and arrays have greatly benefited from the enhanced qualitative and quantitative
analysis provided by that color space techniques (Askim, Mahmoudi, & Suslick, 2013). Colorimetric arrays are
typically composed of 3-40 sensors that can interact with analytes and change color upon molecular interactions (Burks
et al., 2010; Li, Jang, Askim, & Suslick, 2015; Salles, Meloni, de Aaujo, & Paixdo, 2014). Various types of color
changing sensors have been utilized in sensor arrays including pH indicators, metalloporphyrins, solvatochromic dyes,
redox indicators, metal salts, ionic liquids, and nanoparticles (Askim et al., 2013; Galpothdeniya et al., 2015). Potential
analyte — sensor interactions leading to colorimetric changes include Lewis acid/base interactions, hydrogen bonding,
7-n interactions, and dipole-dipole interactions. Array sensor selection typically depends on an analyte’s chief mode of
interaction. For example, an acidic or basic analyte would warrant pH indicators as sensors, while the detection of a
metal ion would point to complexometric sensors (Ariza-Avidad et al., 2014). The previously mentioned analyte —
sensor interactions allow for a dynamic versatility and high applicability of colorimetric sensor arrays (Suslick, 2004).
Effective arrays typically have the following criteria: high selectivity, high sensitivity, the ability to detect many
analytes with the fewest numbers of sensors, and yield RGB data that can be analyzed via statistical analysis methods
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for identification of unknowns. Furthermore, preferable sensors will also have the following qualities: solubility in
commonly used solvents, are stable over time, both low cost and low toxicity, as well as demonstrating dramatic color
changes (Burks et al., 2010).

Colorimetric sensor arrays have been shown to detect a diverse range of analytes including ions, acids and bases, metal
nanoparticles, explosives, pesticides, warfare agents, drugs, various organic compounds, complex mixtures (including
coffee, beer, and soft drinks), and even biological molecules (steroids and proteins) (Askim et al., 2013; Bang, Lim,
Park, & Suslick, 2008; Batres et al., 2014; Capitan-Vallvey et al., 2015; Chulvi et al., 2012; Johnke, Batres, Wilson,
Holmes, & Sikich, 2013; Kitamura, Shabbir, & Anslyn, 2009; Lim, Feng, Kemling, Musto, & Suslick, 2009; Mahmoudi,
Lohse, Murphy, & Suslick, 2016; Soga, Jimbo, Suzuki, & Citterio, 2013; Kangas, 2017). Versatile, colorimetric arrays
have been used to detect analytes in solid, liquid, and gas phases (Feng, Musto, Kemling, Lim, & Suslick, 2010). More
and more, analyte induced sensor color changes are analyzed by computational methods, rather than the traditional user
vision color acuity. The patterns of color changes in colorimetric arrays, when analyzed with chemometric methods
including Euclidean distance, binary codes, principal component analysis (PCA), hierarchical cluster analysis (HCA),
linear discriminant analysis (LDA), and matrix discriminant analysis (MDA), can be used for the identification and
quantification of different compounds (Askim et al., 2013; Burks et al., 2010; Capitan-Vallvey et al., 2015; Zhang,
Askim, Zhong, Orlean, & Suslick, 2014). Most relevant studies only focus on one - or very few - chemometric methods,
which limits comparisons between techniques for data analysis of colorimetric sensor array output. The goal of our
research was to explore several multivariate techniques, including less often reported on methods, to expand the arsenal
of chemometric techniques used in tandem with colorimetric detection.

In our previous study, we investigated the performance of HCA, LDA, k-nearest neighbors (KNN), and hit quality index
(HQI) in classifying samples of water, HCI (0.5 - 10 M), and NaOH (0.5 - 10 M) using an eight sensor colorimetric
sensor array (Kangas, 2018). In this study, samples were classified based on the analyte and concentration allowing for
some quantitation. For the classification of analyte concentration, LDA slightly outperformed HQI and KNN, with 96%,
94%, and 90% accuracies, respectively. The work described herein compares the categorizing accuracy of nine different
statistical analysis methods using one dataset comprised of 631 formulations of 0.1 to 3 M of acetic acid (pK, = 4.76),
malonic acid (pK,; = 2.83; pK,, = 5.69), lysine (pK,; = 2.18; pK,; = 8.95), and ammonia (pK, = 9.25) solutions with an
eight sensor colorimetric array, with accompanying image collection and image analysis (Figure 1).

The chemometric methods selected for this study include PCA, HCA, KNN, LDA, and HQI which were used in the
previous study, as well as, soft independent modelling by class analogy (SIMCA), recursive partitioning (RPART),
partial least squares — discriminant analysis (PLS-DA), and support vector machines (SVM). The selected chemometric
methods were chosen because they are common chemometric methods, range in complexity from simple
non-parametric methods to very sophisticated methods.

These test compounds were selected for three main reasons: (1) they are inexpensive and water soluble; (2) readily
available pH indicators could be used as sensors; (2) they contain functional groups often targeted by color tests such as
such as a(n) carboxylic acid or dicarboxylic acid, amine (primary or secondary), alcohol (primary or secondary),
aldehyde, ketone, ester, and many others (Gilbert & Martin, 2010; Khan, Kennedy, & Christian, 2012; Kovar &
Laudszun, 1989; United Nations International Drug Crime Programme, 1994); (3)acids and bases encompass analytes
of interest to pharmaceutical industry, forensic science, and environmental fields (Charifson & Walters, 2014).
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Figure 1. Experiment schematic overview for classifying selected acids and bases using the sensor array and
chemometric analysis presented in the work

2. Experimental

All reagents were purchased from various chemical supply companies at technical grade or better and were used as
received without further purification. A solution of universal indicator was prepared as previously described (Kangas,
2018). One percent weight-by-weight solutions of Congo red (CR), erythrosin B (EB), alizarin yellow R (AY), crystal
violet (CV) , eriochrome black T (ER), phenolphthalein (PH), universal indicator (UV), and bromophenol blue (BB)
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were prepared by dissolving each into aliquots of a solvent mixture consisting of acetate buffer (0.1 M, pH 5), ethylene
glycol, triethylene glycol monobutyl ether, and glycerol in a ratio of 14:1.6:1:3.2. The sensor solutions sonicated for 1
hour in a bath sonicator (30 °C), followed by 5 minutes mixing with a probe sonicator, and then vacuum filtered twice
through Whatman #1 filter paper. Acetic acid (0.1 — 3 M) and ammonia (0.1 — 3 M) solutions were prepared by diluting
concentrated reagent solutions with milli-Q water (18 MQ-cm). Solutions of malonic acid (0.1 — 2 M) and lysine (HCI
salt, 0.1-2 M) were prepared by dissolving appropriate amount of the analytes in milli-Q water. The sensor array was
laid out in a 96-well plate as shown in Figure 2 by dispensing 100 pL of each sensor in designated rows. The same
volume of an analyte or control were added to the 12 columns of the well plate. To explore reproducibility, each plate
contained 4 replicates of a water control and 8 replicates of each analyte.

WATER (Control) 0.5 M Lysine
A

Bromophenol Blue —)@»@»@;\Q @»@r@»@»@;\gj»@»@

comonns >0 @ QS w@@@@@
Congo Red > @' O OO OOV OO

Figure 2. Sensor array housed in a 96-well plate, with each sensor was placed in a designated row. For each array, the
first four columns are controls (water), and the final eight columns are analyte (shown above: 0.5 M lysine). The black
boxes highlight color differences between the control (water) and the analyte (0.5 M lysine).

All array images, including Figure 2, were collected as 24-bit color images using an Epson Perfection V700 desktop
scanner in transparency mode. To eliminate interferences from stray light, the scanner was draped in black cloth. The
images were analyzed with ImageJ (Schneider, Rasband, & Eliceiri, 2012), and the extraction of mean RGB values for
each well was automated with a macro (Lyon et al., 2012; Soldat, Barak, & Lepore, 2009). No attempts were made to
correct for image-to-image variation by subtracting a control row, as our previous work showed such a correction to be
unnecessary (Kangas 2018). The RGB dataset is provided in the supplemental information as SI.4 to facilitate further
chemometric studies.

All statistical analysis was performed using the statistical programming language R. PCA was performed using the
function prcomp. The data was mean-centered, but was not scaled to unit variance because all of the data was on a
consistent scale of 0 to 255 RGB units. Loading plots are included in the supplemental information as SI.2. Score plots
of the resulting data were constructed using the function pca2d from the library pca3d (Weiner, 2017). Hierarchical
clustering was conducted in agglomerative mode using Ward’s method based on Euclidean distances using the hclust
function from the stats library (R Core Team, 2017). LDA was performed using the MASS library (Venables & Ripley,
2002) and the classification ability of the LDA model was tested by using all but one cross validation. The
concentrations of each analyte were treated as a separate class, and for classification the prior probabilities were equal
for all classes. KNN based on Euclidean distances was performed for k=1, 3, 5, 7, and 9 using the class package
(Venables & Ripley, 2002). HQI values were calculated using a custom R program given in the supplemental
information (Supplementary Figure, SI.1. Classification was performed using all but one cross-validation, and
classifications were assigned based on the library sample with the highest HQI value. PLS-DA was performed using the
plsDA function from the DiscriMiner library with leave one out cross validation (Sanchez, 2013). For RPART, SVM,
and SIMCA, the data was randomly split into a training set containing 75% of the data and a test set comprised of the
remaining 25%, and the analysis was repeated in triplicate with different train/test sets. RPART was conducted using the
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rpart package (Therneau, Atkinson, & Ripley, 2017). SVM was performed using the rrcovHD package (Todorov, 2016).
SIMCA was performed using the CSIMCA function from the rrcovHD package.

3. Results and Discussion

In the present study, the selected sensors were chosen for many of the reasons listed in the Introduction, plus our
previous work (Kangas, 2018) showed these sensors to be well-suited for the qualitative and quantitative classification
of NaOH and HCI solutions. As shown in Figure 2, some color differences between the control and analyte test wells
are easily visible to the naked eye. However, some sensor changes more subtle and are not immediately visible to a user.
Thereby, with chemometric analysis the investigator can more easily detect and use subtle color changes identified by
image analysis for the identification and quantification of analytes.

3.1 Principal Component Analysis

PCA is one of the more commonly used chemometric analysis methods for large data sets collected from colorimetric
tests or sensor arrays (Capitan-Vallvey et al., 2015). PCA is an algorithm that uses an orthogonal transformation a set of
observable - and possibly related - variables to change them into a set of linearly uncorrelated variables known as
principal components (Graham, 1993). Usually, for use with colorimetric sensors, this means that the principal
components are statistically weighted combinations of the R,G and B values from all the sensors. Although calculated in
multiple components, only a few components are typically needed to visualize and analyze trends in the data set. In this
study, for each array, 24 variables were available in the original data set (i.e. 8 sensors x 3 channels = 24 variables).
However, only 4 principal components were required to assess 95% of the variance in the data set. The number of
components needed to describe the variance in the data set was consistent with observations from other colorimetric
sensor array studies (Li et al., 2015; Salinas et al., 2014).

When analyzing with PCA, variables that are strongly correlated typically remain closely related when converted to the
new components. Similarly, data points that are clustered in the original data set can usually be found together in the
principal component space, thereby allowing the visualization of similar data when multiple component are plotted
together (Graham, 1993). In our work here, the biplots of PC1 and PC2 (Figure 3) show that water, each acid, and each
base create distinct clusters in the plot. These grouping indicate the ease with which each analyte of study can be
identified, whereas the biplot of all analytes (Figure 3) struggles to distinguish malonic from acetic acid in the same
space. However, in the biplot of PC2 and PC3 (Supplementary Figure S1.2), the distinction of acetic and malonic acid is
much more apparent while the distinction of water, ammonia and lysine are less so. The individual concentrations of the
analytes were also observed via plotting in the PC1 vs PC2 biplot. Again, the acids did not perform well with very little
selective grouping to mark the concentration changes while ammonia showed very distinct clusters of grouping by
concentration below 2 M. It was also observed that the low concentrations of lysine, 0.1-1 M, were very difficult to
distinguish from one another while there was a distinct separation between those and the 2 M samples. However, some
distinction arises in all groups by concentration when viewed in the PC2 vs PC3 biplot suggesting that this space is a
better space to observe the clustering and concentration differences found by the PCA analysis (Supplementary Figure
S1.2).
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Figure 3. Biplots of PCA results of acetic acid, ammonia, lysine, malonic acid, and water by concentration and all
analytes together showing analyte and concentration grouping as viewed by the first and second components. PC1 and
PC2 are the first two components from PCA, respectively

By observing the principle component values for each channel, PCA analysis can be used to also determine the sensors
with the most influence within each component. For instance, as observed in Supplemental figure SI.3, PC1 appears to
be dominated by the red channels of CR, EB, AY, and UV and the green channels of AY and PH. In PC2, the red
channels of EB and AY are strongly influential while the red channels of CR, UV and BB and green channels of AY and
PH are only mildly so. Finally, PC3 is strongly dominated by the red channel of UV and BB and the blue channel of AY
while only mildly influenced by the green channel of AY. This may explain why the acid samples are not well
distinguished in the PC1 and PC2 biplot as both channels are strongly dominated by similar red channels, especially EB
and AY, while the PC3 is strongly influenced by other dyes in different channels. In addition to visualizing the data with
the scores plot, PCA can also be used to determine which sensors are responsible for the analyte discrimination by
analyzing the loading plots (Supplementary Figure, SI.3). This information could be used for sensor selection and array
optimization as the loading plots reveal which sensors make the biggest contributions toward analyte detection as
evidenced by the highest loadings on the y-axis.

Overall, the plots show that PC1 and PC2 space provide excellent separation of ammonia, lysine, and water, but not
acetic and malonic acid. This is likely because PC1 and PC2 are strongly dominated by similar principle components.
To achieve separation of the acids and their concentrations, one must look at PC2 and PC3 space which provides better
separation but loses the separation of the bases, which like the acids, seems to coincide with sensor pKa values and the
complementary color change. This indicates that simply relying on two dimensions of PCA is not best for identifying
the acids and bases tested in this study, and at least three components should be used. Furthermore, by viewing the
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single component variables (Supplementary Figure, SI.2), the array of dyes can be improved by noting those sensors
which strongly influence each components (i.e. CR, EB, AY, UV, BB, PH) and those that have very little influence in
the first three components, (i.e. CV and ER). It may be advisable to use other components to see if those sensors have

any influence elsewhere in the space or exchange non-influential sensors for others which may provide more
information.

3.2 Hierarchical Cluster Analysis

Similar to PCA, HCA is an unsupervised, no bias multivariate clustering analysis that is commonly used to analyze
colorimetric arrays (Bueno, Meloni, Reddy, & Paixdo, 2015; Capitan-Vallvey et al., 2015). When performing HCA, the
analysis receives no information on the classes of the samples except for the 24 variable values per sample. Therefore,
the grouping of samples is determined by closeness, typically a Euclidean distance, in that 24 dimension space. This
clustering is an iterative process resulting in a tree of relational closeness where well-related samples are near to one
another on the tree while samples with less relation are further away. Compared to other clustering algorithms, HCA has
two main advantages: (1) it provides a quantitative metric for the similarity of groups and (2) it defines clusters in all
size scales, ranging from individual samples up to a single group that contains all samples (Graham, 1993). Figure 4
shows the clustering results of the analyte group means, with all variables averaged within a particular sample label,
from the colorimetric data to provide a more visually appealing example of the clustering capabilities. When viewing
the HCA plot, each of the T junctions are flexible when interpreting similarity within the plot. What this means is that
groups within the same branch, but not necessarily samples within the same region of the graph, are considered similar.
For example, all of the ammonia samples fall within the same branch noting their similarity. However, 2 M ammonia is
equally similar to 0.5 M ammonia as it is to 1 M ammonia due to the flexibility of the branch junctions. Furthermore, in
the branch containing lysine and water, 1 M lysine and 2 M lysine are classified equally similar to water although 0.5 M
lysine is less similar to water than 1 M lysine. Ammonia and all the rest of the data form the largest groupings showing
that ammonia is the least similar to all of the rest of the samples. Within the next tier, lysine-water and the acids form
the next families demonstrating how quickly HCA is able to discern the selected acids from the bases. While lysine and

ammonia are easily distinguished, HCA struggles with the individual acids especially in the low concentrations, such as
in the case of 0.1 M malonic and 1 M acetic acid.

Overall, HCA provided useful analysis for understanding similarities and differences in the data sets and was able to
distinguish ammonia and lysine as having distinct signal from the acids. However, given that the branches of the
dendromer are freely rotating, HCA was unable to distinguish the variables of lysine as being uniquely basic or distinct
from water. Furthermore, HCA does not indicate why the groups were clustered as they were or how each individual
variable contributes to the classification, which would — as in the case of PCA — be helpful sensor array optimization
data. Although HCA is a powerful classification tool that provides sufficient analysis of the data set, we judge it inferior

to PCA in the ability to draw conclusions on the sufficiency of the sensor array as HCA provides little insight into how
the classification may be improved.
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Figure 4. Dendrogram from HCA of 0.1 — 3 M acetic acid, 0.1-3 M ammonia, 0.1-2 M lysine, 0.1-2 M malonic acid and
water. Distinct clusters formed for water, ammonia, and lysine
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3.3 Linear Discriminant Analysis

Like PCA, LDA is also a method that generates new variables called discriminants which consist of linear combinations
of the original variables and has been applied in colorimetric sensor array analysis (Minami et al., 2013; Zhang et al.,
2014). Unlike PCA, LDA considers and exploits the differences in the group means and often outperforms PCA in the
separation of groups (Askim et al., 2013). The main disadvantage of LDA is that it requires a data set larger than that
required for PCA (Wold, Johansson, Jellum, Bjornson, & Nesbakken, 1981). In addition, the size and composition of the
classes within a dataset will affect the discriminant and result of LDA, thus influencing LDA’s ability to correctly
identify analytes and their concentrations. Figure 5 shows a panel of plots from the first and second discriminants of
LDA analysis which was input as groups by concentration. In the plot of analytes it is observed that LDA appears to
cluster acetic acid, malonic acid and ammonia as distinct groups for analysis and identification of analyte while lysine is
hardly distinguishable from water. Malonic acid was easily separated into of concentration groups, while acetic acid and
ammonia solutions were well-resolved at lower concentrations but distinguishing between higher concentrations -
especially 2 and 3 M acetic acid and 1, 2, and 3 M ammonia — was a challenge. For this particular data set it appears
that LDA is superior to PCA at a two dimensional separation of acetic and malonic acid with regard to class and
concentration, but is more comparable to HCA in the ability to distinguish lysine from water.
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Figure 5. LDA for 0.1 -3 M acetic acid, and 0.1-3 M ammonia, 0.1-2 M lysine, 01-2 M malonic acid and water. LD1
and LD2 are the first and second discriminants from LDA, respectively

An advantage of LDA over PCA is LDA’s ability to report quantitative means of classifying unknown compounds.
Table 1 shows the classification of the LDA analysis in which groups were input by concentration. LDA was able to
correctly classify samples by analyte identity and concentration in 626 out of 631 samples (99.2%). When
misclassifications occurred, the analysis was often still able to classify an analyte as an acid or a base. For example, one
3 M ammonia sample was misclassified as 1 M ammonia and one 0.1 malonic acid sample was misclassified as 0.5 M
acetic acid. As mentioned previously, LDA analysis struggled most with lysine samples, misclassifying one sample of
0.1 M acetic acid as 0.1 M lysine and one sample of water as 2 M lysine. One sample of 0.5 M ammonia could not be
classified, as replicate trials resulted in different classifications. In addition, subsequent analysis of the posterior
probabilities indicated a modeling error in the analysis. This result was likely the result of unusually low RGB values
for phenolphthalein other possibilities include a shadow or air bubble in the image of the well. LDA was also used to
qualitatively classify analytes correctly 622 out of 631 (98.6%). The previously observed trends were also true when
considering only analyte classification with one sample of acetic acid misclassified as lysine (struggles with lysine) and
seven samples of malonic acid classified as acetic acid (still classifies acids as acids). Overall, LDA was observed to
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classify the data 99.2% correctly when considering analyte identify and concentration, while data classification was
98.6% correct when only analyte identity was considered. Although PCA has an advantage of better grouping lysine
samples, LDA clearly has the advantage of quantitative classification results which may be more useful in certain
reporting schemes.

Table 1. Summary of LDA sample classification (grouped by [Analyte])

Analyte Total Correct Incorrect Misclassified

0.1 M acetic 24 23 1 0.1 M lysine

0.5 M acetic 24 24 0 -

1 M acetic 24 24 0 -

2 M acetic 24 24 0 -

3 M acetic 24 24 0 -

0.1 M ammonia 24 24 0 -

0.5 M ammonia 24 23 1 Modeling Error

1 M ammonia 24 24 0 -

2 M ammonia 24 24 0 -

3 M ammonia 24 23 1 1 M ammonia

0.1 M lysine 24 24 0 -

0.5 M lysine 24 24 0 -

1 M lysine 24 24 0 -

2 M lysine 24 24 0 -

0.1 M malonic 24 23 1 0.5 M acetic

0.5 M malonic 24 24 0 -

1 M malonic 24 24 0 -

2 M malonic 24 24 0 -

Water 199 198 1 2 M lysine

Overall 631 626 5

Table 2. Summary of LDA sample classification (grouped by analyte)

Analyte Total Correct Incorrect Misclassified
acetic acid 120 199 1 lysine
ammonia 120 119 1 Modeling Error
lysine 96 96 0 -
malonic acid 96 89 7 T*acetic acid
water 199 199 0 -
Overall 631 622 5

3.4 K Nearest Neighbor

KNN is another chemometric method which classifies unknown samples by comparing them to a library of known
samples. Previous applications of KNN include pH determination using a sensor array (Capel-Cuevas, Cuéllar,
Orbe-Paya, Pegalajar, & Capitan-Vallvey, 2010) and melting point estimation of organic compounds (Nigsch et al.,
2006). With KNN, the classification of the unknown is determined by measuring the distance to the most similar known
samples. The unknown is then identified by association with the predetermined “K” number of nearest neighbors, with
the nearest neighbor defined as the known samples with the shortest distance to the unknown (Ma, Yang, & Cheng,
2014). For example, if K = 1 the unknown is identified as the classification of the one closest known sample whereas if
K =4 then the unknown is classified with the identity of the four closest neighbors. KNN classification treats the data
sets as points in dimensional space equal to the number of variables (Balabin, Safieva, & Lomakina, 2010). In this study
with 24 values per array, there are 24 dimensions, this makes the calculation of the distance between points and the
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implementation of KNN relatively straight-forward. Furthermore, KNN often performs as well as or better than more
complicated classifiers, such as SVM (Ma et al., 2014).

For our work, K was varied and the Euclidean distance was calculated for KNN analysis. Increasing the k value has
previously been shown to influence method performance and accuracy, but the relationship between k and performance
can vary (Ma et al., 2014). In our study, increasing K = 1 to K = 9 resulted in lower classification accuracy (Table 3).
Overall, KNN was used to correctly identify 98.1% of samples for K = 1, decreasing to 93.0% for K=9. This indicates
that K = 1 was the optimal parameter. Table 4 contains K = 1 classification data. Our results indicate that KNN is a very
robust method for sample classification for this sample size since the least accurate run with the largest number of
neighbors (K = 9) is able to classify samples correctly 93.0% of the time. Some of the mislabeled samples involved the
correct analyte, but the wrong concentration, such as 0.1 M lysine was identified as 0.5 M lysine or 0.5 M acetic acid
was identified as 1 M. Six misclassifications occurred in acetic acid.

Comparing the two classification methods, KNN (K = 1) is comparable to LDA with 98.1% accuracy and 98.6%
accuracy, respectively. While LDA utilizes input variables with optimal weights to separate the group means and KNN
gives equal significance to all of the variables, both methods still result in similar results. Alternative KNN algorithms
do apply various transformations to the dataset to optimize the accuracy of KNN. However, these methods were not
pursued in this study (Nigsch et al., 2000).

Table 3. Effect of K on K nearest neighbor (KNN) accuracy

K Total Correct Incorrect
1 631 619 12
3 631 611 20
5 631 598 33
7 631 592 39
9 631 587 44
Table 4. Summary of k nearest neighbor (KNN) sample classifications. (K = 1)
Analyte Total Correct Incorrect Misclassified
0.1 M acetic acid 24 23 1 0.5 M lysine
0.5 M acetic acid 24 23 1 1 M acetic acid
1 M acetic acid 24 21 3 2% 0.5 M acetic acid, 0.1 M malonic acid
2 M acetic acid 24 23 1 3 M acetic acid
3 M acetic acid 24 23 1 1 M acetic acid
0.1 M ammonia 24 24 0 -
0.5 M ammonia 24 23 1 3 M ammonia
1 M ammonia 24 24 0 -
2 M ammonia 24 24 0 -
3 M ammonia 24 24 0 -
0.1 M lysine 24 23 1 0.5 M lysine
0.5 M lysine 24 24 0 -
1 M lysine 24 24 0 -
2 M lysine 24 23 0 -
0.1 M malonic acid 24 24 1 1 M acetic acid
0.5 M malonic acid 24 23 0 -
1 M malonic acid 24 22 2 0.5 M malonic acid, 2 M malonic acid
2 M malonic acid 24 24 0 -
Water 199 194 5 2 M lysine, 3 * 3 M malonic acid
Overall 631 619 12
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3.5 Hit Quality Index

HQI is commonly used as a spectral comparison method when working with an unknown FTIR or Raman spectra and a
database of known spectra (Gryniewicz-Ruzicka, Rodriguez, Arzhantsev, Buhse, & Kauffman, 2012; Lee, Lee, &
Chung, 2013, p. 201). HQI treats the unknown spectra as vectors in 24 dimensional space by calculating the dot product
according to the following equation:
() (xy)

HOT= o) )
The terms x and y are the unknown and one of the many known spectra in the database, respectively. Classification is
then assigned by assessing the closeness of fit which is determined by the result of the dot product being close to 1. The
use of HQI in comparative colorimetric studies have shown similar accuracies to other chemometric methods we
compare (Gryniewicz-Ruzicka et al., 2012; Lee et al., 2013, p. 201).

In the present study, HQI showed an overall 98% accuracy for analyte identity and concentration when classifying
acetic acid, malonic acid, lysine and ammonia (see Table 5 for results). Common misclassifications include
concentrations within the same analyte (6 samples), such as 1 M acetic acid misclassified as 0.5 M acetic acid and 0.5
M lysine misclassified as 0.1 M lysine. Two samples were classified outside their analyte; 0.5 M lysine misclassified as
0.1 M acetic acid and 0.1 M malonic acid misclassified as 1 M acetic acid. Similar to KNN, HQI underperformed both
LDA and PCA, especially with respect to classifying by concentration within an analyte. These results are similar to our
previous work with NaOH and HCI which also showed a high level of accuracy for analyte classification efficacy while
suffering in the concentration identification within analytes, especially high concentration HCI (Kangas, 2018). HQI is a
straightforward, mathematical analysis method which could be useful as an alternative or additional chemometric
analysis of colorimetric arrays. However, it suffers from inaccuracies which make it inferior to LDA and PCA-
especially in the acetic acid concentrations tested in the present study (Table 5).

Table 5. Summary of hit quality index (HQI) sample classifications

Analyte Total Correct Incorrect Misclassified
0.1 M acetic acid 24 23 | 0.5 M lysine
0.5 M acetic acid 24 23 1 1 M acetic acid
1 M acetic acid 24 21 3 0.5 M acetic acid, 0.1 malonic acid
2 M acetic acid 24 23 1 3 M acetic acid
3 M acetic acid 24 23 1 1 M acetic acid
0.1 M ammonia 24 24 0 -

0.5 M ammonia 24 24 0 -

1 M ammonia 24 24 0 -

2 M ammonia 24 24 0 -

3 M ammonia 24 24 0 -

0.1 M lysine 24 23 1 0.5 M lysine
0.5 M lysine 24 24 0 -

1 M lysine 24 24 0 -

2 M lysine 24 24 0 -

0.1 M malonic acid 24 23 1 1 M acetic acid
0.5 M malonic acid 24 24 0 -

1 M malonic acid 24 22 2 0.5 malonic acid, 2 M acetic acid
2 M malonic acid 24 24 0 -

Water 199 199 0 -

Overall 631 620 11

3.6 Partial Least Squares Discriminant Analysis

PLS-DA is an extension of the PLS methodology used for classifying samples. Briefly, PLS or PLS-DA are performed
by generating components similar to those in PCA, but the components are selected to correlate with y-values or classes,
respectively (Brereton & Lloyd, 2014). Our PLS-DA results for classifying samples into groups based on the analyte
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and concentration are given in Table 6. Unlike the other classification methods used in this study, PLS-DA was only
able to correctly classify water and the most concentrated ammonia samples (3 M), resulting in an overall accuracy of
39%. The poor performance may be ascribed to PLS-DA using a one-versus-all approach for multiple class problems
(Brereton & Lloyd, 2014). With the present data set, the samples in target class may be very similar to those in the rest
of the dataset. Since water was the majority of our observations, the class weights may have been affected. For
example, when classifying 0.5 M acetic acid, both 0.1 and 1 M acetic acid would be in the other class. PLS-DA also can
have problems setting the boundaries when there are groups of unequal sizes (Brereton & Lloyd, 2014), which would
also be present with the one-versus-all groupings. PLS-DA analysis with groups based on the analytes rather than both
the analytes and concentration resulted in a much higher accuracy with 610 of 631 correct, data not shown. In this case,
the one-versus-all groupings should be more distinct and the classes should be closer in size, and there are fewer classes
to assign observations to.

Table 6. Summary of partial least squares discriminant analysis (PLS-DA) sample classifications

Analyte Total Correct Incorrect Misclassified

0.1 M acetic acid 24 0 24 24 * water

0.5 M acetic acid 24 0 24 24 * water

1 M acetic acid 24 0 24 24 * water

2 M acetic acid 24 0 24 24 * water

3 M acetic acid 24 0 24 24 * water

0.1 M ammonia 24 0 24 24 * water

0.5 M ammonia 24 0 24 24 * 3 M ammonia

1 M ammonia 24 0 24 24 * 3 M ammonia

2 M ammonia 24 0 24 24 * 3 M ammonia

3 M ammonia 24 24 0 -

0.1 M lysine 24 0 24 24 * water

0.5 M lysine 24 0 24 24 * water

1 M lysine 24 0 24 24 * water

2 M lysine 24 0 24 24 * water

0.1 M malonic acid 24 0 24 17 * 3 M malonic acid, 7 * water
0.5 M malonic acid 24 0 24 24 * 3 M malonic acid
1 M malonic acid 24 0 24 24 * 3 M malonic acid
2 M malonic acid 24 0 24 -

Water 199 199 0 -

Overall 631 247 384

3.7 Recursive Partitioning

RPART is fast and simple to implement (Miller, 2001) classification method that generates a decision tree to classify
samples. At each branch, the value of a single variable is tested with a rule. For example, a classifier for patients may
use rules like is the patient age >18, while a classifier for colorimetric data may test the intensity of a specific sensor.
Examples of the usage of RPART in the chemical literature include calculating phase diagrams for surfactants (Bell,
2016) and identifying new pharmaceutical and antibiotic compounds (Rusinko, Farmen, Lambert, Brown, & Young,
1999; Wang et al., 2014). An advantage of RPART is that only the most important variables from the dataset are used in
the rules, and variables that have a low impact on classification are ignored.

Figure 6 shows the decision tree used for classifying the samples. As shown in Figure 6, the first rule is based on the
blue intensity of AY. The numbers below the groups indicate the confidence in that classification with the training set.
The 0.1 M lysine sample was the only one with a confidence less than 1, and is consistent with the classification results
for the test set, where there were acetic acid samples classified as 0.1 M lysine and lysine samples classified as acetic
acid. In addition, the decision tree shows that phenolphthalein and eriochrome black T were not used in any rules, while
bromophenol blue and alizarin yellow were the most utilized sensors.
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For RPART, the data was randomly split with R into a training set which acts as the database with 473 samples and a
testing set which acts as the unknowns with 158 samples. To test the reproducibility, the analysis was repeated in
triplicate with a new training and testing set of data randomly chosen for each trial. The classification accuracies for the
three trials were 95.6%, 97.4%, and 96.2% for an average accuracy of 96.4%, and the classification results for trial 1 are
summarized in Table 7. The decision tree for trial 1 is shown in Figure 6.

As shown in Table 7, there were 7 incorrect classifications including three acetic acid samples that were classified as the
correct analyte but the wrong concentration. The remaining four samples were classified as the wrong analyte. These
include two lysine samples (0.1 and 1 M) that were classified as 0.1 M acetic acid and two acetic acid samples (0.1 M)
that were classified as lysine (0.1 M). These results are consistent with the results for KNN and LDA (98% and 98.6%,
respectively), which also showed some confusion between dilute acetic acid and lysine. This is likely due to the
similarity in pH between the two compounds.

Table 7. Summary of RPART sample classifications

Analyte Total Correct Incorrect Misclassified

2 *0.1 M Lysine

0.1 M acetic acid
0.5 M acetic acid
1 M acetic acid
2 M acetic acid

2 M acetic acid
1 M acetic acid

3 M acetic acid

0.1 M ammonia

0.5 M ammonia

1 M ammonia

2 M ammonia -

2 M ammonia

0.1 M acetic acid

3 M ammonia
0.1 M lysine
0.5 M lysine

1 M lysine

2 M lysine

0.1 M malonic acid

0.1 M acetic acid
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Figure 6. Decision tree generated with trial one of RPART

Each branch provides a freely rotating, more selective classification of the samples. The blue boxes at the bottom show
the classes and the confidence in that assignment. Variables used in the rules are indicated as R, G, or B for the color
channel and an abbreviation for the sensor. Sensors are defined as Congo red (CR), erythrosin B (EB), alizarin yellow R

(AY), crystal violet (CV), eriochrome black T (ER), phenolphthalein (PH), universal indicator (UV), and bromophenol
blue (BB).

3.8 Support Vector Machines

Support vector machines were utilized to investigate whether more novel and less reported learning schemes could
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improve the classification results of our data set. SVMs establish a space complete with hyperplanes that are based on a
training set of data with known classifications. This gives maximum distance between groups clearly dividing the
possible combinations of data. When an unknown sample is added to the space, the sample is subsequently classified
based on its closeness to a particular hyperplane receiving the identity of the training samples which made up that
hyperplane. For colorimetric sensor arrays, SVMs has been applied for the detection, prediction, and classification of
various explosives (Askim, Li, LaGasse, Rankin, & Suslick, 2016).

Table 8 demonstrates one trial of SVM identification and classification with the presented dataset. Out of 158 samples,
140 were identified correctly in analyte identity and concentration. Most misclassifications occurred within the acetic
acid samples. However, it was only the concentrations of the acetic acid samples there were misidentified but not the
analyte itself - such as 1 M of acetic acid was misclassified as 0.5 and 2 M acetic acid. Only two concentrations were
misclassified in the ammonia dataset: 1 M of ammonia was predicted to be 0.5 M of ammonia. In the end, the accuracy
of SVMs was 89%, which makes the performance of SVMs comparable to other learning schemes such KNN (98%)),
LDA (98.6%), etc.

Table 8. Summary of Support Vector Machines (SVM) sample classifications

Analyte Total Correct Incorrect Misclassified

0.1 M acetic acid 4 4 0 -

0.5 M acetic acid 7 3 4 4 *2 M acetic

1 M acetic acid 5 2 3 0.5 M acetic acid, 2 * 2 M acetic acid
2 M acetic acid 4 4 0 -

3 M acetic acid 12 3 9 9 * 2 M acetic acid
0.1 M ammonia 7 7 0 -

0.5 M ammonia 6 6 0 -

1 M ammonia 7 5 2 2 * 0.5 M ammonia
2 M ammonia 6 6 0 -

3 M ammonia 4 4 0 -

0.1 M lysine 4 4 0 -

0.5 M lysine 10 10 0 -

1 M lysine 4 4 0 -

2 M lysine 12 12 0 -

0.1 M malonic acid 5 0 -

0.5 M malonic acid 4 4 0 -

1 M malonic acid 7 0 -

2 M malonic acid 10 10 0 -

Water 40 40 0 -

Overall 158 140 18
3.9 Soft Independent Modelling by Class Analogy

Soft and hard chemometric methods have been developed to analyze data obtained from chemical systems (Kakhki &
Abedi, 2012). SIMCA is usually defined as soft method, meaning that samples can be classified in one group, multiple
groups, or no groups. SIMCA is also an independent modelling method, which means that a sample can be categorized
into to more than one group. Unlike many other classification algorithms, in SIMCA, a sample could be assigned to
multiple groups in the case of orthogonal or hierarchical groups. For each class in the training set, PCA performed and a
model describing the group is generated. Afterwards each unknown sample is projected into all of the models for the
groups, and the unknown can be assigned to a group based on the similarity with the group (Gemperline, 2006). In
addition, outliers can be rejected from all classes. Other advantages of SIMCA include the ability to work well with data
sets with small numbers of variables and large numbers of variables (Esbensen, Guyot, Westad, & Houmgller, 2010).
There are many examples of SIMCA in in the chemical literature including classifying samples of spray paint using
FTIR spectra (Muehlethaler, Massonnet, & Esseiva, 2014), identifying contaminated pharmaceuticals with Raman
spectroscopy (Gryniewicz-Ruzicka et al., 2012), identifying potential pharmaceutical compounds (Tominaga, 1999),
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and classifying healthy brain tissue samples from GC-MS chromatograms (Wold et al., 1981).

Similar to RPART, SVM, and PLS-DA the data set was randomly split into a training set and a test set using R. To check
the reproducibility, the analysis was performed in triplicate, with new training and test sets each time, providing
accuracies of 97%, 89%, and 92% with an average of 92%. These results are comparable to the results from KNN
(98%), RPART (96.4%), HQI (98%), and LDA (98.6%). A summary of the classification results for SIMCA trial 1 are
given below in Table 9. Of the five misclassifications, four were the correct analyte but the wrong concentration. The
final misclassification was a sample of 0.5 M lysine which was classified as 0.1 M acetic acid. Misclassifications
between lysine and dilute acetic acid were also observed with RPART.

Table 9. Summary of SIMCA sample classifications

Analyte Total Correct Incorrect Misclassified

0.1 M acetic acid
0.5 M acetic acid

0.5 M acetic acid
3 M acetic acid

1 M acetic acid
2 M acetic acid
3 M acetic acid 1 M acetic acid
0.1 M ammonia -
0.5 M ammonia -
1 M ammonia -
2 M ammonia -
3 M ammonia
0.1 M lysine

0.5 M lysine

1 M lysine

0

0

1

1

1

0

0

0

0
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Colorimetric sensor arrays are rapidly becoming a common tool for the identification and quantification of analytes.
The multidimensional nature of colorimetric data is well-served by the use of chemometric methods. While HCA and
PCA are popular chemometric methods, we sought to explore the use of other algorithms to compare and contrast their
usefulness in qualitative and quantitative analysis. In this work, an eight sensor colorimetric array was used to compare
the performance of PCA, HCA, LDA, KNN, HQI, PLS-DA, RPART, SVM, and SIMCA for efficacy in identification
and quantification of acetic acid, malonic acid, ammonia, and lysine. PCA, HCA, and LDA were used to qualitatively
visualize the data and relationships between the analytes. In PCA, PC1 and PC2 provide excellent separation of
ammonia, lysine, and water - but not acetic and malonic acid. These analytes were separated much better with PC2 and
PC3, indicating that greater than bidimensional PCA components should be evaluated to obtain optimal clustering of
analytes. HCA was unable to distinguish the variables of lysine as being uniquely basic or distinct from water, making
this method not as effective for classification as PCA for our selected analytes. The two dimensional separation of acetic
and malonic acid with regard to class and concentration was achieved with LDA, making this method for our data set
superior to PCA. However, the lysine separation from water was similar in performance to HCA. Therefore, for the
present data set and presented methods, the effectiveness in regards to visualization and classification can be arranged
as LDA > PCA (if only PC 1 and 2 are used) > HCA.

LDA, KNN, HQI, PLS-DA, RPART, SVM, and SIMCA were used to quantitatively classify the samples. LDA is unique
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in that it can achieve visualization of the data as well as report quantitative means of classifying unknown compounds
with high accuracy (>99% in this data set). KNN is advantageous because it is relatively simple to execute, performing
similar to HQI (98% accuracy when k = 1) and better than PLS-DA, RPART, SVM, and SIMCA. PLS-DA was the lease
discriminating chemometric method for this data set as it was only able to correctly classify water and the most
concentrated ammonia samples (3 M), resulting in an overall accuracy of 39%. RPART results were consistent with
KNN and LDA showing misclassifications between dilute acetic acid and lysine. In comparison to all methods except
for PLS-DA (39%), SVM under performed (85% correct classification). Therefore, the effectiveness of the quantitative
methods for this dataset for an analyte concentration range from 0.1M to 3.0M can be ranked as LDA > HQI > KNN >
SIMCA > RPART > SVM >> PLS-DA. This coincides with our previously published ranking of LDA> HQI > KNN for
classifications and quantification of HCI and NaOH. (Kangas paper) Therefore, it appears that these classification
methods follow a general trend for inorganic and organic acids and bases. If other analytes were to be analyzed, it is
recommended that all these chemometric methods are examined for effectiveness as analytes and sensors can have
completely different mechanistic interactions that lead to different types of color changes, different RGB values, and
data sets. However, based on the fact that PLS-DA was much more inferior to the other methods with only 39%
accuracy, it may also not perform well for other datasets with a high number of analytes. Also, depending on the number
of samples, LDA may not work because it requires a large data set, while KNN, HQI and SIMCA can accommodate
smaller data sets. Finally, KNN can be employed if an easy algorithm and quick results are desired if a slightly lower
accuracy is acceptable.

Table 10. Summary of quantitative chemometric analysis of data by method. LOO = Leave one out, all but one. T/T =
Train and Test

Method Validation Trial% (Avg) Classification %
LDA LOO N/A 99.2
KNN LOO N/A 98.1
HQI LOO N/A 98.3
SVM T/T 88.6 85.0
82.3
84.2
SIMCA T/T 96.8 924
88.6
91.8
RPART T/T 95.6 96.4
97.5
96.2
PLS-DA LOO N/A 39.1

Herein nine chemometric methods were applied to the data set. The data set is provided in the supplemental information
(S1.4) to the readers for analysis with the many other methods available for further processing and comparison. The
methods that were reported here offer a suitable balance that was reached between data set requirements, analysis time,
and robustness of response for our chemical classification application.
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