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Abstract 

The geometries, stabilities, and electronic properties of ZrnAl±m (n = 1 – 7 and m = 0, 1) clusters were investigated at the 
UB3LYP/LANL2DZ level. The variations of structural and electronic properties with the changes of n and m were 
probed. Several possible multiplicities of each cluster were tested. The multiplicity of the most stable neutral clusters is 
4 instead of 2. For all the three differently charged of ZrnAl clusters, the lowest-energy geometry is in favor of 
three-dimensional structure when n ≥ 3. The Zr3Al+, Zr4Al–, Zr5Al +, Zr6Al– and Zr7Al clusters are more stable than their 
corresponding differently charged species of the same size. Moreover, the odd-even oscillations are found in the 
fragmentation energy and the second-order difference of total energies for ZrnAl– clusters. The Zr2Al+ cluster is more 
inert to chemical reaction than others judged by the HOMO-LUMO gaps. NBO analysis was done to analysis the 
electronic properties. 
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1. Introduction 

Recently, a large number of experimental and theoretical studies of clusters were performed (Alexandrova et al, 
2004),(Zhai et al, 2003), (Lei, 2011), (Hua et al, 2013), (Addicoat et al, 2007), because they have many unique physical 
and chemical properties in the terms of the geometry and electronic properties (Schmidt et al, 1998), (Herry, 2012), but 
also have potential applications in catalysis (Yamazoe et al, 2014), (Tang et al, 2014) , hydrogen storage 
(Ramos-Castillo et al, 2015), (Wu et al, 2015) etc. Moreover, the study of clusters plays a key role in understanding the 
growth behavior of microscopic particles of their bulk.  

As we all know, zirconium atom is a rare metal, a 4d transition-metal (TM), and has an electronic configuration of 
4d25s2. The Zr material used in the nuclear industry for cladding fuel elements, and own to a lower absorption cross 
section for neutrons. It is very resistant to corrosion by many common acids, alkalis, and sea water. Therefore, the metal, 
which is utilized as an alloying agent in steel and for making surgical appliances, is developed extensively by the 
chemical industry where corrosive agents are employed (Zhao et al, 2009), (Wang, 2006). Due to these special 
properties of TM Zr clusters, a number of research groups have been striving to investigate the geometrical structures 
and electronic properties for X-doped (X = metals) zirconium and the pure zirconium clusters recently. (Zhao et al, 
2009), (Wang, 2006), (Sengupta et al, 2016), (Yang et al, 2008). (Lekka, 2010) investigated the bonding characteristics 
and mechanical properties of Cu–Zr and Cu–Zr–Al clusters by density functional theory (DFT), they found the most 
abundant microstructural units on the Cu60Zr40 cluster. Zhao and co-workers studied the structural, electronic, and 
magnetic properties of the ZrnCr (n = 2–14) clusters, showed that the Zr6Cr, Zr8Cr and Zr12Cr clusters are more stable 
than their neighbors. (Zhao et al, 2009). The chemisorption of molecular hydrogen on small Zrn clusters (n = 2–15) was 
performed by (Sheng et al, 2008). The preferred adsorption sites for H2 reacting with the Zrn clusters are the bridge sites. 
As for Al-doped Zr clusters, (Du et al, 2010) were studied the geometrical and electronic properties of neutral Zrn-1Al 
clusters and the pure Zrn clusters (n = 2–8) with hybrid HF/DFT functional. From the above reports, although there are a 
lot of researches for X-doped Zr clusters, but few researches are systematically performed for the neutral and 



http://ijc.ccsenet.org                      International Journal of Chemistry                         Vol. 8, No. 4; 2016 

112 
 

positively/negatively charged Al-doped zirconium clusters. What is the difference between the neutral ZrnAl and ZrnAl± 
clusters? Can we find the "odd-even alteration" phenomenon in ZrnAl±m clusters as in MgBn clusters (Wu et al, 2014) 
for some properties? To explore these, we investigated the geometric structures, stabilities and electronic properties of 
ZrnAl±m (n = 1–7 and m = 0, 1) clusters. 

2. Computational Methods 

All the clusters were optimized by the B3LYP method (Lee et al, 1988), (Becke, 1993) in combination with the 
LANL2DZ basis set (Hay & Wadt, 1985). This basis set is modified by the relativistic effective core potential, therefore, 
is suitable for the transition metals (TM) Zr clusters (Yao et al, 2008), (Ge et al, 2012). In order to check the correctness 
of this method used for the investigation of the ZrnAl clusters, we first accomplished the calculation on Al2 and Zr2 
dimers. The bond length of the Al2 (2.64 Å) and Zr2 (2.33 Å) dimers are in nice accordance with experimental value of 
2.70 Å (Fu et al, 1990) and 2.24 Å (Doverstål et al, 1998), respectively.  

We have also considered the spin multiplicities for the initial configurations of ZrnAl±m clusters (n = 1 – 7 and m = 0, 1). 
To investigate the relative stability of differently charged ZrnAl clusters, we calculated the average binding energy, 
fragmentation energy and the second-order difference in total energies. The average binding energy (Eb) for Al13Bn 
clusters can be defined by the following formula:  

                           Eb(n) ±m = [ nE(Zr)+ E(Al) ±m – E(ZrnAl) ±m]/(n + 1)           (1) 

The fragmentation energy (Ef) can be defined by the following formula: 

                           Ef(n) ±m = E(Zr) + E(Zrn-1Al) ±m – E(ZrnAl) ±m                (2)  

The second-order difference of total energies (Δ2E) can be defined by the following formula: 

                         Δ2E (n) ±m = E(Zrn+1Al) ±m +E(Zrn-1Al) ±m – 2E(ZrnAl) ±m          (3) 

where E(Zrn+1Al) ±m, E(Zrn-1Al)±m and E(ZrnAl) ±m represent the energies of the most stable of Zrn+1Al±m, Zrn-1Al±m and 
ZrnAl±m clusters, respectively. E(Zr) and E(Al) ±m represent the total energies of the Zr and Al±m atoms, respectively. For 
the electronic properties, we calculated HOMO-LUMO (highest occupied molecular orbital-lowest unoccupied 
molecular orbital) gaps energies and the chemical hardness for the most stable ZrnAl±m clusters. Chemical hardness is 
defined as the resistance of chemical potential to a change in the number of electrons: (Pearson, 2005), (Suh et al, 2015) 

                             ƞ = (I – A)/2                          (4) 

where I and A are the ionization potential and electron affinity, respectively. 

The natural bond orbital (NBO) (Carpenter & Weinhold, 1988), (Reed et al, 1988) analysis was carried out for the most 
stable structures in order to study the chemical bonding characteristics. All the computations were performed through 
Gaussian 09 package (Frisch et al, 2010).  

3. Results and Discussion 

3.1 Stable Geometric Structure 

The fully optimized structures with lowest-energy and low-lying metastable isomers of ZrnAl±m clusters were shown in 
Figure 1. Through this figure we can fully understand the characteristics of different charged ZrnAl clusters enough. For 
n = 2, the lowest-energy structures of AlZr2 and AlZr2

– are isosceles triangle (C2v), whose apex angle (Zr-Al-Zr) are 
50.26° and 53.75°, respectively, and the Al–Zr bond length are slightly different (See Table 1). While the most stable 
structure of Zr2Al+ cluster is a chain, the energy of Zr2Al+ cluster is 0.09 eV lower than its isosceles triangle structure. 
This phenomenon of structures for Zr2Al±m clusters is similar to B2Mg±m clusters (Wu et al, 2014). As for Zr3Al±m 

clusters, we got the distorted tetrahedron geometry (3a) with C1 symmetry for Zr3Al cluster, but the lowest-energy 
structures of Zr3Al± clusters are trigonal pyramid with C2v symmetry. The second most stable structure for the cation 
Zr3Al+ cluster is a quadrilateral structure with C2v symmetry whose total energy is 1.04 eV higher than the 
lowest-energy structure. We also tried to construct some planar and quasi-planar structures as initial configuration, but 
these initial configurations change to the three-dimensional (3D) structures for Zr3Al and Zr3Al– clusters during the 
geometrical optimization. The V-like structures appear in Zr3Al and Zr3Al– clusters, whose energy are 0.11 eV and 0.36 
eV larger than the most stable ones, respectively.  
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2a, 0.00   2b, 0.77    2a+, 0.00      2b+, 0.09  2a–, 0.00    2b–, 0.47   3a, 0.00 

       

3b, 0.11  3a+, 0.00    3b+, 1.04    3a–, 0.00     3b–, 0.36   4a, 0.00    4b, 1.07 

       

4c, 2.02   4a+, 0.00  4b+, 1.56     4c+, 1.96   4a–, 0.00   4b–, 1.91    5a, 0.00 

   

5b, 0.07  5a+, 0.00  5b+, 0.94  5a–, 0.00   5b–, 0.64    5c–, 0.69     5d–, 2.30 

           

6a, 0.00   6b, 0.54   6a+, 0.00   6b+, 0.34    6c+, 0.38   6d+, 0.88   6a–, 0.00 

      
6b–, 0.42   6c–, 1.17      6d–, 1.70   7a, 0.00    7b, 0.35     7c, 0.97 

     

7d, 0.98     7a+, 0.00     7b+, 0.07     7c+, 0.31   7d+, 0.62  7a–, 0.00 

     
 
 
 

7b–, 0.47    7c–, 0.88    7d–, 0.90 
Figure 1. Lowest-energy and low-lying structures of ZrnAl±m (n = 1 – 7 and m = 0, 1) clusters. (The first 
digit denotes the number of zirconium, the letter (a, b, c, d) is the structure label (from lower to higher 

energy), superscript + or - denotes a positive/negative charge, and the 0.00 represents the relative 
energy in eV. Others are similar) 
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