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Abstract 

Emulsions are thermodynamically unstable systems where droplet size is one of the main factors that affect its physical 
stability and consequently their quality. In this context, this work analyses the incorporation of a high shear 
homogenization step in the manufacturing process of an emulsion with the objective of maintaining its physical stability. 
In order to demonstrate the effects of this homogenization in the manufacturing process, the emulsion characterization 
was carried out by microscopy, rheology, laser diffraction and analytical photo-centrifugation techniques. The effect of 
high shear homogenization into the emulsion physical results was dependent on the speed applied to the homogenizer 
pump, with an effective 3600 rpm speed. There was no evidence of change on pH attributes and emulsion density, 
although there was a change in volumetric relationship between the droplet family presented in each sample, reducing 
the population of larger droplets to form a third family of intermediate droplets and increasing the volumetric proportion 
of the population of smaller droplets. This profile change in the droplet size distribution contributed to increased 
viscosity and emulsion without the presence of separation after it was submitted to the stress condition of temperature 
and agitation. 
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1. Introduction 

Emulsions are widely used as vehicles for cosmetic and pharmaceutical industry where various cosmetic or semi-solid 
pharmaceutical products are formulated as water in oil emulsion (W/O) or oil in water (O/W). Emulsions are systems 
with two immiscible liquids (oil and water) and may contain an emulsifying agent with the function of promoting 
emulsion stability due to its property of allocating in the oil and water interface decreasing the interfacial tension 
between these phases. Because the emulsion is considered a thermodynamically unstable system, it may present lack of 
long term stability.  

It was reported in a publication by Raikar et al. (2011) that commonly used techniques for emulsification require the 
application of mechanical energy to the two immiscible phases and stabilization of the newly formed interfaces by 
surfactants.  

Studies conducted to stabilize emulsions generally focus on the use of emulsifiers, as reported on relevant studies from 
Tadros (2006) and (2009) Baret et al. (2009). The use of emulsifiers in order to stabilize an emulsion certainly requires 
a change in the qualitative or quantitative formula of the product. There are other published works with guidance for 
stabilization of an emulsion, based on studying of the manufacturing process with the aim of improving the 
manufacturing step. Schultz et al. (2004) classify the different equipment used in the emulsion homogenization step as 
high pressure homogenizers, and high shear homogenizers; it is possible to observe that such equipment promotes 
reduction of droplet diameter, ensuring emulsion physical stability.  

Established products already commercialized, have a registered formula composition, sometimes patented, where their 
physical stability was confirmed in the climate zone condition in the region in which this product is marketed. When 
there is a need to adapt the physical stability of the product already registered to address, for example, different climate 
zone conditions or manufacturing site changes, formula amendments will impose regulatory barriers. However, 
improvements in the manufacturing process steps will be a more viable alternative from a regulatory and financial 
perspective.  
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This work aims to study the additional step of high shear homogenization through a high shear homogenizer rotor-stator 
type pump at the end of an emulsion manufacturing process. Moreover, the ability of the high shear homogenizer to 
reduce the size and to increase uniformity of the droplets to maintain the emulsion physical stability was evaluated. 
Additionally, to prove the effectiveness of the homogenizing pump, the emulsion physical characterization was 
performed, in order to demonstrate uniformity of the droplet shape as confirmed by microscopy, and reduction of the 
droplet size as verified by laser diffraction as well as the reduction of phase separation by photo-analytical 
centrifugation under speed and temperature stress conditions. 

2. Methods 

2.1 Emulsion Preparation 

Oil in water emulsion was prepared by phase inversion. Industrial lots of 1500Kg were manufactured in 2000L 
capacity vessel. Initially, the ingredients corresponding to the oil phase 1a (Organic phase component with oily 
solvent) were heated at 50°C. Subsequently, the emulsion was formed by phase inversion by adding water, phase 
1b. The viscosity regulators from phase 1c were added at 50°C, under agitation and recirculation through a lobe 
pump (Alfa Laval® manufacturer). The surfactant from phase 1d was solubilized in a stainless steel container with the 
remaining oil phase materials from phase 1d (Organic phase component with oily solvent). Subsequently, this mixture 
was transferred to the vessel. The emulsion was cooled down and transferred from the vessel to a stainless steel container 
through a lobe pump and a high shear homogenizer rotor-stator type with three stages (IKA® manufacturer). Table 1 
presents the formulation used for seven lots. 

Table 1. Formula composition 

Phase Function 
1a Organic phase component with oily solvent 
1b Aqueous phase component
1c Viscosity regulator component
1d Amphoteric surfactant and Organic phase component with oily solvent 

Table 2 presents a summary of the conditions applied to each test. 

Table 2. Test conditions summary 

Test 
Manufacturing 

Process 
Lobe pump 
speed (rpm) 

High shear 
homogenizer 
speed (rpm) 

T1a T1 (1) 223 - 
T1b T1 (1) 223 - 
T1c T1 (1) 223 - 
T2a T2 (2) 223 1800 
T3a T3 (3) 223 3600 
T3b T3 (3) 223 3600 
T3c T3 (3) 223 3600 

(1) Process T1 – Without high shear homogenizer. 
(2) Process T2 – High shear homogenizer at 1800 rpm. 
(3) Process T3 – High shear homogenizer at 3600 rpm. 

2.2 Emulsion Physical Characterization 

2.2.1 pH  

The pH of the emulsions was determined at 25°C ± 2°C, without dilution, using a digital pH meter (Mettler 
Toledo® manufacturer, Model pH / Ion meter S220). This test was performed in duplicate 24 hours after batch 
manufacturing. 

2.2.2 Density 

The density value of the emulsions was determined by Mettler Toledo densimeter Model 40, with temperature 
set at 20°C. The analysis was performed in duplicate 24 hours after batch manufacturing. 

2.2.3 Viscosity 

The viscosity of the emulsions was measured by a Brookfield viscometer model RVDV I+, with spindle 
number 5, temperature at 25°C and 20 rpm agitation speed. The test was performed in duplicate 24 hours after 
batch manufacturing. At spindle number 5 shear rate=0. 
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2.2.4 Rheology 

The rheology behaviour of the emulsions was analysed using a rheometer from Malvern Kinexus manufacturer, 
KNX5001 model. The equipment was set to apply an upward continuous shear rate from 0.01 to 1000 Pa at 
25°C. The measurement was done 30 days after batch manufacturing. 

2.2.5 Droplet Size 

The droplet size distribution from the dispersed phase of the emulsion was evaluated by laser diffraction using 
the equipment Mastersizer Microplus from Malvern Instruments. The required dilution was performed with 
purified water to obtain obscuration from 10% to 20% in the equipment. The measurement was done 30 days 
after batch manufacturing. The droplet size distribution (Span) was reported in the form of cumulative 
percentage volume d[v; 0,1], d[v; 0.5], d[v; 0.9] and mean droplet diameter (d [4,3]). The equipment also 
calculated the polydispersity index which is an indication of the width of the droplets, reported as range: (d [v; 
0.9] - d [v; 0.1]) / d [v; 0.5]. 

2.2.6 Microscopy 

The droplet shape analysis was carried out by optical microscopy microscope Axio Imager Carl Zeiss, model 
M2M with DIC (interference contrast microscopy). The analysis was performed 30 days after batch 
manufacturing. The cover slip was gently placed in order to not break emulsion structure. 

2.2.7 Analytical Photocentrifuge 

In order to check the possibility of phase separation, the centrifuge was performed 24 hours and 30 days after emulsion 
manufacture stored at 25°C ± 2°C. For this study, centrifuge equipment, model Cientec CT-6000R was used. 
Centrifugation was performed at 3500 rpm for 15 minutes. From the tubes where separation was observed, the separated 
phase was removed and weighed to compare the amount of each separated sample.  

Beyond the conventional centrifuge test, predictive assessment of physical stability of the emulsion was also carried out 
after 30 days of manufacture stored at 25°C ± 2°C, by checking phase separation through LUMiSizer® equipment. The 
equipment is an analytical photo-centrifuge system for measuring the intensity of light transmitted as a function of time 
and position along the entire length of the sample. The analysis was conducted at 45°C and rotation speed of 4000 rpm. 

3. Results and Discussion 

3.1 Manufacturing Process 

The processes T1, T2 and T3 have in common the same manufacturing steps through the formation of the emulsion by 
phase inversion and differ only in the last homogenization step when the emulsion passes through a high shear pump, as 
summarized in the flow reported in Figure 1.  

The lobe pump operating by a positive displacement (Eggert, 2011), was used in the manufacturing process with the 
function of recirculation in the vessel to enhance mixing of the ingredients in the formulation. Moreover, this pump was 
also used with the function of emulsion pumping, feeding the high shear homogenizer pump IKA® manufacturer at a 
flow of 2400 liters/hours. This flowrate was confirmed weighing the product that was transferred and time transference. 
The objective was to keep a steady feeding flow to the homogenizing pump. Thus, the emulsion residence time in the 
high shear homogenizer pump is constant for the seven tests. Keeping the residence time of emulsion in homogenizer 
pump, the speed of the homogenizer pump was changed for process T2 (1800 rpm) and process T3 (3600 rpm), in order 
to assess the effect of speed on the ability to promote different shear on the emulsion droplets. The shear rate applied in 
a rotor-stator homogenizer pump may increase emulsion temperature (Felton, 2013). It was also observed by Raikar et 
al. (2011) that substantial increases in the emulsion temperature for multiple passes occur at high pressure. Therefore, 
only a single pass of the emulsion through the high shear pump was performed and the initial and final temperature of 
the emulsion was measured using a digital thermometer. According to Table 3, it will be seen that the single pass of the 
emulsion by rotor-stator system does not increase the emulsion final temperature, even at the highest shear rate at 3600 
rpm.  
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The phase separation was confirmed after the display of the tubes at the end of the analytical photocentrifuge test in 
LUMiSizer® equipment.  

All samples without high shear homogenization step and the sample with high shear homogenization at 1800 rpm (T2a) 
showed phase separation at the top of the tubes, as shown in the visual assessment in Figure 8.  

For the samples with high shear homogenization at 3600 rpm no phase separation was observed at the top of the tube. 
Those samples which passed through the high shear process had similar light transmission profile between tests T3 
(Figure 7) showing overlapping of the light transmission, confirming the benefit of the additional step of high shear 
homogenization for emulsion physical stabilization. 

Table 8 summarizes the results of the instability index and the average droplet diameter from batches studied. 

It is possible to conclude that higher instability indices are obtained for samples that have a larger average droplet size, 
represented by d [4,3].  

Table 8. Instability Index versus Average Droplets Sizes 

Test 
High shear 

homogenizer 
speed (rpm) 

Instability 
Index 

Average
 d [4,3] 

(µm) 

T1a - 
0,2038 
0,1987 18,58 

T1b - 0,2600
0,2130 29,22 

T1c - 0,2793
0,2673

32,86 

T2a 1800 
0,1719
0,1874 17,72 

T3a 3600 0,0068
0,0052 7,29 

T3b 3600 0,0074
0,0074

9,45 

T3c 3600 
0,0083
0,0080 9,84 

The instability can be attributed to the lack of homogeneity of size and shape of the droplets present in this emulsion, as 
evaluated by microscopy and laser diffraction techniques. From this study, we can see that besides the presence of the 
emulsifier, it is also necessary to have an effective emulsification process producing a homogeneous emulsion in the 
shape and size distribution of their droplets.  

The same qualitative and quantitative formula with the same emulsifier system gives distinct phase separation results 
according to the homogenization process adopted.  

Using the homogenizer pump at high speed (3600 rpm) a higher emulsion shear was obtained, and consequently, there 
was a possible increase in the interfacial area with better distribution of the emulsifying agent around the emulsion 
droplets without any change in the quantities used in the formulation.   

4. Conclusions 

This work focused on studying the influence of high shear homogenization process in maintaining the physical stability of 
an oil-in-water emulsion, having the same qualitative and quantitative formula composition.  

The effect of high shear homogenization on the physical properties of the oil in water emulsion was dependent on the 
speed applied to the homogenizer pump where 3600rpm speed was confirmed to be effective in improving the physical 
aspects of size emulsion, drop shape, and eliminating separation of phases when submitted to stress conditions of 
temperature and agitation.  

There was higher emulsion shearing using the homogenizer pump at high speed allowing a better emulsifying agent 
distribution in the emulsion probably by the increase in interfacial area.  

The benefit of high shear homogenization at the end of the manufacturing step was confirmed, due to modification of the 
volume ratio between the families of droplets sizes present in each sample, thereby reducing the population of larger drops, 
and forming a third family of intermediate drops and increasing the population of smaller droplets. This effect was also 
observed in optical microscopy where there was drop polydispersity reduction for the tests that used the homogenization 
at 3600 rpm, resulting in a slight increase in the emulsion viscosity.  

The rheology behaviour showed similar yield stress and consistency index results for the samples that passed through the 
high shear pump, which differs from the sample without the high shear homogenization step. This difference indicates that 
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the samples that passed through the pump required a lower rate to start to flow, indicating a possible benefit to the 
consumer, due to potentially improved spreading properties of this emulsion on the skin for samples that passed through 
high shear homogenization process.  

The high shear homogenization step proved to be feasible in maintaining physical stability of emulsions and can be an 
alternative to be utilized by companies in cases where a formula composition change imposes regulatory barriers.   
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