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Abstract 

Poly(ferrocenylsilane)s containing Si-vinylene unit in the main chain have been synthesized by Mizoroki-Heck reaction 
of 1,1’-bis(dimethylvinylsilyl)ferrocene (MVFS) and dibromo aryl compounds using palladium diacetate as a catalyst. 
The alternating copolymers with relatively low molecular weight were obtained in good yields. Cyclic voltammetry of 
the copolymers in CH2Cl2 solutions showed redox potential derived from the ferrocene units in the copolymers. The 
voltammograms the copolymers indicated that almost no difference in numbers of electron transfer compared with 
MVFS. By contrast, diffusion coefficients of the ferrocene units in the copolymers were smaller than that of MVSF. The 
copolymers showed reversible electrochromism from yellow to blue-green due to the redox of ferrocene units in the 
main chain by 3V of application. 
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1. Introduction 

Metallocene containing polymers have been developed because of their high potentials such as redox, magnetic, 
photo-physical, and catalytic properties (for example Abd-El-Aziz, Agatemor, & Etkin, 2014). Poly(ferrocene) is one of 
the most synthesized and studied metallocene containing polymers due to their characteristic features derived from the 
ferrocene units in the polymer. The main chain type poly(ferrocene)s have been synthesized by ring opening 
polymerization, condensation polymerization, coupling reaction, and so on (for examples Bellas & Rehahn, 2007; Miles, 
Ward, & Foucher, 2009; Miles, Ward, & Foucher, 2010; Wang, Huo, Ding, & Tan, 2008; Huo, Wang, Yu, Deng, Zhou, 
& Yang, 2007; Cazacu, Munteanu, Racles, Vlad, & Marcu, 2006; Caracu, Vlad, Marcu, Racles, Airinei, & Munteanu, 
2006; Southard & Curti, 2001). Poly(ferrocenylsilane)s have been widely synthesized by ring opening polymerization 
of Si bridged ferrocene compounds, as shown in Scheme 1 (for example Bellas & Rehahn, 2007). Modification of 
substituted groups, R1 and R2 in Scheme 1, of the Si bridge of ferrocene compounds or resulting polymers, and 
copolymerization are usable to develop the highly functionalized poly(ferrocenylsilane)s (for examples Zechel, 
Hultzsch, Rulkens, Balaishis, Pudelski, Lough, & Manners, 1996; Nanjo, Cyr, Liu, Sargent, & Manners, 2008; Qian, Lu, 
Cambridge, Guerin, Manners, & Winnik, 2012; Sui, Hempenius, & Vancso, 2012; Wang, Wang, Wang, Chen, Yu, Wang, 
& Wang, 2006; Gilroy, Rupar, Whittell, Chabanne, Terrill, Winnik, Manners, & Richardson, 2011; Roerdink, van 
Zanten, Hempenius, Zhoug, Feijen, & Vancso, 2007; Ren, Shaushan, Liu, & Tong, 2007; Bunz, Maker, & Porz, 2011). 

Incorporation of the ferrocene units in the main chain of -conjugated polymers has been investigated by metathesis 
polymerization, Pd catalyzed coupling polymerization, and click reaction (Bueretea & Tilley, 1997; Heo, Park, & Lee, 
2005; Weyehardt & Plenio, 2008; Masson, Lugh, & Manners, 2008; Lang, Voll, Inglis, Dingenouts, Goldmann, Barner, 
& Barner-Kowollik, 2011; Choi, Lee, Joo, Lee, Lee, & Chae, 2007; Yamamoto, Morikita, Maruyama, Kubota, & 
Katada, 1997; He, Gadt, Jones, Scholes, Manners, & Winnik, 2009). Sheridan et al. synthesized poly(ferrocenylsilane)s 
having conjugation units in the main chain using hydroslilylation reaction of 1,1’-bis(dimethylsilyl)ferrocene and 
diethynylbenzenes (Jain, Lalancette, & Sheridan, 2004). The resulting copolymers have ferrocene, silyl, and 
phenylene-vinylene units in the polymer back bone.  

We developed fluorene- and carbazole-based alternating copolymers containing Si-vinylene units in the main chain 
(Naga, Tagaya, Noda, Imai, & Tomoda, 2008; Naga, Ohkura, Tagaya, & Tomoda, 2011). These copolymers were 
synthesized by alternating copolymerization of dibromofluorene or dibromocarbazole with Si containing divinyl or 
diallyl compounds using Mizoroki-Heck reaction with a Pd catalyst. Incorporation of Si and unsaturated vinylene units 
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in the main chain of the conjugated polymers was effective to improve solubility of the polymers in organic solvents. 
Furthermore, the copolymerization is usable to control the photophysical properties of the conjugated polymers. We 
came to an idea to synthesize poly(ferrocenylsilane)s containing Si-vinylene units in the main chain using the 
alternating copolymerization. This paper reports the alternating copolymerization of 
1,1-bis(dimethylvinylsilyl)ferrocene (MVSF) with aromatic dibromo compounds (ArBr2) using Mizoroki-Heck reaction 
with a Pd catalyst, as shown in Scheme 2, and the photophysical and electro chemical properties of the resulting 
copolymers.  

 

Scheme 1. Synthesis of poly(ferrocenylsilane) by ring-opening polymerization of bridged ferrocene. 

 

Scheme 2. Synthesis of poly(ferrocenylsilane)s containing Si-vinylene unit in the main chain by Mizoroki-Heck 
reaction of bis(dimethylvinylsilyl)ferrocene (MVFS) and dibromo aryl compounds. 

2. Method 

2.1 Materials 

Ferrocene (Tokyo Chemical Industry Co., Ltd.), n-butyllithium (1.63 M n-hexane solution, Kanto Chemical Co. Ltd.), 
N,N,N’,N’-tetramethylethylenediamine (TMEDA, Kanto Chemical Co. Ltd.), and chlorodimethylvinylsilane 
(AZmax.co) were commercially obtained, and used without further purification. n-Hexane was dried over calcium 
hydride under refluxing for 6 h and distilled before use under nitrogen atmosphere. Palladium(II) acetate (Pd(OAc)2) 
(Sigma-Aldrich Co. LLC.), tri-o-tolylphosphine (P(o-Tol)3) (Kanto Chemical Co. Ltd.), triethylamine (NEt3) (Kanto 
Chemical Co. Ltd.), and N,N-dimethylformamide (DMF) (dehydrated grade, Kanto Chemical Co. Ltd.), were 
commercially obtained and used as received. p-Dibromobenzene (Bz, Kanto Chemical Co. Ltd.), 4,4’-dibromobiphenyl 
(BPh, Sigma-Aldrich Co. LLC.), 2,7-dibromofluorene (Flu, Wako Pure Chemical Industries, Ltd.), and 
9,9’-dihexyl-2,7-dibromofluorene (HFlu, Sigma-Aldrich Co. LLC.) were commercially obtained and used without 
further purification.  

Indium tin oxide (ITO) coated glass slide (surface resistivity: 8-12 /sq) was purchased from Sigma-Aldrich Co. LLC. 
Chloroform and CH2Cl2 (spectroscopy grade) were commercially obtained from Dojindo Molecular Technologies, Inc. 
Tetrabutylammonium hexafluorophosphate was commercially obtained from Tokyo Chemical Industry Co., Ltd., and 
used as received. 

2.2 Synthesis of 1,1-bis(dimethylvinylsilyl)Ferrocene (MVSF) 

MVSF was synthesized according to the previous report (Majchrzak, Marciniec, Kubicki, & Pawelczyk, 2005). A 
n-hexane solution of n-butyllithium (40.0 mmol, 1.63 M, 24.5 mL) was added dropwise to a hexane (80 mL) solution of 
TMEDA (40.8 mmol) and ferrocene (19.9 mmoL) at room temperature under nitrogen atmosphere, and the reaction 
system was stirred for 20 h. The reaction system was cooled to -78ºC, and chlorodimethylvinylsilane (41.8 mmol) was 
added dropwise to the reaction solution, and stirred for 25 min. The reaction system was gradually warmed to room 
temperature, and stirred for 8 h. The solvent was evaporated, and the products was purified by silica gel column using 
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n-hexane as an eluent.  

2.3 Synthesis of Poly(ferrocenylsilane)s Containing Si-vinylene Unit in the Main Chain 

The copolymerization was carried out in a 100 mL glass reactor equipped with a magnetic stirrer. Equivalent molar of 
MVSF (1.25 mmol) and a ArBr2 (1.25 mmol) were added to the reactor under nitrogen atmosphere. P(o-Tol)3 (0.25 
mmol), NEt3 (3.13 mmol), and a DMF solution (4.0 mL) of Pd(OAc)2 (0.05 mmol) were introduced to the reactor. The 
copolymerization was conducted at 100ºC for 24 h. The reaction was terminated by adding a small amount of methanol. 
The polymer was precipitated in a large excess of methanol and recovered by decantation. The copolymer obtained was 
dissolved in chloroform and re-precipitated in methanol. The precipitate was collected by decantation and dried in 
vacuo at 60°C for 6 h. 

2.4 Analytical Procedures 
1H NMR spectra of the copolymers were recorded at room temperature on a JEOL-JNM-LA300 spectrometer in pulse 
Fourier transform mode. The sample solution was made in CDCl3 as a solvent and the resonance of CDCl3 (7.24 ppm) 
was used as an internal reference. Molecular weight and molecular weight distribution of the copolymers were 
measured at 40ºC by means of gel-permeation chromatography, SHIMADZU Prominence GPC System, using 
chloroform as a solvent, and calibrated with standard polystyrene samples. UV-vis absorption spectroscopy of the 
copolymers was conducted with SHIMADZU UV-1200 in a chloroform or CH2Cl2 solution. Photoluminescence (PL) 
spectroscopy was investigated with a SHIMADZU RF-1500 in a chloroform solution of the copolymer. Cyclic 
voltammetry was conducted with Electrochemical Measurement System HZ-5000 (Hokuto Denko) using Ag|AgCl 
reference electrode, glassy carbon working electrode, and Pt counter electrode at a scan rate of 0.1 V/s. Voltage for 
electrochlomism observation was applied by GP 025-5 (Takasago Ltd.) ranged from 0 to 3.0 V at a scan rate of 10 
mV/s. 

3. Results and Discussion 

3.1 Synthesis and Structure of Poly(ferrocenylsilane)s 

Copolymerizations of MVSF with ArBr2 compounds have been investigated with Pd(OAc)2 in DMF at 100ºC. The 
results are summarized in Table 1. Although the molecular weights of the copolymers were relatively low, the 
corresponding copolymers were obtained in good yield. 

Table 1. Synthesis of alternating copolymers of MVFS with ArBr2, and their structure and optical properties 

Sample ArBr2 Yield 
[wt%] 

Mn 

[g/mol]
Mw/Mn Absorptiona

[nm]
Emissiona,b 
[nm] 

P1 Bz 46 2000 1.9 275 381, 416 
P2 BPh 37 2100 2.0 275 386, 418 
P3 Flu 53 2900 3.1 275 385, 420 
P4 HFlu 75 3000 6.0 275 380, 420 
MVSF   275 379, 418 
Ferrocene   275 381, 416 

a Evaluated in CHCl3 (10-8 mol/L of ferrocene unit). b Emission was exited at λmax of absorption. 

Structure of the copolymers was studied by 1H NMR spectroscopy. Figure 1 shows 1H NMR spectrum of P1 prepared 
by the copolymerization of MVFS and Bz. The signals derived from methyl, cyclopentadienyl, vinylene, and phenyl 
groups are observed at 0.3-0.4, 4.1-4.4, 6.6-6.9, and 7.4 ppm, respectively. The peaks assignments of the 1H NMR 
spectra of the obtained copolymers are listed below. P1 (ppm) : 0.3-0.4 (d, 12H), 4.1-4.4 (m, 8H), 6.6-6.9 (m, 4H), 7.4 
(s, 6H); P2 (ppm) : 0.3-0.4 (d, 12H), 3.9 (s, 2H), 4.2-4.4 (m, 8H), 6.6-6.9 (m, 4H), 7.6 (m, 8H); P3 (ppm) : 0.3-0.4 (d, 
12H), 4.1-4.4 (m, 8H), 6.6-6.9 (m, 4H), 7.4-7.7 (m, 6H); P4 (ppm) : 0.3-0.4 (m, 18H), 0.6-1.1 (m, 20H), 4.1-4.4 (m, 8H), 
6.6-6.9 (m, 4H), 7.4-7.7 (m, 6H). These chemical shift assignments and quantitative analyses of the peaks intensity 
cleared that the copolymerizations yielded the corresponding copolymers. 
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Figure 1. 1H NMR spectrum of P1. 

3.2 Optical Properties  

UV-vis and PL spectra of the copolymers were acquired in chloroform. Figure 2 shows absorption and emission spectra 
of P1. The wavelengths UV-vis and PL spectra of the copolymers are summarized in Table 1. All the copolymers 
showed an absorption peak at 275 nm, and emission peaks at around 380 and 420 nm. These wavelengths were almost 
same those of MVSF or ferrocene. The absorption and emission of the copolymers are derived from ferrocene units, and 
their wavelengths are independent of structure of the aryl units. 

 
Figure 2. UV-vis (a) and PL (b) spectra of P1 in CHCl3 solution, 10-8 mol/L of ferrocene unit, emission was exited at 

λmax of absorption of 275 nm. 

3.3 Electrochemical Properties  

Wang et al. reported effect of molecular structure of poly(ferrocenlysilane)s on electrochemical behavior (Wang, Wang, 
Wang, Chen, & Chen, 2006; Wang, Wang, Wang, & Chen, 2007). Electrochemical properties of the present copolymers 
in CH2Cl2 solution containing 0.1 M of tetrabutylammonium hexafluorophosphate were investigated with cyclic 
voltammetry. The results are summarized in Figure 3, and Table 2. The copolymers showed redox potential, derived 
from ferrocene units in the main chain. All the copolymers and MVSF, which have dimethylsilylene-vinylene units, 
showed higher E1/2 values than that of ferrocene, indicating shift of the voltammograms to anode due to the electron 
withdrawing of the ferrocene units by the vinylene units. E values of the copolymers (0.08 -0.11 V) were almost same 
with those of the MVFS. The results indicate almost no difference in numbers of electron transfer between the 
copolymers and MVFS. By contrast, Ipa and Ipc of the copolymers were smaller than those of MVFS. Small diffusion 
coefficient of the ferrocene units in the copolymers, which was caused by large molecular weight, should decrease the 
Ipa and Ipc values of the copolymers. 
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Figure 5. UV-vis spectra of CH2Cl2 solution of P2, (a) without voltage, (b) with 3.0 V containing 1.0 M　  of ferrocene 

unit and 0.2 M of tetrabutylammonium hexafluorophosphate. 

 
 
 
 
 
 
 
 
 

 
(a)                              (b) 

Figure 6. Photos of CH2Cl2 solution of P2 in ITO cell, (a) without voltage, (b) with 3.0 V, containing 1.0 M　  of 
ferrocene unit and 0.2 M of tetrabutylammonium hexafluorophosphate. 

4. Conclusions 

Poly(ferrocenylsilane)s containing Si-vinylene unit in the main chain were obtained with Mizoroki-Heck reaction of 
bis(dimethylvinylsilyl)ferrocene and dibromo aryl compounds using Pd(OAc)2 catalyst. The copolymers showed good 
solubility in CHCl3 and CH2Cl2. The CHCl3 solutions of the copolymers showed absorption and photo luminescence 
derived from the ferrocene units in the copolymers. The absorption and luminescence wavelengths were almost 
independent of the molecular structure of the aryl compounds. The cyclic voltammograms of the alternating copolymers 
indicated the electron withdrawing of the ferroecene units by the vinylene units, and small diffusion coefficient of the 
ferrocene units in the copolymers caused by low mobility derived from large molecular weight. The copolymers also 
showed reversible electrochromism due to the redox of the ferrocene units in the main chain. 

Although, the present copolymerization should be one of the useful methods to design and synthesize the 
poly(ferrocenylsilane)s containing conjugation, the molecular weights of the copolymers were too low to form the films. 
Furthermore, the optical properties of the copolymers were independent with the structure of Ar units. The ferrocene 
units are dominant of the optical properties of the copolymers. As the next step, we are trying to synthesize the high 
molecular weight poly(ferrocenylsilane)s containing long conjugation, which can control the optical properties of the 
resulting copolymers, and the results will be reported elsewhere. 
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