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Abstract 

Contrary to the first law of thermodynamics which is generally considered as easily understandable, the second law is 

often felt as raising conceptual difficulties. It can be noted that their usual presentation is not homogeneous, since the 

expressions referring to the first law are generally energy equations, while those referring to the second law are entropy 

equations. If we give to the second law the form of an energy equation, it seems that we are led to extend the 

significance of the first law. The reason is that, doing so, the change in internal energy corresponding to a given process 

appears to be different as we are in conditions of irreversibility or of reversibility. In thermodynamic language, this is a 

way to say that the equality dUirr = dUrev classically interpreted as the formulation of the first law must be substituted by 

the inequality dUirr > dUrev. Writing this last expression under the form dUirr = dUrev + dUadd, the question asked 

concerns the origin of the additional energy noted dUadd,. The suggested answer is that dUadd is a consequence of the 

Einstein mass-energy relation E = mc
2
. This would mean that the laws of thermodynamics are closely linked to the 

concept of relativity and that the difference dUirr - dUrev can also be formulated dUirr = dUrev - c
2
dm. Such an 

interpretation was evidently impossible for the creators of the thermodynamic theory, since relativity was unknown at 

that time. The aim of the present paper is to detail the reasons which lead to this hypothesis, with the hope that it can be 

felt as a clarification and extension of the theory.  

Keywords: Thermodynamics, reversibility, irreversibility, energy, entropy, relativity, Einstein’s relation 

1. Location of an Ambiguity in the Usual Understanding of the Thermodynamic Theory 

1.1 Preliminary Remark  

One of the postulates closely linked to the first law of thermodynamics lies on the idea that when a system evolves from 

an initial state (noted 1) to a final state (noted 2), its change in internal energy is independent of the level of 

irreversibility of the process. Using the symbol “irr” for reversibility, the symbol “rev” for reversibility, and the symbol 

U for the internal energy, this is a way to say that the change in internal energy always obeys the relation: 

             (1)                                                

which means that U is considered as a state function. 

Translated in differential form, eq. 1 becomes:  

                                                                               (2)                                                  

which shows more directly that dU is an exact differential. 

When the exchanges of energy between the system and its surroundings are limited to work (noted W) and heat (noted 

Q) - condition corresponding to the numerical example that will be examined in section 2.3 - the expression for dU is: 

                                                               (3) 

In eq. 3, the use of the minuscule letters w and q is the classical convention to recall that, contrary to what is admitted 

for dU, the terms dw and dq are not necessarily exact differentials. 

 

Uirr 
1

2
 =  Urev 

1

2

dUirr   dUrev

dU   dw  dq
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A first consequence of the combination of eq. 2 and 3 is that if dw obeys the relation: 

                                                                 (4) 

the corresponding relation for dq is necessarily:  

                                                                (5)                            

and conversely. 

Before examining the consequence of this preliminary remark, let us come back to the concepts of reversibility and 

irreversibility when they are applied to work and to heat. 

1. 2 The Concepts of Reversibility and Irreversibility Applied to Work 

Referring to Fig.1, we consider a gas (clear grey) contained in a cylinder which is made of a diathermic material and 

equipped with a mobile frictionless piston (black). When the piston is at equilibrium (state 1), it is the sign that the 

external pressure Pe is equal to the internal pressure Pi. If the external pressure increases to a new value Pe, for example 

by placing a given amount of sand (dark grey) on the piston, this last one will move downwards until the internal 

pressure Pi becomes equal to the new external pressure Pe (state 2). We suppose that, both in the initial state and the 

final state, the gas is at the temperature T of the surroundings. This condition is facilitated by the fact that the walls of 

the system are permeable to heat, being supposed to be made of a diathermic material. 

 
The sand can be put on the piston very rapidly or very slowly. In the first case, the external pressure reaches 

immediately the new value Pe, which is different from the internal pressure Pi at each moment of the process. It is only 

at the end of the process that both pressures become equal. 

In such condition, we know that the process is said to be irreversible and that the work done on the gas is given by the 

relation: 

                                                                   (6) 

where dV is the change in volume of the gas. 

If, on the contrary, the sand is deposited very progressively, we can admit that, at each moment of the process, the 

external pressure Pe and the internal pressure Pi are nearly equal. In such condition, the process is said to be reversible 

and eq. 1 takes the particular form: 

                                                                  (7) 

The consequence of this situation is that, for a determined value of dV, the difference between dwirr and dwrev can be 

written: 

                                                      (8) 

where Pi and Pe are the respective average values of both pressures at the moment taken in consideration. 

Observing, from fig.1, that dV is positive when Pi > Pe and negative when Pi < Pe, we see that the product dV(Pi - Pe) is 

always positive. Therefore another possible writing of eq. 8 is: 

dwirr   dwrev

dqirr dqrev

dwirr   - PedV

dwrev   - PidV

dwirr- dwrev   dV(Pi  - Pe)
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                                           (9) 

where dwadd represents the additional work dV(Pi - Pe) whose value is positive. 

This is a way to say that the terms dwirr and dwrev are always linked together by the relation: 

                                                             (10) 

It can be noted that the relation dwirr > dwrev previously presented as a possible hypothesis (eq. 4) now appears as being 

always verified (eq. 10). The consequence of this observation is that, if the postulate dUirr = dUrev recalled by eq. 2 is 

exact, the relation dqirr < dqrev given by eq. 5 must be always verified too.  

Before examining in the next section what is the proposal classically admitted for the relation between dqirr and dqrev it 

can be recalled that the energy designated dwadd in eq. 9 does not appear under the form of work, but generally under the 

form of heat, coupled with a reduction of the time required by the system to pass from the initial state 1 to the final state 

2.  

Another important remark is that the relation proposed between dwirr and dwrev sometimes appears as dwrev > dwirr and 

not dwirr > dwrev. As explained in a previous paper (Tane 2007), this inversion comes from the fact that instead of giving 

a positive value to the work reveived by the system (convention of thermodynamicians defining the work as dwirr = - Pe 

dV, as done in eq. 6), some authors attribute the positive value to the work done by the system (convention of engineers 

defining the work as dwirr = Pe dV). In thermodynamics textbooks, the convention of thermodynamicians is almost 

systematically adopted in the writing of equations, but the convention of engineers remain frequently in use in the way 

of drawing the diagrams. Indeed, the curves PV representing the difference between reversible and irreversible work 

generally appear in the right upper part of the diagrams (instead of the right lower part), giving the the impression that 

the adequate relation is dwrev > dwirr. Such a proposal is true referring to the convention of engineers, but not to the 

convention of thermodynamicians. The present paper is exclusively written according to this last convention.  

1.3 The Concepts of Reversibility and Irreversibility Applied to Heat 

In physics textbooks, this question is closely linked to the concept of entropy and introduced in the chapters dealing 

with the second law of thermodynamics. The problem is often presented in the following condensed way. 

In conditions of reversibility, the change in entropy is linked to the change in heat and the absolute temperature T by the 

relation: 

                         (11) 

In condition of irreversibility, the corresponding equation becomes: 

                                              (12) 

Through the numerical examples which are generally proposed to illustrate the use of these equations, it can be 

understood that the precise meaning of eq. 11 is: 

                                             (13) 

and that the precise meaning of eq. 13 is  

                                           (14) 

where dsi is designated as the internal component of the entropy. 

The consequence of this observation is that the relation between dqirr and dqrev is not accessible from a direct reading of 

these expressions. A complementary step is needed which consists in converting eq. 13 and 14, which have the 

dimension of entropy, in equations having the dimension of energy.  

If we focus attention on the entropy eq. 14, which corresponds to the more general case, we see that multiplying each 

term by Te leads to the energy equation: 

                                            (15)  

whose significance is: 

                                            (16) 

Knowing that the term dsi is always positive (fundamental information associated to the second law) and the term Te is 

too (absolute temperature), it appears that the product Tedsi is itself always positive.  

Therefore, the terms dqirr and dqrev are linked together by the general relation 

                                                                     (17) 

dwirr  dwrev  dwadd

dwirr  dwrev

dS  dq /T

dS  dq /T

dS  dqrev /Ti

dS  dqrev /Te   dsi

TedS  dqrev Tedsi

dqirr  dqrev Tedsi

dqirr  dqrev
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which can also be written: 

                                                                                       (18) 

where dqadd has a positive value.  

As can be seen, there is a similarity between eq. 18 which concerns heat and eq. 9 which concerns work, expressing the 

difference between dwirr and dwrev. 

An extension of this similarity is possible, because observing the correspondance between the different terms of eq. 15 

and eq. 16 (and remembering the information given by eq. 13), we see that the general definitions of dqirr and dqrev can 

be directly given by the relations: 

                                                     (19) 

                                                     (20)  

The entropy being a state function, the terms dS of eq. 19 and 20 have the same value for a determined process. In such 

conditions, the difference between dqirr and dqrev takes the form: 

                       (21) 

 It can be noted from eq. 19 and 20 that the sign of dS is always the same as the sign of dq. Having dq >0 when Te >Ti 

and dq <0 when Te <Ti, the same is true for dS. Therefore, the term dS(Te - Ti) of eq. 21 appears to be always positive, 

confirming the relation dqirr > dqrev  already suggested by eq. 17. 

Writing eq. 21 under the form: 

                                          (22) 

or                                                                  (23) 

we see that this last expression is equivalent to the one already given by eq. 18. 

2. Theoretical Consequences of This Analysis 

2.1 The Reason Explaining the Need of Relativity in Thermodynamics  

Taking into account that the respective definitions of dUirr and dUrev are: 

                          (24) 

                                                     (25) 

we see that having simultaneously dqirr > dqrev (eq. 17) and dwirr > dwrev (eq. 10), the equality dUirr = dUrev becomes 

impossible and need to be substituded by the inequality: 

                                                                (26) 

Writing this last expression under the form: 

                                            (27) 

the question asked is the origin of the energy noted dUadd. The fact that we are really confronted to a problem appears 

more clearly if we consider an isolated system divided in two parts having a mutual exchange of energy. Indeed, the 

application of eq. 26 and 27 to both parts leads to the idea that the internal energy of the global system goes increasing,  

although this system is isolated. The numerical example examined in section 2.3 is an illustration of this situation.    

The hypothesis suggested in previous papers (Tane, 2005; Krasnoholovets and Tane, 2006) is that the additional energy 

could be explained by the Einstein mass-energy relation E = mc
2
, whose derivative takes the initial form dE = c

2
dm 

knowing that c, the speed of light, is constant. It is a way to say that each irreversible process generates - inside the 

system to which it refers - an energy due to a correlative disintegration of matter. Although the change in mass, in most 

cases, is too small to be detectable, the corresponding increase in energy appears as a general feature, giving to the term 

dUadd the significance: 

                                             (28) 

and to eq. 27 the significance: 

dqirr   dqrev   dqadd

dqirr  TedS

dqrev  TidS

dqirr   dqrev   dS Te   Ti 

dqirr  dqrev  dS Te Ti 

dqirr  dqrev   dqadd

dUirr  dqirr  dwirr

dUrev   dqrev   dwrev

dUirr  dUrev

dUirr   dUrev   dUadd

dUadd     c2dm
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                                            (29) 

In eq. 28 and 29, the minus sign placed in front of the term c
2
dm is inspired by the the fact, often observed in nuclear 

reactions, that a creation of energy is linked to a decrease in mass. Supposing that the same is true in a general way, the 

minus sign just evoked appears as a necessary condition to give dUadd a positive value. Correlatively, a positive value of 

dm would lead to a negative value of dUadd. The procedure is the same as the one used in eq. 6 and 7 to give dW a 

positive value when the system receives work (i.e. when the volume obeys the condition dV < 0) and a negative value 

when it provides work (i.e. when the volume obeys the condition dV > 0).  

From this point of view, eq. 29 can be looked as a preliminary attempt to present in a single formulation, the first law, 

the second law and the Einstein mass-energy relation. Having noted with eq. 26 that the general relation between dUirr 

and dUrev is dUirr > dUrev, it can be deduced that the general evolution of dm is dm < 0. In this proposal, the adjective 

“general” is used to remind that the laws of thermodynamics are inspired by experiments made in our near surroundings 

and on systems made of inert matter.  

It is interesting to note that in some recent textbooks (Kondepudi, 2008; Linder, 2011), the need to connect 

thermodynamics with relativity is evoked. In practice, the use of relativity remains rather absent of thermodynamics 

courses although this idea was equally suggested by other authors (Tolman, 1928 and 1934; Callen and Horwitz, 1971; 

Rengui, 1996, Hayward, 1999; Farías, Moya and Pinto, 2007; Requardt, 2008; Gupta, R. C., Gupta, R. and  Gupta, S, 

2010). 

2.2 The Incidence of this Hypothesis on the State Function Free Energy, Noted G 

The state function free energy, noted G, is of commun use in thermodynamics, particularly - but not necessarily - for the 

study of chemical reactions. Being defined as:  

                                                        (30)  

its derivation can be written: 

                                              (31) 

whose significance - as will be seen below - is 

                              (32) 

 In the usual understanding of the thermodynamic theory, this last expression would have no sense, because the equality 

dUrev = dUirr being implicitly admitted, the result obtained for dG would appear in all cases under the form dG = 0. 

With regards to this topic, the fact that the efficiency of the thermodynamic tool is recognized for a long time seems to 

the be the sign that the inequality dUrev ≠ dUirr is at least partially taken into account in practice (i.e in thermodynamic 

calculations) although it remains totally absent from the theory. This is probably the reason of the conceptual difficulties 

often felt in thermodynamics.   

In the new suggested interpretation, which lies on the idea that dUirr = dUrev   - c
2
dm (eq. 29), the significance of the 

term dG becomes:  

                                         (33) 

The justification of this result is the following. Starting with eq. 31, whose expression is: 

                                 
R
(32) 

we can precise its meaning through the formulation:  

                                                (34) 

Then, observing from eq. 29 that dUrev can be written dUrev = dUirr + c
2
dm, and taking into account that dUirr is defined 

as dUirr = TedS - PedV, we get for dG: 

                                (35)                          

that is, after simplication:              

                                                           (36) 

In the study of chemical reactions, it is often admitted that dPe and dTe are nil, because the external pressure and the 

dUirr  dUrev   c2dm

G U PV   TS

dG  dU  d PV TS 

dG   dUrev –  dUirr

dG    c2dm

dG  dU  d PV TS 

dG   dUrev   PedV    VdPe   TedS   SdTe

dG   TedS   PedV   c2dm   PedV    VdPe   TedS   SdTe

dG    c2dm   VdPe   SdTe

http://arxiv.org/find/physics/1/au:+Gupta_R/0/1/0/all/0/1
http://arxiv.org/find/physics/1/au:+Gupta_R/0/1/0/all/0/1
http://arxiv.org/find/physics/1/au:+Gupta_S/0/1/0/all/0/1
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external temperature are supposed constant. 

As will be observed with the numerical example examined in section 2.3, if the external pressure Pe and the external  

temperature Te are not constant, their average values, which can be designated  and , are constant (referring to 

the process which is considered). In such conditions their derivatives  and  are nil. For this reason, a more 

general expression of dG consists in writing eq. 34 as: 

   dG  dUrev Pe
*dV VdPe

* Te
*dS SdTe

*
                       (37) 

In such condition (and remembering from eq. 29 that dUrev = dUirr + c
2
dm) we get directly for dG the conclusion: 

                                                (38) 

which shows that a negative value of dG (condition of evolution of a thermodynamic system) corresponds to a negative 

value of dm.   

Knowing that the initial definition of dUrev is dUrev = TidS – PidV and entering this value in eq. 37, we get for dG (after 

simplifications and factorisations) the expression: 

                                                         (39) 

Then, combining eq. 38 and 39, we see that: 

                            
                      

(40) 

2.3 Numerical Example Showing the Role of dUadd in Thermodynamic Calculations   

We consider an isolated system (Fig. 2), divided in two parts designated 1 and 2, separated by a diathermic wall. In the 

initial state, part 1 contains 1 kg of water at Ti1 = 10 °C (= 283 K) and part 2 contains 1 kg of water at Ti2 = 70 °C (= 

343 K).  Knowing that an exchange of heat will occur between both parts until they reach the same final temperature 

(Tf1 = Tf2 = Tf), the difference between the usual interpretation and the new suggested one can be summarized as 

follows: 

          

Fig. 2 

2.3.1 Usual Interpretation 

No distinction being made between dUirr and dUrev, the change in internal energy is simply noted dU and the starting 

equation is dUsyst = 0, since the system has been defined as isolated. 

The wall separating part 1 and part 2 being fixed, there is no exchange of work between them and, consequently, it can 

be deduced from eq. 3 that dUsyst = dqsyst. 

Assuming that the heat capacity of water (c = 4186 J K
-1

 kg
-1

) can be considered roughly constant over the temperature 

interval, the final temperature Tf is given by the formula:  

 

                                  (41)                                         

where C1 = C2 = 4186 J K
-1 

(since C = mc and m1 = m2 = 1 kg) 

The changes in heat of part 1 and part 2 are respectively: 

 

                                         (42) 

e
*P e

*T

d e
*P d e

*T

dG  c2dm (  dUadd )

dG = dS(Ti
* Te

*)   dV(Pi
* Pe

*)

dG = dS(Ti
* Te

*) - dV(Pi
* Pe

*) =  c2dm

T  (C1T1C2T2 ) / (C1 C2 )  313 K

q1   C1(Tf1 -Ti1)  4186 (313 -  283)   125580 J

file:///E:/CCSE-IJC/IJC/IJC-V8N1-February 2016/3-Jean-Louis Tane-On the Need/A= JLT - copie.docx#%091,21772,21773,0,,%01
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                                         (43) 

  

 Their changes in entropy are:  

                                               (44)  

                                               

                                          (45) 

For the global system, the results are therefore: 

                                                (46)                                

                                                    (47)                                          

showing an increase in entropy, while the internal energy remains constant. 

When it is connected to the Einstein relation - an approach which is not frequent - this interpretation leads to the idea 

that the mass of the system does not vary. The reason is that the change in mass evoked for part 1 (generally noted dm1 > 

0) is exactly compensated by the change in mass concerning part 2 (dm2 <0)   

2.3.2 New Suggested Interpretation 

Admitting that the term dwsyst can be neglected, as done in the classical interpretation, the attention is exclusively 

focused on the term dqsyst and the produre is the following. 

Instead of using the entropy relation  dS = dqrev /Te + dsi (eq. 14) as a starting basis for discussion, we use the energy 

relation TedS = dqrev + Tedsi  (eq. 15), keeping in mind that its significance is dqirr = dqrev + dqadd  (eq. 18). 

The integrated form of the term dqirr can be written: 

                        

whereTe
* is the average value of Te during the process. It constitutes a space-time parameter which can be calculated 

observing that: 

 

For part 1,              Te1
*  T2

*  q2 /S2   125580 / ( 383)  328 K                   (48) 

 

For part 2,          Te2
*  T1

*  q1 /S1  125580 / (422)  298 K                      (49) 

 

Therefore, the continuation of the calculation can be done as follows: 

From qirr  qrev  qadd we have qadd  qirr  qrev  which gives successively: 

                     qadd1 T2

*S1 qrev1  328 x 422 - 125580 = 12836 J                  (50) 

                    qadd2 T1

*S2 qrev2  298 x - 383 - (- 125580) = 11446 J              (51) 

The fact that q
add

is positive in both cases is the sign that there is an increase in energy in both part 1 and part 2,  

although this increase is slightly lower in part 2 (i.e in the part which loses heat, because its initial temperature is the 

higher) 

q2   C2(Tf 2 -Ti2 )  4186 (313 - 343) = - 125580 J

S1  C1

dT

TTi1

T f 1

    4185 Ln
313

283
   422 JK 1

S2  C2

dT

TTi2

T f 2

    4185 Ln
313

343
   -  383 JK 1

Usyst    qsyst   q1   q2  = 0

Ssyst    S1    S2    39 JK 1

qirr  Te dS    Te
* dS    Te

*
S

file:///E:/CCSE-IJC/IJC/IJC-V8N1-February 2016/3-Jean-Louis Tane-On the Need/A= JLT - copie.docx#%091,21827,21828,0,,%01
file:///E:/CCSE-IJC/IJC/IJC-V8N1-February 2016/3-Jean-Louis Tane-On the Need/A= JLT - copie.docx#%091,21880,21881,0,,%01
file:///E:/CCSE-IJC/IJC/IJC-V8N1-February 2016/3-Jean-Louis Tane-On the Need/A= JLT - copie.docx#%091,21949,21950,0,,%01
file:///E:/CCSE-IJC/IJC/IJC-V8N1-February 2016/3-Jean-Louis Tane-On the Need/A= JLT - copie.docx#%091,22076,22077,0,,%01
file:///E:/CCSE-IJC/IJC/IJC-V8N1-February 2016/3-Jean-Louis Tane-On the Need/A= JLT - copie.docx#%091,22169,22170,0,,%01
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For the global system, the value of the term qaddSyst is therefore: 

                              
qaddSyst  qadd1 qadd2  

= 24282 J                          (52) 

If the Einstein mass-energy relation is interpreted under the light of eq. 29 or 39, the corresponding decrease in mass is:  

                            m   (24282) /  (3 x 10)8 
2

 2.69 x 1013  kg                (53)
 

The same result can be obtained through the use of eq. 40. The term dwsyst being neglected, this equation is reduced to 

the expression: 

                                  dG  dS(Ti
* Te

*)                                (54) 

Its integration leads to:                       G  S(Ti
* Te

*)  

and its application to part 1 and part 2 gives 

                            
                      (55)  

                              G2   383 (328 - 298) = - 11490 J                         (56)        

                     GSyst  G1 G2   24150 J                           (57)  

Remembering that G = - qadd = + c
2
m, it can be noted that the results obtained for eq. 55, 56 and 57, are almost 

similar to those obtained for eq. 50, 51 and 52. The slight differences come from the fact that the values T1

*  298 K
and T2

*  328 K are rounded.  

According to eq. 38, the result obtained for m  

 

                           m   24150 /  (3 . 108 ) 
2

  2.68 . 1013  kg            (58) 

 

showing a good convergence with the result given by eq. 53 

Although this change in mass is too small to be experimentally detectable, it is important from the theoretical point of 

view because, occurring within a system defined as isolated, it may have an incidence on its potential gravitational 

energy. As suggested in a very preliminary reflexion (Tane, 2008), its transposition in the context of large geological 

systems, concerned by internal exchanges of energy, may result in a tendency to increase the Earth-Moon distance, a 

process which is compensated, at least partially, by meteorites falling. This aspect of the problem cannot be taken into 

account in the conventional understanding of thermodynamics, since the idea is implicitly admitted that neither the 

energy of an isolated system nor its mass can vary.  

A correlative interesting subject is the possibility that, contrary to inert matter, living matter is characterized by a 

positive value of dm in eq. 30 (Sorli, 2002; Tane 2003).   

3. Conclusion  

Despite the conceptual difficulties often felt by those who have to learn - or to teach - thermodynamics, its practical 

efficiency is indisputable. Referring to this situation, the scientific fair play of some authors of thermodynamics 

textbooks (Reiss, 1965; Nordstrom and Munoz, 1986; Anderson and Crerar, 1993) is a serious help for their readers, 

because in the same time as they drive them in the art of using the thermodynamic tool, they draw their attention to the 

possibility that something remains unclear in the theory. 

Based on this feeling, the hypothesis advanced in the present paper is not a rejection of the conventional theory but an 

extension. The concept of increase in entropy, introduced for a long time under the symbol dSi of the second law of 

thermodynamics is interpreted here as the symptom of an increase in energy, designated TedSi or dUadd, identified with 

the term - c
2
dm of the Einstein mass-energy relation. Correlatively, the first law is extended, in the sense that the 

classical postulate dUirr = dUrev is substituted by the postulate dUirr  = dUrev + dUadd, with the consequence that the 

expression linking both laws takes the form dUirr  = dUrev - c
2
dm. If this paper is accepted for publication, perhaps it 

would be interesting that some tests are tempted to introduce the suggested hypothesis in thermodynamics courses. 
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