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Abstract 

DSC, TG-DTA and X-ray diffraction measurements have been performed on cesium hydrogen selenate CsHSeO4 
and deuterated CsDSeO4 crystals. The superionic phase transitions for the proton and deuterated compounds 
were found to occur at 402.6 and 398.1 K, respectively. The thermal decomposition accompanied by hydrolysis 
in both compounds started at around the transition temperature, and the maximum rate of weight loss from the 
reaction was observed at around 490 K. The space group symmetry (monoclinic P21/c) and structural parameters 
were determined at 298 and 355 K. The expansion of the O-H-O hydrogen bond at room temperature by the 
substitution of deuterium for hydrogen was observed to be 0.015(7) Å. The geometric isotope effect on the 
hydrogen bond structure by deuteration was realized in the CsHSeO4 crystal. The experimental results denied the 
existence of a phase transition from phase II to III in the proton and deuterated compounds. 

Keywords: CsHSeO4, CsDSeO4, crystal structure, phase transition, isotope effect, DSC, TG-DTA, X-ray 
diffraction 

1. Introduction 

Alkali (or ammonium) ions (M+ = K+, Rb+, Cs+, or NH4
+) and sulfate (or selenate) ions (XO4

2-, where X = S or Se) 
exist generally in five types of compounds with the following chemical formulas: M2XO4, MHXO4, M3H(XO4)2, 
M5H3(XO4)4, and M3H5(XO4)4. Many crystals of these types are superionic conductors at high temperature. Some 
of them are characterized by their isomorphism, ferroelasticity, ferroelectricity and sequential structural phase 
transitions. The physical properties and phase transition mechanisms for these types have been widely studied by 
using many experimental methods. 

Cesium hydrogen selenate (CsHSeO4) crystal belongs to a family of MHXO4-type compounds, and undergoes 
two phase transitions at TI-II (401 K) and TII-III (323-370 K) with three phases (Baranov et al., 1982, 1984; Checa 
et al., 2009; Colomban et al., 1986; Kamazawa et al., 2010; Komukae et al., 1990; Luspin et al., 1995, 2000; 
Ortiz et al., 2008; Pham-Thi et al., 1985; Yokota, 1982; Yokota et al., 1982). These phases are denoted as I, II, 
and III in order of decreasing temperature. The crystal is a superionic conductor in phase I and ferroelastic in 
phase III (Baranov et al., 1982, 1984; Komukae et al., 1990; Yokota, 1982; Yokota et al., 1982). The structure at 
room temperature has been found to be monoclinic with space group P21/c containing four molecules in the unit 
cell with lattice parameters a = 7.978(1), b = 8.420(1), c = 7.813(1) Å, and β = 111.34(1)º, and to consist of a 
one-dimensional hydrogen bonded zigzag chain along the c-axis (Baran & Lis, 1987; Komukae et al., 1990). The 
bond length of the O-H-O hydrogen bond connecting SeO4 tetrahedra is 2.603(15) Å. Moreover, the structure in 
phase I has been reported to be tetragonal with space group I41/amd (Foose & Mitra, 1977; Komukae et al., 1990; 
Yokota, 1982). 

The transition temperature TI-II in all published papers for the CsHSeO4 crystal is very close to 401 K, almost 
without exception. However, the transition temperature TII-III is in the range of 323–370 K depending on the type 
of investigation (Baranov et al., 1982; Checa et al., 2009; Colomban et al., 1986; Luspin et al., 1995, 2000; Ortiz 
et al., 2008; Pham-Thi et al., 1985). The reason for the wide spread of TII-III is most likely to be due to sample 
quality. For example, three endothermic peaks in DSC curves have been described in the previous paper by Ortiz 
et al. (2008), despite that the presence of either one or two transitions has already been reported in many papers. 
This anomaly is inferred to be caused by using low-quality samples in their experiments, and this type of mistake 
can be eliminated by inspecting the crystal structure of sample. By removing obviously deviant data the phase 
transition temperature TII-III from phase II to III can be modified to be in the range of 323–350 K (Checa et al., 



www.ccsenet.org/ijc International Journal of Chemistry Vol. 5, No. 3; 2013 

2 
 

2009; Colomban et al., 1986; Luspin et al., 1995, 2000; Pham-Thi et al., 1985). 

In contrast to CsHSeO4 crystal, studies on deuterated cesium hydrogen selenate (CsDSeO4) crystal are extremely 
rare. The velocity of sound and the elastic constants for the deuterated crystal have been obtained at 293 K, and 
the space groups in room- and high-temperature phases have been determined to be monoclinic P21/c and 
tetragonal I41/amd, respectively (Balagurov et al., 1986; Lushnikov et al., 1987). Moreover, structural 
information on partially deuterated crystal with deuteration level x = 70% has been obtained at room temperature 
by analyzing neutron powder diffraction data using the Rietveld method (Balagurov et al., 1987). However, the 
accurate crystal structure of CsDSeO4 and the isotope effect on properties of CsHSeO4 by substitution of 
deuterium for hydrogen have not yet been reported. 

The purpose of this paper is to report the phase transition from phase II to III in CsHSeO4 and CsDSeO4 crystals, 
and to determine the crystal structure of the room-temperature phase of CsDSeO4. Isotope effects on the 
structure and properties of the CsHSeO4 crystal by deuteration have been studied. 

 

Table 1. Crystal data, intensity collections and structure refinements for CsHSeO4 and CsDSeO4 at 298 and 
355K 

Compound CsHSeO4 CsDSeO4 

Mr  276.88 277.88 
Crystal color Colorless Colorless 

Temperature [K] 298 355 298 355 

Crystal system Monoclinic Monoclinic Monoclinic Monoclinic 

Space group P21/c P21/c P21/c P21/c 

a [Å] 7.9988(7) 8.0208(6) 7.9972(6) 8.0228(7) 

b [Å] 8.4360(6) 8.4424(5) 8.4314(5) 8.4397(6) 

c [Å] 7.8264(7) 7.8530(7) 7.8295(8) 7.8569(9) 

β [º] 111.303(3) 111.463(3) 111.407(3) 111.557(3) 

V [Å3], Z 492.02(7), 4 494.89(6), 4 491.50(7), 4 494.78(8), 4 
D(cal.) [Mg/m3], µ(Mo K ) 

1
3.738, 14.817 3.716, 14.731 3.755, 14.833 3.730, 14.735

Sample shape Sphere Sphere Sphere Sphere 

Size in diameter 2r [mm] 0.30 0.30 0.34 0.34 

θ range [º] 3.65-37.57 2.73-37.83 3.65-37.84 2.73-37.68 

Index ranges -13<h<13 -13<h<13 -13<h<13 -13<h<13 

 -14<k<14 -14<k<14 -14<k<14 -14<k<14 

 -13<l<13 -13<l<13 -13<l<13 -13<l<13 

Reflections collected, unique 13523, 2567 13661, 2602 13577, 2575 13638, 2585 

R(int) 0.0469 0.0446 0.0946 0.0574 

Completeness to θ [%] 98.7 97.8 97.2 98.0 

Absorption correction type Spherical Spherical Spherical Spherical 

Transmission factor Tmin-Tmax 0.0579-0.0979 0.0579-0.0984 0.0425-0.0816 0.0425-0.0814

Date [I>2σ(I)], parameters 1859, 60 1768, 60 1521, 60 1669, 60 

R1, wR2 (final indices) 0.0292, 0.0318, 0.0309, 0.0286, 

R1, wR2 (all data) 0.0496, 0.0601, 0.0553, 0.0610, 

Factors a and b in weighting* 0.0291, 0.0323, 0.0209, 0.0 0.0315, 

Goodness-of-fit on F2 1.206 1.146 1.017 1.172 

Extinction coefficient 0.0390(12) 0.0245(9) 0.0207(8) 0.0143(8) 

Largest diff. peak and hole 
Å 3

1.855, -0.711 1.114, -1.069 2.089, -1.686 0.739, -1.089 
*Weighting scheme: w=1/[σ2(Fo

2)+(aP)2+bP], P=(Fo
2+2Fc

2)/3. 
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2. Experimental 

2.1 Crystal Growth 

Single crystals of CsHSeO4 and CsDSeO4 were grown at room temperature by slow evaporation from aqueous 
solutions containing a molar ratio 1:2 of Cs2CO3 and H2SeO4 in desiccators over P2O5. The deuterated crystals 
thus obtained were recrystallized five times from a mixed D2O solution by the evaporation method. The grown 
crystals had platelike shapes. 

2.2 Thermal Measurements 

Differential scanning calorimetry (DSC) and thermogravimetric-differential thermal analysis (TG-DTA) 
measurements were carried out in the temperature range of 100-600 K using DSC7020 and TG/DTA7300 
systems from Seiko Instruments Inc, respectively. The sample amounts for the DSC and TG-DTA measurements 
varied between 3.28 and 10.97 mg, and the heating and cooling rates were 5 or 10 K/min with flowing dry N2 
gas. 

2.3 X-Ray Crystal Structure Determination 

The X-ray diffraction measurements were carried out at 298 (phase III) and 355 (phase II) K on a Rigaku Saturn 
CCD X-ray diffractometer with graphite monochromated Mo Kα radiation (λ = 0.71073 Å). Diffraction data were 
collected by using an ω scan mode with a detector distance of 40 mm to the sample crystal, and the data were 
processed using the CrystalClear software package. Intensity data were corrected for Lorentz polarization and 
absorption effects. The structures were solved with direct methods of SIR2008 and refined on F2 by full-matrix 
least-squares methods using the SHELXL-97 program in the WinGX program package (Burla et al., 2007; 
Farrugia, 1999; Scheldrick, 1997). A summary of crystal data, intensity data collections, and structure 
refinements is given in Table 1.  

3. Results and Discussion 

3.1 Thermal Analysis 

Figure 1 shows the DSC curves of (a) CsHSeO4 and (b) CsDSeO4 crystals for heating and cooling in the 
temperature range from room temperature to 455 K. The endothermic and exothermic peaks in the DSC curves 
respectively are clearly seen at 403.6 and 390.7 K for the proton compound, and at 399.3 and 384.8 K for the 
deuterated compound. The temperature hysteresis between the endothermic and exothermic peak temperatures in 
both compounds is about 14 K. Moreover, there are slight decreases in the DSC peak temperature between the 
two compounds. The decreases in the peak temperature of the heating and cooling curves by deuteration are 
about 4 and 6 K, respectively. The decrease of the DSC peak temperature can also be seen in the previously 
reported papers of Na3H(SO4)2 and (NH4)3H(SeO4)2 crystals (Fukami & Chen, 1999, 2003). The onset 
temperatures of the endothermic and exothermic peaks are respectively determined to be 402.6 and 392.0 K for 
the proton compound, and 398.1 and 385.6 K for the deuterated compound. The onset temperature in the heating 
curve for the proton compound is very close to the I-II transition temperature (401 K) (Kamazawa et al., 2010; 
Komukae et al., 1990; Luspin et al., 1995, 2000; Yokota et al., 1982). Generally, it is believed that a clear peak in 
the DSC chart is attributed to the change of exchange energy at phase transition in almost all cases. A first-order 
phase transition is characterized by a sharp endothermic peak at transition and is accompanied by a thermal 
hysteresis with transition temperature. Therefore, we concluded that the proton and deuterated crystals undergo a 
first-order structural phase transition at 402.6 and 398.1 K, respectively. However, the DSC peak corresponding 
to the II-III phase transition previously reported by some investigators can not be seen in the curves for both 
compounds, as shown in Figure 1. Moreover, no significant endothermic or exothermic peaks in DSC curves 
were observed in the temperature range of 100 K to room temperature. Therefore, these results indicate that there 
is no phase transition in the temperature range of 100–400 K for both compounds. 

The transition enthalpies ΔH (entropies ΔS) obtained from the endothermic and exothermic peaks are 
respectively determined to be 6.26 (1.87R) and 5.84 kJ mol-1 (1.79R) for the proton compound, and 6.11 (1.85R) 
and 5.39 kJ mol-1 (1.68R) for the deuterated compound, where R is the gas constant (8.314 JK-1mol-1). The 
obtained ΔH (or ΔS) for both compounds is very close to the reported values of 5.74 kJ mol-1 and 1.94R (Friesel 
et al., 1989; Yokota et al., 1982). Table 2 shows the peak temperatures, transition temperatures Tc (onset 
temperatures), transition enthalpies ΔH and entropies ΔS determined from the DSC curves of the proton and 
deuterated compounds. 
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Table 3. Atomic coordinates and thermal parameters (×104Å2) at 298 and 355 K for (a) CsHSeO4 and (b) 
CsDSeO4 with standard deviations in brackets. The anisotropic thermal parameters are defined as exp[-2π2 
(U11a

*2h2+U22b
*2k2+U33c

*2l2+2U23b*c*kl +2U13a
*c*hl +2U12a

*b*hk)]. Isotropic thermal parameters (Å2) for H(D) 
atoms are listed under U11 

(a) CsHSeO4  

Temp. Atom x Y z U11 U22 U33 U23 U13 U12 

298 [K] Cs 0.78992(3) 0.12819(3) 0.29379(3) 274(1) 304(1) 283(1) -10.0(9) 88.3(8) -18.5(8)

 Se 0.25403(5) 0.12609(4) 0.22086(5) 234(2) 208(2) 232(2) 10(1) 94(1) 13(1) 

 O(1) 0.4309(4) 0.2178(4) 0.3859(5) 264(14) 601(21) 531(20) -288(17) 99(14) -21(13) 

 O(2) 0.1031(4) 0.2584(4) 0.1351(4) 377(16) 413(16) 440(17) 61(13) 80(14) 174(13)

 O(3) 0.1880(5) -0.0180(3) 0.3137(5) 651(23) 336(16) 590(21) 105(14) 414(19) -36(14) 

 O(4) 0.3490(4) 0.0658(3) 0.0803(4) 461(17) 364(15) 336(14) 0(12) 245(13) 63(13) 

 H 0.442(9) 0.267(7) 0.476(8) 0.09(2)      

355 [K] Cs 0.78850(4) 0.12793(3) 0.29374(4) 346(1) 378(2) 351(1) -12(1) 112.2(9) -22(1) 

 Se 0.25272(5) 0.12557(4) 0.22002(5) 299(2) 263(2) 289(2) 13(1) 123(1) 16(1) 

 O(1) 0.4290(5) 0.2182(5) 0.3853(6) 339(17) 754(26) 635(24) -328(21) 109(16) -8(16) 

 O(2) 0.1021(5) 0.2575(4) 0.1353(5) 461(20) 546(21) 530(21) 81(16) 99(16) 214(16)

 O(3) 0.1870(6) -0.0177(4) 0.3125(6) 807(28) 421(19) 717(27) 120(17) 494(23) -46(18) 

 O(4) 0.3477(5) 0.0666(4) 0.0803(5) 576(21) 497(18) 422(18) 1(15) 301(16) 83(16) 

 H 0.418(9) 0.262(8) 0.486(9) 0.08(2)      

(b) CsDSeO4 

Temp. Atom x Y z U11 U22 U33 U23 U13 U12 

298 [K] Cs 0.78970(4) 0.12812(4) 0.29348(4) 267(2) 303(2) 294(2) -8(1) 97(1) -17(1) 

 Se 0.25350(6) 0.12563(5) 0.22043(6) 226(2) 212(2) 237(2) 9(2) 99(2) 15(2) 

 O(1) 0.4309(5) 0.2171(6) 0.3842(7) 254(19) 548(28) 591(30) -239(24) 120(18) -23(17) 

 O(2) 0.1041(5) 0.2582(5) 0.1358(5) 386(21) 394(23) 445(23) 48(17) 106(17) 164(17)

 O(3) 0.1865(6) -0.0177(4) 0.3132(6) 679(28) 290(21) 588(28) 73(18) 419(22) -61(19) 

 O(4) 0.3485(5) 0.0659(5) 0.0804(5) 466(22) 406(22) 353(20) -5(17) 269(17) 51(17) 

 D 0.442(10) 0.258(10) 0.463(10) 0.08(3)      

355 [K] Cs 0.78824(4) 0.12785(3) 0.29349(4) 318(2) 388(2) 374(2) -10(1) 107(1) -21(1) 

 Se 0.25228(5) 0.12499(4) 0.21987(5) 272(2) 276(2) 308(2) 11(2) 116(1) 16(1) 

 O(1) 0.4291(5) 0.2182(5) 0.3856(6) 306(17) 697(24) 720(26) -302(21) 125(16) -13(16) 

 O(2) 0.1024(5) 0.2575(4) 0.1341(5) 457(21) 525(22) 601(23) 65(16) 102(17) 210(16)

 O(3) 0.1857(6) -0.0183(4) 0.3118(6) 832(30) 420(19) 763(28) 104(18) 521(24) -68(18) 

 O(4) 0.3475(5) 0.0664(4) 0.0810(5) 512(21) 508(19) 486(19) -4(16) 296(16) 72(16) 

 D 0.417(9) 0.266(8) 0.504(9) 0.09(2)      

 

The observed crystal structures for both compounds at 298 and 355 K are very close to the previously 
determined structure of CsHSeO4, and consist of O-H(D)-O hydrogen bonds connecting adjacent SeO4 
tetrahedra, forming a one-dimensional zigzag chain along the c-axis (Baran & Lis, 1987; Komukae et al., 1990). 
The bond length of the O-H-O hydrogen bond at 298 and 355 K has the same value of 2.608(5) Å. However, the 
length of the O-D-O hydrogen bond decreases from 2.623(6) to 2.613(5) Å with increasing temperature. This 
implies that the O atoms of the O-D-O hydrogen bond are slightly displaced into a more stable position with 
increasing temperature. In all the observed structures, the SeO4 tetrahedra are slightly disorder from a regular 
tetrahedron because the magnitudes of the O(1)-O(4) length and O(1)-Se-O(4) angle differ from those of the 
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other lengths and angles in the SeO4 tetrahedra, respectively. Moreover, the two bond distances between the Se 
atom and the O atoms (O(1) and O(4)) ended to the H(D) atom (the distance of the Se-O(-H(D)) bond) are longer 
than that of the other Se-O bonds. These characteristics of bond length and angle can be seen in all the four 
structures, and the magnitudes in these differences are almost the same value. Thus, it is considered that there 
exists a bonding strength between the O atoms involved in the O(1)-H(D)-O(4) hydrogen bond, and the bonding 
strength is not affected by deuteration. The bonding strength has also been reported in previous papers on 
Na3H(SO4)2 and (NH4)3H(SeO4)2 crystals (Fukami & Chen, 1999, 2003). 

 

Table 4. Selected interatomic distances (in Å) and angles (in degrees) for (a) CsHSeO4 and (b) CsDSeO4 at 298 
and 355 K 

 (a) CsHSeO4 (b) CsDSeO4 

Temp. 298 [K] 355 [K] 298 [K] 355 [K] 

Cs-O(2)(a) 3.076(3) 3.085(3) 3.083(3) 3.081(3) 

Cs-O(3)(b) 3.123(3) 3.131(4) 3.125(4) 3.127(4) 

Cs-O(3)(c) 3.152(3) 3.166(4) 3.156(4) 3.169(4) 

Cs-O(4)(d) 3.181(3) 3.189(3) 3.179(4) 3.190(3) 

Cs-O(2)(e) 3.229(3) 3.241(4) 3.227(4) 3.240(4) 

Cs-O(1) 3.292(3) 3.306(4) 3.284(4) 3.308(4) 

Cs-O(4) 3.351(3) 3.353(4) 3.348(4) 3.350(4) 

Cs-O(2)(f) 3.359(3) 3.371(4) 3.354(5) 3.372(4) 

Cs-O(3)(f) 3.365(4) 3.377(4) 3.364(4) 3.382(4) 

Se-O(1) 1.715(3) 1.718(4) 1.710(4) 1.723(4) 

Se-O(2) 1.602(3) 1.598(3) 1.594(3) 1.599(3) 

Se-O(3) 1.601(3) 1.597(3) 1.600(4) 1.598(3) 

Se-O(4) 1.629(3) 1.626(3) 1.625(4) 1.622(3) 

O(1)-O(2) 2.666(4) 2.660(5) 2.650(6) 2.661(5) 

O(1)-O(3) 2.693(5) 2.692(6) 2.694(6) 2.702(5) 

O(1)-O(4) 2.580(4) 2.580(5) 2.563(6) 2.578(5) 

O(2)-O(3) 2.677(4) 2.665(5) 2.666(5) 2.670(5) 

O(2)-O(4) 2.703(4) 2.699(5) 2.694(5) 2.691(5) 

O(3)-O(4) 2.684(4) 2.686(5) 2.687(5) 2.686(5) 

O(1)-O(4)(b) 3.384(4) 3.403(5) 3.388(6) 3.402(5) 

O(2)-O(3)(g) 3.133(4) 3.137(5) 3.131(5) 3.135(5) 

O(4)-O(4)(d) 3.295(5) 3.329(6) 3.304(7)  3.340(6) 

O(1)-Se-O(2) 106.9(2) 106.6(2) 106.6(2) 106.4(2) 

O(1)-Se-O(3) 108.6(2) 108.6(2) 108.9(3) 108.9(2) 

O(1)-Se-O(4) 101.0(2) 100.9(2) 100.4(2) 100.8(2) 

O(2)-Se-O(3) 113.4(2) 113.1(2) 113.2(2) 113.3(2) 

O(2)-Se-O(4) 113.6(2) 113.7(2) 113.7(2) 113.4(2) 

O(3)-Se-O(4) 112.4(2) 112.9(2) 112.9(2) 113.1(2) 

Symmetry codes: (a) x+1,-y+1/2,z+1/2; (b) -x+1,y+1/2,-z+1/2; (c) -x+1,-y,-z+1; (d) -x+1,-y,-z; (e) 
-x+1,y-1/2,-z+1/2; (f) x+1,y,z; (g) -x, y-1/2, -z+1/2. 

 

Except for the O(1)-H(D)-O(4) hydrogen bond, there are three O-O bonds (O(1)-O(4), (2)-O(3) and O(4)-O(4)) 
between two adjacent SeO4 tetrahedra in all the observed structures, as shown in Table 4. For example, the 
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