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Abstract 

Three methods of circular statistics: Rao’s spacing test, Kuiper’s V-test, and Rayleigh’s test based on the mean 
resultant length are applied to examine the hypothesis of uniform data distribution (i) in a hypothetical study of 
decaying effectiveness of electrocatalysis, and (ii) in a tank flow reactor with excessive local temperatures (“hot 
spots”). Numerical illustrations involve test results indicating rejection, or failure of rejection, for the null 
hypothesis of population uniformity. The results confirm the power of Rao’s method demonstrated in pertinent 
literature. 
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1. Introduction 

Circular statistics, employed over several decades in certain natural and life sciences, notably in biology, deals 
with the analysis of experimental observations of circular or spherical phenomena occurring along radial or axial 
directions. A fundamental step in its inception was a frequency distribution/histograms based analysis of certain 
orientations of avian motion (Matthews, 1961; Schmidt-Koenig, 1964; Nievergelt, 1966). As in linear statistics, 
the main objective is to draw appropriate inferences about population parameters on the basis of samples. 
Observations are either of ab ovo geometric nature, or of a temporal nature, where time-related distributions can 
be “fitted” into a circular or spherical pattern. 

Three widely known methods for carrying out such a task are the subject of the current paper. Biological 
applications related to the technique described in Sections 3.1 and 5.1: Puri, Rao, and Yoon (1976), Frei and 
Wagner (1976), Wagner (1972); in Sections 5.2 and 6.2: Barnes (1975), Merkel and Witschko (1965), Perdeck 
(1963); in Sections 3.3 and 5.3: Hölldobler (1971), Walcott (1974), W. Wiltschko and R. Wiltschko (1975a, 
1975b) illustrate the earlier predominant role of one particular life science in predicting the potential utility of 
circular statistics in other domains of scientific and technical endeavor.  

The seminal works of Mardia (1972a), Batschelet (1981a) and Fisher (1993a), especially noteworthy for 
didactic/heuristic purposes, serve as major sources for the subject matter of this paper, whose motivation stems 
from the apparent lack of tangible awareness (at least to the knowledge of the author) of circular statistics in the 
chemical-sciences literature. 

The specific aim here is to demonstrate the potential usefulness of circular statistics to chemical process analysis, 
in deciding whether experimental data of limited size obtained in a sample would justify the inference of 
uniformity of the population. Following a short presentation of theoretical aspects, numerical examples illustrate 
calculations required for drawing proper conclusions about process performance. Due to the stated difficulty to 
obtain real-life numbers, the posited hypothetical data are used exclusively to demonstrate practical applications 
with computational procedures, and to show the format of required data presentation. 

2. Hypothesis Testing: General Notions 

Common to each testing method is the statement of a null hypothesis H0: in Sections 1-3, the null hypothesis 
states that the sample is drawn from a uniform population (universe); i.e. the data in the population are uniformly 
distributed. In Section 4 the null hypothesis states the lack of significant difference between two non-uniform 
populations, each parenting the available sample at hand. Each method rejects H0 if its test statistic exceeds a 
critical value depending usually on sample size n, and the level of significance α. In the traditional theory of 
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statistics α = 0.05 is significant and α = 0.01 is highly significant, meaning that the error, called usually the Type 
1 error, made in rejecting H0 is 5%, or 1%, respectively. The modern approach is more flexible by allowing the 
tester to decide rejection of H0 on the merit of the P-value of the test, drawing upon personal knowledge and 
experience. The P-value is the magnitude of the error committed in rejecting H0 in face of the computed test 
statistic. 

The three tests considered here carry the names of (i) Rao (Rao, 1976; Russell & Levitin, 1995a; Batschelet, 
1981b); (ii) Kuiper (Kuiper, 1960; Mardia, 1972b; Batschelet, 1981c; Fisher, 1993b), and (iii) Rayleigh (Mardia, 
1972c; Fisher, 1993b). As seen in the sequel, Rao’s method is more prone to reject H0 than the Kuiper and the 
Rayleigh test in face of a sample, unless data distribution is appreciably uniform at least in some of its 
sub-domains (Russell & Levitin, 1995a). Put otherwise, Rao’s test carries a smaller Type 1 error than the other 
tests; however, it follows from the nature of statistical data (Porkess, 2005) that rejection of an H0 cannot be 
absolutely certain. 

Rejection of H0 carries acceptance of the alternative hypothesis (counter hypothesis) H1: the population 
distribution is non-uniform. It implies that deviations from uniformity are too large to ascribe them simply to 
chance factors, hence they are of deterministic origin. Since rejection of a null hypothesis is statistically stronger 
than its opposite, Rao’s method is more inviting when at least medium-size deviations from non-uniformity are 
expected from prior inspection of the available data. 

3. Tests of Uniformity 

3.1 Rao’s Spacing Test 

The 91100 Internet entries in July 2012 attest to the widespread applicability of this method with its test-statistic 
defined as: 

n/360;n,...,2,1i;)T(U
n

1i
i  


                         (1) 

where, expressed in degrees, Ti = θi+1 – θi ; Tn = 360 + θ1 – θn; T1 + T2 +…+ Tn = 360, given the θi; i = 1,2,…, n 
angular observations in ascending order. The “+” superscript indicates that the summation in Equation (1) 
extends only over positive values of (Ti – λ). Summing over only negative values of (Ti – λ ) yields the same 
magnitude but with a negative sign, hence U in Equation (1) could also be written as one half of the sum taken 
over all values of (Ti – λ). 

The consistent use of degrees is desirable inasmuch as critical values of Uα are tabulated in degree units (e.g. 
Batschelet, 1981b; Russell & Levitin, 1995b) as a function of sample size n and the value of the test-statistic U 
obtained via Equation (1). H0 is rejected at significance level α if U > Uα. 

In general, if observations are obtained in equal-size circle segments (a frequent case in practice), the strength of 
Rao’s test depends on the number of segments, inasmuch as the computed U – statistic will exceed its critical 
value, at a set level of significance, only past a certain “threshold” value of n. For instance, a not significant U = 
160.00 at n = 24 would be significant at n = 23 since U0.05 = 159.48 at n =24, and U0.05 = 160.01 at n = 23 (Russel 
& Levitin, 1995b).  

3.2 Kuiper’s Test 

This section follows Fisher (1993b) closely, who recommends the prior construction of an [i/(n+1) vs. θi ] 
quantile plot. If the line drawn through the (0, 0) origin at a 45° angle passes roughly through the observations, 
H0 may be taken to be correct. The formal test in the case of ungrouped data consists of computing the modified 
Kuiper statistic 
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with xi = θi/360, and θi is measured in degrees. If the numerical value of V exceeds the chosen critical value Vα 
(Arsham, 1988; Stephens, 1974; Fisher, 1993c), e.g. V0.15 = 1.537; V0.10 = 1.620; V0.05 = 1.747; V0.01 = 2.001, H0 is 
rejected. Slightly different versions (Mardia, 1972b; Batschelet, 1981c) yield the same results. 

In the case of grouped data with group-wise observation sizes n1, n2,…, nk; (n1 + n2 +…+ nk) = N, and chosen 
recording angle ψ0 , the parameter m = n/k; k = 360/ψ0 (the latter measured in degrees) should be at least 2 in each 
interval for H0 to stand. The number of intervals is to be reduced until this condition is satisfied. Upon 
satisfactory grouping H0 is rejected if the numerical value of the statistic 
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exceeds the critical value of the (conventional) chi-square statistic χ2
α(k-1). The tabulation of P-values as a 

function of test-statistic values and degree of freedom (k-1) (Batschelet, 1981d) is particularly useful for decision 
making that bypasses the conventional α = 0.05 and α = 0.01 levels of significance. 

3.3 Rayleigh’s Test 

Given (f1, f2, …, fn) experimental observations at angular positions (θ1, θ2, …, θn), respectively, if the magnitude 
of the mean resultant length in the most common instance of unspecified mean direction (Fisher, 1993d) defined 
as 
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is too large, the significance probability (P-value)  
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will be sufficiently small to incur only a small error by rejecting H0 . The functions g1(Z) = (2Z – Z2)/4n and g2(Z) 
= (24Z – 132Z2 + 76Z3 – 9Z4)/288n2 can be neglected for n > 49 (if, e.g. Z = 50, e-50 = 1.9287x10-22 is about two 
orders of magnitude smaller than P = 1.048x10-20 obtained from Equation (7), but the practical importance of this 
discrepancy is less than nugatory: in both cases the error in rejecting H0 is, for all practical purposes, zero). 

4. Testing for Significant Difference between Several Sets of Observations 

If several separate sets of grouped random observations for a physical phenomenon or process have been 
obtained, they may or may not differ significantly from one another in a statistical sense. In the simplest case of 
two separate sets, the group frequencies are arranged into a conventional (2xk) contingency table (Batschelet, 
1981d) where the first row is made up of the frequencies of the first group: (n11, n12, n13, …, n1k) with total 
frequency M1, and the second row of the frequencies of the second group: (n21, n22, n23, …, n2k) with total 
frequency M2. Denoting n11 + n21 = N1; n12 + n22 = N2;…; n1k + n2k = Nk and N1 + N2 +…+ Nk = M1 + M2 = N, the 
expected frequencies are computed as eij = MiNj/N; i = 1, 2; j = 1, 2, …, k. If the test statistic carrying (k-1) 
degree of freedom: 
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exceeds the critical value of χ2
α(k-1), the null hypothesis H0: no significant difference exists between the two 

observation sets (or, equivalently, the two sets have been drawn from the same population) is rejected at the α 
level of significance. If an expected frequency is less than five, coalescence with an adjacent group (cell) is 
necessary, reducing the degree of freedom that could result in increasing the chances of rejecting H0. 

Extension to multi-sample scenarios (i = 1, 2, …, m) with m groups of observation is straightforward (Batschelet, 
1981e) with degree of freedom (m-1)(k-1) for the chi-square statistic. 

5. Application to an Electrochemical Process: Monitoring the Decay of Electrocatalytic Activity 

In a recent study of catalytic electrodes for the direct oxidation of methanol in fuel cells (Seo, 2012), the 
poisoning effect of carbon dioxide was monitored by measuring the decrease in cyclo-voltammetric (CV) current 
peaks as a function of electrode composition and time. In a hypothetical modification, an on-line setup 
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employing twenty parallel CV cells operated under identical conditions is envisaged, where time instants at 
which the peak current drops to 90% of the first (highest) forward peak current are logged and arranged into 
circular subdivisions of 360 degrees. In ascending order, the a-priori randomly observed angles θi (i = 1,20) 
representing the 10%-drop time instants are assumed to be 45, 47, 51, 100, 110, 115, 118, 160, 160, 161, 225, 
230, 232, 267, 280, 285, 287, 290, 310, and 355 degrees. These measurements are taken to be a sample from a 
population of 10%-drop time instants converted into angular positions. 

5.1 Rao’s Test 

Since T20 = 360 + 45 – 355 = 50, and λ = 360/20 = 18, Equation (1) yields upon a slight rearrangement 
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                   (9) 

The critical P-values of 0.006 (n = 20; U = 180) and 0.011 (n = 20; U = 175) (Russell & Levitin, 1995b) indicate 
that H0 can be rejected with high confidence, i.e. there is no evidence for uniformity of the 10%-drop time 
distribution. Discrepancy between experimental conditions might be (at least) one (non-random) reason for this 
finding. 

5.2 Kuiper’s Test 

The observations are not grouped, thus from Equations (3) and (4) D+
20 = 0.0944 (i = 18), and D-

20 = 0.1278 (i = 
4). The modified Kuiper statistic 

040.1)
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computed via Equation (2) is less than the critical value of 1.537 (α = 0.15), carrying a 15% error if H0 is 
rejected. 

5.3 Rayleigh’s Test 

The cosine function sum = -1.5263 and the sine function sum = -1.0208 yield Rm = 0.09181 via Equation (6), 
hence Z = 0.1686. The resulting P ≈ 0.85 via Equation (7) is strongly conservative in failing to reject H0, but not 
surprisingly so (Section 6.1). 

6. Application to Nitrous Oxide Production: Monitoring Excessive Temperature Rise in a Tank-Flow 
Reactor 

An explosion in a tank-flow reactor producing nitrous oxide from an aqueous ammonium nitrate feed solution 
containing 83 mass% NH4NO3 and 17 mass% H2O by direct decomposition (Fogler, 1992) was attributed to the 
cutoff of the feed due to pressure fluctuations most likely due to excessive N2O buildup in the reactor, 
approximately four minutes prior to explosion. An upright cylindrical shape tank-flow reactor is envisaged to 
operate in a pilot plant with the nitrate feed entering at its bottom and the product stream exiting at its top. It is 
assumed that, in order to prevent such an explosion, the temperature is continuously monitored in each of the ten 
36 degree wide vertical segments at midpoint angular locations to alert operating personnel of the existence of 
potentially dangerous overheated locations (hot spots).  

Hypothetical alarm frequencies observed in this manner over a fixed testing period are shown in Table 1. The 
null hypothesis is stated as H0: the circular distribution of hot spots in the segments is uniform (in a sufficiently 
large number of reactors considered as a population, under identical experimental conditions). 
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Table 1. Alarm frequencies observed during a test period in the hypothetical nitrous oxide plant of Section 6  

Segment index i Mid-point angle within the i-th segment, degree Number of warning signals 

1 18 8 

2 54 12 

3 90 13 

4 126 14 

5 162 19 

6 198 13 

7 234 8 

8 270 4 

9 306 7 

10 342 6 

 

6.1 Rao’s Test 

The total number of alarms being 104, the numerical value of λ = 360/104 is to be subtracted from each Ti. At 
each boundary the (Ti+1 – Ti) value is consistently 36 degrees, including the last entry of 360 – 342 + 18. It 
follows that U = 10(36 – 360/104) ≈ 325, hence the P-value is essentially zero, indicating that the hot spot 
distribution may be taken to be definitely not uniform. 

6.2 Kuiper’s Test 

Since the data are grouped, the test centers on Equation (5), yielding Y = (10/104)(82 + 122 +…+ 72 + 62 ) – 104 = 
17.92. Linear interpolation between χ2

0.05(9) = 16.92 and χ2
0.01(9) = 19.02 (Lindley & Scott, 1984) yields a P-value 

about 0.039, indicating non-uniformity at a significant, but not at a highly significant level of conventional 
statistics. Essentially the same result is obtained by interpolating between P = 0.049 (χ2

9 = 17) and P = 0.035 (χ2
9 

= 18) (Batschelet, 1981e), yielding P ≈ 0.036. 

6.3 Rayleigh’s Test 

Since N = 104 exceeds fifty, P ≈ e-Z offers a sufficiently close approximation. It follows from Equation (6) that 
Rm = [(-18.8824)2 + (20.37132)2 ]/104 = 0.2671, hence Z = (104)(0.2671)2 = 7.4186 and P = e-7.4186 ≈ 6x10-4. This 
result is in essential agreement with Rao’s test. 

6.4 Testing If Two Sets of Observation Statistically Differ from Each Other 

Assuming that a second set of alarm frequencies (number of warning signals): 12; 9; 6; 4; 2; 5; 14; 16; 16; 4 in 
Table 2 has also been obtained under identical experimental conditions, it follows from Equation (5) that Y = 
(10/88)(122 + 92 +…+ 162 + 42) – 88 = 29.05 indicates an essentially 0.05% error in rejecting uniformity, 
inasmuch as χ2

0.0005(9) = 29.67 (Lindley & Scott, 1984). The contingency array in Table 2 yields via Equation 
(8): 
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Table 2. Contingency table for two sets of observed and expected alarm frequencies in the hypothetical nitrous 
oxide plant of Section 6. M1 = 104; M2 = 88; M3 = 192 

Observation i n1i e1i n2i e2i Ni

1 8 10.8333 12 9.1607 20

2 12 11.3750 9 9.6250 21

3 13 10.2917 6 8.7083 19

4 14 9.7500 4 8.2500 18

5 19 11.3750 2 9.6250 21

6 13 9.7500 5 8.2500 18

7 8 11.9167 14 10.0833 22

8 4 10.8333 16 9.1667 20

9 7 12.4583 16 10.5417 23

10 6 5.4167 4 4.5833 10
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with a P-value of 1.5x10-5, indicating an extremely strong difference between the pertinent non-uniform 
populations. 

7. Analysis and Discussion 

7.1 Comparison of the Single-Sample Tests 

The observations concerning the methanol fuel cell are only mildly uniform over four short regions (45-51; 
110-118; 225-232; 280-290 degrees), hence they do not meet the locally strong uniformity stipulation (Russell & 
Levitin, 1995a) for reducing the strength of Rao’s test. Kuiper’s and Rayleigh’s test exhibit large P-values, 
although the former is somewhat less realistic with respect to the powerful rejection of uniformity by Rao’s test. 
In the case of the nitrous oxide reactor Rao’s and Rayleigh’s test yield very small P-values implying a strong 
rejection of the hypothesis of uniformity, while Kuiper’s test offers only a “borderline” rejection. 

It is instructive to consider three particular (of the many possible) extreme situations hypothesized for the nitrous 
oxide plant: (1) twenty observation angles are uniformly 18 degrees apart; (2) ten observation angles are 
repeatedly 180, and the other ten repeatedly 360 degrees; (3) in each quadrant there are five repeated angular 
observations at 90, 180, 270, and 360 degree positions. Rao’s test yielding U1 = 0, U2 = 324 and U3 = 288 infers 
correctly extreme uniformity (Case 1) and extreme non-uniformity (Cases 2 and 3). With V1 = 0.234, V2 = 2.3401 
and V3 = 1.1702 computed via Equations (2-4), Kuiper’s test rejects the null hypothesis of uniformity only in 
Case 2, while Rayleigh’s test retains the null hypothesis of uniformity inasmuch as it yields R = 0, hence Z = 0 
and P = 1 in each case. The strength of Rao’s test demonstrated here is not generally attainable at all conceivable 
extremes. 

7.2 Analysis of the Two-Sample Results 

The last cell in Table 2 carrying e220 whose value is slightly less than 5 would require, in a rigorous treatment, the 
coalescence of the nineteenth and the twentieth cell producing new entries n219 = 20 and e219 = 15.125; the 
difference between the rigorous value of χ2 = 36.89 and χ2 = 38.40 via Equation (11) is of no practical importance 
since both indicate a strong rejection of H0. 

When the number of observations is small, visually inferred non-uniformity may not receive strong statistical 
confirmation. If, for instance, in the nitrous oxide plant four sets of alarm frequencies: (23; 32; 24; 18) and (44; 
27; 18; 11) were available in two consecutive data sets, the chi-square value of χ2 = 9.507 obtained via Equation 
(11) would indicate a P-value of about 0.024, i.e. rejection of uniformity at a significant, but not at a highly 
significant level according to conventional statistics. If three consecutive sets with alarm frequencies: (23; 32; 24; 
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18), (42; 27; 18; 9) and (33; 29; 16; 21) were available , the test statistic χ2 = 12.64 with (3-1)(4-1) = 6 degrees of 
freedom would indicate non-uniformity for all practical purposes at a 5% level of significance due to the P-value 
= 0.0491. 

If the uniformity of the data population has been rejected, the process analyst might wish to test the admissibility 
of a proposed (supposedly by the analyst) probability distribution in a similar manner, with expected frequencies 
computed from distribution functions pertaining to the probability model under consideration. This topic, beyond 
the scope of the current paper, is well illustrated in the case of the widely used Von Mises distribution (Mardia, 
1972d) and its application to chemical systems (Fahidy, 2012). 

8. Final Remarks 

The fundamental goal of the material presented here is to provide the process analyst/designer with useful means 
to assess chemical process performance using the tools of circular statistics, carrying in mind the maxim: “… the 
purpose of computing is insight, not numbers…” (Hamming, 1973). Much remains to be explored in this area by 
chemical scientists and engineers with interest in statistical techniques. 
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