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Abstract

A new modeling of heating and evaporation of fuel droplets and ignition of a fuel vapour/ air mixture in contin-
uous form is suggested. The size distribution of fuel droplets is assumed to be continuous and found from the
solution of the kinetic equation for the probability density function (PDF). The semi-transparency of droplets, the
difference between the gas temperature and the external temperature are take into account. The model represent in
dimensionless from, and the dynamics of the system is present in term of the dynamics of a multi-scale, singularly
perturbed system (SPS).

Keywords: computational fluid dynamics (CFD), nonlinear ordinary differential equations, polydisperse fuel
spray, probability density function

A pre-exponential rate factor (s−1)

ar polynomial of the external temperature

br polynomial of the external temperature

B universal gas constant (Jkmol−1K−1)

BT Spalding number

BM Spalding mass number

br polynomial of the external temperature

C molar concentration (kmolm−3)

cpF specific heat capacity of fuel vapour (Jkg−1K−1)

cl specific heat capacity liquid (Jkg−1K−1)

E activation energy (Jkmol−1)

h convection heat transfer coefficient (Js−1m−2K−1)

k̄g average gas thermal conductivity (Js−1m−1K−1)

kcr rate of reaction (mole(cm−3)s−1)

L liquid evaporation energy (i.e., latent heat of evaporation, Enthalpy of evaporation) (Jkg−1)

mdi droplet mass (kg) i = 1, ...,w

n number of droplets per unit volume (m−3)
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Nu Nusselt number

Q̄a average absorption efficiency factor

Q f v heat released per unit mass of burnt fuel vapour (Jkg−1)

Q̄R radiative temperature (K)

R radius of droplet

r dimensionless radius

Tg gas temperature (K)

Td droplet temperature (K)

Text external temperature (K)

t time (s)

treact characteristic reaction time (s) defined in equation (17)

V the volume over all droplet (m3)

w number of droplets

Greek symbols:

αg volume fraction of gas (dimensionless)

β dimensionless reduced initial temperature (with respect to the so-called activation temperature
E/B)

γ dimensionless parameter that represents the reciprocal of the final dimensionless adiabatic temper-
ature of the thermally insulated system after the explosion has been completed

ϵi for i = 1, ..., 10 dimensionless parameters defined in equation (17)

θg dimensionless gas temperature

θd dimensionless droplet temperature

µ molar mass (kgkmol−1)

ρ f v density of fuel vapour (kgm−3)

ρOx density of Oxygen (kgm−3)

ρd density of droplet (kgm−3)

σ Stefan-Boltzmann constant (W m−2K−4)

τ dimensionless time

1. Introduction

Nothing that the combustion of sprays is a complex interaction of many different processes such as droplet heating,
evaporation, ignition, combustion, interaction of different droplets etc. (Maas et al., 2006). A calculation of
practical combustion systems from first principles i.e., using direct numerical simulations is not possible. Therefor,
in analogy to the description of turbulent flames (Faeth, 1987), statistical methods have to be used. Because the
spray is characterized by a statistical distribution of droplets sizes, it is natural to describe the spray by a distribution
function (William, 1985). In addition to representing the drop size distribution with a frequency plot, it is also
informative to use a cumulative distribution representation. This is essentially a plot of the integral of the frequency
curve, and it may represent the percentage of the total surface area or volume of a spray contained in drops below
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a given size (Lefebvre, 1989). Because the graphical representation of drop size distribution is laborious and not
easily related to experimental results, many workers have attempted to replace it with mathematical expression
whose parameters can be obtained from a limited number of drop size measurements (Aggrawal, 1998)

In the absence of any fundamental mechanism or model on which to build a theory of drop size distributions,
a number of functions have been proposed, based on either probability or purely empirical considerations, that
allow the mathematical representation of measured drop size distribution. Those in general use include normal,
log-normal, Nukiyama-Tanasawa, Rosin-Rammler, and upper-limit distribution. As basic mechanisms involved in
atomization are not clearly understood and no single distribution functions can be represent all drop size data, it
is usually necessary to test several distribution function to find the ”best” fit to any given set of experimental data
(Daniel Christopher, 2002; Durand, 1999).

The aim of this work is to reformulate the model that proposed in (Bykov et al., 2007; Abramzon & Sirignano,
1989; Sirignano, 1999) by using probability density function i.e., in a continuous way as in our previous papers
(Nave, 2010, 2011a, 2011b).

2. Discrete Model

According to (Abramzon & Sirignano, 1989; Sirignano, 1999) the basic equations for spray modeling are as
follows:

dmdi

dt
= −4π

k̄gRdi

cpF
ln(1 + BM), i = 1, ...,w, (1)

mdi cl
dTd

dt
= 4πR2

di
h(Tg − Td) − L

dmdi

dt
+ 4πR2

di
σQ̄aT 4

ext, (2)

αg
dρ f v

dt
= −αgAρa

f vρ
be−

E
BTg +

1
V

w∑
i=1

dmdi

dt
, (3)

dρO2

dt
= −18.5ρa

f vρ
be−

E
BTg , (4)

cmixρmix
dTg

dt
= αgQ f vAρa

f vρ
be−

E
BTg − 1

V

w∑
i=1

clmdi

dTd

dt
− 1

V

w∑
i=1

L
dmdi

dt
,

− 1
V

w∑
i=1

cpF
dmdi

dt
(Tg − Td). (5)

The initial conditions at t = 0 are:

Td = 400K, Tg = 880K, ρ f v = ρO2 = 2.73
kg
m3 , Rdi = 9µm, ρd = 600

kg
m3 . (6)

Equation (1) is the equation for stationary droplet mass, (2) is the equation for stationary droplet temperature, (3)
is the equation for conversion of fuel vapour, (4) is the equation for density of oxygen, and (5) energy balanced
equation for the gas temperature.

The equation of the fuel vapour density (3) follows directly from the conversation of fuel vapour where the expres-
sion of the rate of reaction have the form of (Westbrook & Dryer, 1981);

kcr = A
[
f uel

]a [O2]b e
(
− E

BTg

)
. (7)

The values of these coefficients given for C10H22 will be used. These are the closest to n − dodecane i.e., C12H26
(the closest approximation for diesel fuel):

A = 3.8 × 1011 1
s

(
mole
cm3

)1−a−b

= 2.137 × 109 1
s

(
kmole
cm3

)1−a−b

,

E = 30
kcal
mole

= 1.255 × 108 J
kmole

, a + b = 1 (8)
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The equation for the density of Oxygen (4) derived form the assumption for a single step global reaction for
n − dodecane combustion as:

C12H26 + 18.5O2 ⇒ 12CO2 + 13H2O, (9)

where in our calculations we used the following values for the molar mass of Oxygen and fuel respectively as:
MO2 = 32kg/kmole and M f = 170kg/kmole.

The relation between the average gas thermal conductivity and Nu is as follows (Abramzon & Sirignano, 1989):

Nu =
2hRd

k̄g
= 2

ln(1 + BT )
BT

. (10)

The radiative temperature, QR, calculated from the P − 1-model and equal to QR = Text for optically thick gases
and QR = Tg for optically thin gases.
The average absorption efficiency factor as appear in the equation for the droplet temperature, i.e., equation (2) can
be calculated from the equation (Sazhin et al., 2004):

Q̄a = arR
br
d , (11)

where an explicit expressions for several types of diesel fuel are given in (Sazhin et al., 2004).

3. The Time Evolution of the Probability Density Function

A statistical description of the spray may be given by the distribution function (or density function) P(R, x⃗, v⃗, t)dRdx⃗dv⃗
which is the probable number of particles in the radius range dR about R located in the spatial range dx⃗ about x⃗
with velocity in the range dv⃗ about v⃗ at time t.

An equation describing the time rate of change of the distribution function P(·) may be derived phenomenologically
by using reasoning analogous to that employed in the kinetic theory of gases. In many combustors, the intensity
of burning is comparatively low in the neighborhood of the atomizer, and the main part of the combustion occurs
in regions where particle interactions and sources are of no more than secondary importance. In our numerical
simulations we focus on the burning process and neglected from the rate of change of the distribution function that
caused by collisions with other particles and from the rate of increase of the distribution function with time through
particle formation or destruction by processes such as nucleation or liquid break-up. Using these assumptions,
according to (William, 1985) the evolution of the size distribution of droplets due to the evaporation process that
describe by the kinetic equation for the PDF given by:

∂PR

∂t
=
∂

∂R

(
jm
ρl

PR

)
. (12)

The approximation of this equation as suggested in (Volkov et al., 2004) is:

∂PR

∂t
=
∂

∂R

(
Jm

ρl
PR

)
, (13)

where:

Jm =

∫ ∞
0 R2 jmPRdR∫ ∞

0 R2PRdR
. (14)

Equation (13) coincides with equation (12) in the case when the rate of evaporation does not depend on the droplet
radius, as well as the droplets are treated as a monodisperse system. However, the averaging of jm is performed in
such a manner that equation (13) would yield the same balance equation for the mass of the liquid equation i.e.,
equation (1) as that yielded by equation (12). The integro-differential equation (13) with (14) has a self-similar
solution that satisfies the initial distribution PR(0,R) = PR0(R),

PR = PR0(R + δ), δ =
∫ t

0

Jm

ρl
dt, (15)

and δ is found from the solution of the equation:

dδ
dt
=

Jm

ρl
, δ(0) = 0. (16)
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4. The Continuous Model in Dimensionless Form

As in our previous work (Nave Ophir et al., 2010, 2011a) the system (1)-(5) can be rewritten in a continuous way
by using the following dimensionless parameters:

β =
BTg0

E
, τ =

t
treact
, treact =

e1/β
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2

f f v ρ
b− 1

2
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,
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as follows:

dΥ
dτ
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∫ ∞
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, (18)
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−
ϵ8

d
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(19)

+
ϵ9ϵ10(1 + βθext

g )4
∫ ∞

0 rbr+2P̃r0(r + Υ)dr

4β
∫ ∞

0 r3P̃r0(r + Υ)dr
,

ϵ6
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= −ρ̃a
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1+βθg

)
+ ϵ4

d
dτ

∫ ∞
0 r3P̃r0(r + Υ)dr∫ ∞
0 r3P̃r0(r)dr

, (20)
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f vρ̃
b
O2

e
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1+βθg
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−
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ϵ1(θg − θd) + ϵ2

}
d
dτ

∫ ∞
0 r3P̃r0(r + Υ)dr∫ ∞

0 r3P̃r0(r)dr
,

the dimensionless initial conditions at τ = 0 are:

θg = θd = 0, Υ = 0, ρ̃ f v = ρ̃O2 = 1. (23)
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5. Analysis and Results

We applying the Frank-Kamenetskii approximation (Frank-Kamenetskii, 1969) to our numerical analysis hence,

β << 1 and βθg << 1. This simplification implies that e
(
θg

1+βθg

)
≈ eθg . In our numerical simulation we compared

between the models with and without the impact of the thermal radiation i.e., ϵ9 , 0 and ϵ9 = 0 respectively in the
form of: 1: The continuous model with PDF in the form of Gamma distribution:

P̃r0 =
m

Γ
(

n+1
m

) Γ
(

n+4
m

)
Γ
(

n+1
m

) 
( n+1

3 )

· rnexp

−rm

Γ
(

n+4
m

)
Γ
(

n+1
m

) 
( m

3 ) , (24)

where n = 2, m = 1 are parameters and Γ(·) is the Gamma function, 2: Nukiyama-Tanasawa distribution [?]:

f (2r) =
m(2r)5

n6Γ( 6
m )

e−(
2r
n )m

, (25)

3: parcel approximation model for 500 parcels i.e., w = 300, 4: monodisperse model for m, n → ∞ in equation
(24). The parameter ρmix for the parcel model was based on the equation ρmix =

∑
i ρi where ρi are the densities

of individual components. Also in our numerical simulations we ignored from the droplets dynamics, break-up
and coalescence, and the effects of the temperature gradient inside the droplets. The equations presented for a
stationary droplets. We plot the solution profiles for the gas temperature θg − τ, droplet temperature θd − τ, density
of Oxygen ρO2 −τ and fuel vapour density ρ f v−τ. We compared between the different models with and without the
impact of the thermal radiation. Let us start with the analysis of the solution profiles of the continuous model with
the Gamma distribution. The delay time, i.e., the time from the beginning of the processes until the explosion, for
the corresponding model with the impact of thermal radiation is approximately at τ ≈ 0.0012. The values of the
different variables of the model that corresponds to this thermal explosion point are as follows: ρO2 , ρ f v ≈ 0.8 (this
variables are decrease very fast in comparing to m), m ≈ 0.25 (this variable is decrease more slowly in comparing
to the other variables), θg, θd ≈ 2.5 − 3. The delay time for this model without the impact of the thermal radiation
is expected to be longer, and our results are confirm these expectation τ ≈ 0.015. The values of the different model
without the impact of the thermal radiation are as follows: The delay time is τ ≈ 0.0015. The values of the different
variables of the model without the impact of the thermal radiation are as follows: ρO2 , ρ f v ≈ 0.6, m ≈ 0.2, and
θg, θd ≈ 3−4. Simultaneously, we compared the continuous model with the polydisperse approximation model and
with the monodisperse model. The delay time for the polydisperse model with the impact of the thermal radiation
is τ ≈ 0.0018, the delay time of the polydisperse model without the impact of the thermal radiation is τ ≈ 0.0024.
The delay time of the monodisperse model with the impact of the thermal radiation is τ ≈ 0.003, and the delay
time of the monodisperse model without the impact of the thermal radiation is τ ≈ 0.0034 (see figures 1 − 5). The
same analysis can be applied to the continuous model with the Nukiyama-Tanasawa PDF (see figures 6 − 10). In
contrast to the Gamma PDF, the solution profile of the mass is different in this case. The decrease of the mass of
the system is approximately linear.

6. Conclusions

In this paper we suggested a new physical continuous model that described the heating, evaporation and ignition
of fuel droplets by using a probability density function. The results of numerical investigation of the problem have
shown that the polydispersity of liquid fuel promotes, and thermal radiation prevents, the ignition of a two-phase
combustible mixture. We take into account the evolution of size distribution of droplets by using the kinetic equa-
tion for probability density function. The presence of fine droplets in a polydisperse system accelerates the delivery
of gaseous fuel and reduce the time ignition. Thermal radiation leads to decrease the delay time for all the differ-
ent models i.e., the continuous model with the Gamma and Nukiyama-Tanasawa PDF, the discrete polydisperse
approximation model and for the monodisperse model. According to our numerical results the continuous models
(Gamma and Nukiyama-Tanasawa PDF) have the shorter in the delay time, after these models, the polydisperse
approximation model and finally the monodisperse model have the longer in the delay time.
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Figure 1. Solution profiles of the Oxygen: ρO2 − τ; 1: the continuous model with the impact of the thermal
radiation, 2: the continuous model without the impact of the thermal radiation, 3: the polydisperse approximation
model with the impact of the thermal radiation, 4: the polydisperse approximation model without the impact of
the thermal radiation, 5: monodisperse model with the impact of the thermal radiation, 6: monodisperse model

without the impact of the thermal radiation
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Figure 2. Solution profiles of the fuel vapour: ρ f v − τ; 1: the continuous model with the impact of the thermal
radiation, 2: the continuous model without the impact of the thermal radiation, 3: the polydisperse approximation
model with the impact of the thermal radiation, 4: the polydisperse approximation model without the impact of
the thermal radiation, 5: monodisperse model with the impact of the thermal radiation, 6: monodisperse model

without the impact of the thermal radiation
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Figure 3. Solution profiles of the mass: m − τ; 1: the continuous model with the impact of the thermal radiation,
2: the continuous model without the impact of the thermal radiation, 3: the polydisperse approximation model
with the impact of the thermal radiation, 4: the polydisperse approximation model without the impact of the
thermal radiation, 5: monodisperse model with the impact of the thermal radiation, 6: monodisperse model

without the impact of the thermal radiation
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Figure 4. Solution profiles of the gas temperature: θg − τ; 1: the continuous model with the impact of the thermal
radiation, 2: the continuous model without the impact of the thermal radiation, 3: the polydisperse approximation
model with the impact of the thermal radiation, 4: the polydisperse approximation model without the impact of
the thermal radiation, 5: monodisperse model with the impact of the thermal radiation, 6: monodisperse model

without the impact of the thermal radiation
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Figure 5. Solution profiles of the droplet temperature: θd − τ; 1: the continuous model with the impact of the
thermal radiation, 2: the continuous model without the impact of the thermal radiation, 3: the polydisperse

approximation model with the impact of the thermal radiation, 4: the polydisperse approximation model without
the impact of the thermal radiation, 5: monodisperse model with the impact of the thermal radiation, 6:

monodisperse model without the impact of the thermal radiation
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Figure 6. Solution profiles of the Oxygen: ρO2 − τ; 1: the continuous model with the impact of the thermal
radiation, 2: the continuous model without the impact of the thermal radiation, 3: the polydisperse approximation
model with the impact of the thermal radiation, 4: the polydisperse approximation model without the impact of
the thermal radiation, 5: monodisperse model with the impact of the thermal radiation, 6: monodisperse model

without the impact of the thermal radiation
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Figure 7. Solution profiles of the fuel vapour: ρ f v − τ; 1: the continuous model with the impact of the thermal
radiation, 2: the continuous model without the impact of the thermal radiation, 3: the polydisperse approximation
model with the impact of the thermal radiation, 4: the polydisperse approximation model without the impact of
the thermal radiation, 5: monodisperse model with the impact of the thermal radiation, 6: monodisperse model

without the impact of the thermal radiation
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Figure 8. Solution profiles of the mass: m − τ; 1: the continuous model with the impact of the thermal radiation,
2: the continuous model without the impact of the thermal radiation, 3: the polydisperse approximation model
with the impact of the thermal radiation, 4: the polydisperse approximation model without the impact of the
thermal radiation, 5: monodisperse model with the impact of the thermal radiation, 6: monodisperse model

without the impact of the thermal radiation

71



www.ccsenet.org/ijc International Journal of Chemistry Vol. 4, No. 3; June 2012

Figure 9. Solution profiles of the gas temperature: θg − τ; 1: the continuous model with the impact of the thermal
radiation, 2: the continuous model without the impact of the thermal radiation, 3: the polydisperse approximation
model with the impact of the thermal radiation, 4: the polydisperse approximation model without the impact of
the thermal radiation, 5: monodisperse model with the impact of the thermal radiation, 6: monodisperse model

without the impact of the thermal radiation

Figure 10. Solution profiles of the droplet temperature: θd − τ; 1: the continuous model with the impact of the
thermal radiation, 2: the continuous model without the impact of the thermal radiation, 3: the polydisperse

approximation model with the impact of the thermal radiation, 4: the polydisperse approximation model without
the impact of the thermal radiation, 5: monodisperse model with the impact of the thermal radiation, 6:

monodisperse model without the impact of the thermal radiation
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