Electrical Charge Method for Balancing, Quantifying, and Defining Redox Reactions

Pong Kau Yuen ${ }^{1,2}$, Cheng Man Diana Lau ${ }^{2}$
${ }^{1}$ Department of Chemistry, Texas Southern University, Houston, Texas, USA
${ }^{2}$ Macau Chemical Society, Macao, Macao
Correspondence: Pong Kau Yuen, Department of Chemistry, Texas Southern University, Houston, Texas, USA. E-mail: pongkauyuen@yahoo.com

Received: April 8, 2023 Accepted: May 25, 2023 Online Published: June 5, 2023
doi:10.5539/ijc.v15n2p1
URL: https://doi.org/10.5539/ijc.v15n2p1

Abstract

Defining and balancing redox reactions are core knowledge and skills in the study of chemistry. The most common method to perform these two tasks is the oxidation number method, which combines mathematical operations and application of oxidation number. However, when oxidation number is not known, it is not applicable. Algebraic methods can balance all chemical reactions mathematically, but they cannot define redox reactions chemically. This article explores the electrical charge method for balancing, quantifying, and defining redox reactions. This method only requires the balancing of atoms and electrical charges. There is no need to determine oxidation number or count the number of transferred electrons. It works effectively in complicated cases where oxidation number is uncertain and where there are more than two sets of redox couples. Furthermore, the net-charge of a redox couple can function as a counting concept to determine its number of transferred electrons and change of oxidation numbers. The electrical charge method also initiates a new charge model, which complements the conventional electron model and oxidation number model, for defining redox reactions.

Keywords: electrical charge method, ion-charge equation, net-charge, number of transferred electrons, change of oxidation numbers, redox couple, charge model

1. Introduction

Redox reactions are important in both theoretical studies and practical uses. The concept is also one of the most difficult to teach and learn (Goes, Nogueira \& Fernandez, 2020). In general chemistry textbooks, the oxidation number method is a fundamental approach for counting the number of transferred electrons and understanding redox reactions (Tro, 2020; Chang \& Goldsby, 2013). Without knowing oxidation number, redox reactions cannot be defined and balanced. Algebraic methods, such as linear simultaneous equations method (Porter, 1985; Olson, 1997; Kolb, 1979) and matrix method (Blakley, 1982; Risteski, 2011), can balance redox reactions, but they cannot define them chemically.
The relationships among oxidation number, transferred electrons, and electrical charge, can also be confusing for students (Garnett \& Treagust, 1992; Brandriet \& Bretz, 2014). In response to the limitations of the oxidation number method and the algebraic methods, the electrical charge method for balancing and defining redox reaction is developed in this article. This method does not require calculation of oxidation number nor use of electron. It only requires balancing of atoms and electrical charges by using two half reactions in a redox reaction. The key parameter is electrical charge, which acts as a concept to balance, quantify, and define redox reactions. By using simple arithmetic operations, the electrical charge method is appliable for balancing both ionic and molecular chemical equations.

2. The Electrical Charge Method

The electrical charge method is based on ion-charge equations for balancing half reactions, in which electrical charge is the key concept. There are four electrical charge parameters, which are shown as follows:

$$
\begin{aligned}
& \text { charge }=\text { individual ionic charge } \\
& \Sigma \text { charge }(\text { reactant })=\text { the sum of reactants' charge } \\
& \Sigma \text { charge (product })=\text { the sum of products' charge } \\
& \text { net-charge }=\Sigma \text { charge (product) }-\Sigma \text { charge (reactant) }
\end{aligned}
$$

Given an example:
unbalanced ion-charge half equation: $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{Cr}^{3+}$
balanced ion-charge half equation: $\quad \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
(i) charge: individual ionic charge

ion	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$	H^{+}	Cr^{3+}
charge	-2	+1	+3

(ii) Σ charge (reactant) and Σ charge (product)

reactants		products
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-+} 14 \mathrm{H}^{+}$	\rightarrow	$2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
Σ charge (reactant) $=1(-2)+14(+1)=+12$		Σ charge (product) $=2(+3)=+6$

(iii) net-charge $=\Sigma$ charge (product) $-\Sigma$ charge (reactant)

$$
=(+6)-(+12)=-6
$$

There are five steps in the development of the electrical charge method: (1) setting net-charge as the key parameter, (2) balancing an overall redox reaction by making its two half equations' net-charges equivalent, (3) quantifying the relationship between net-charge and number of transferred electrons, (4) establishing the charge model, and (5) defining redox reaction.

3. Procedures for Balancing Ion-Charge Equations

When using the electrical charge method, $\mathrm{H}^{+}, \mathrm{O}, \mathrm{H}_{2} \mathrm{O}$, and electrical charges (or charge) are employed as balancing devices. Based on the charge parameters, the balanced method is developed, and its operating procedures are shown as follows:

Step 1. Divide the overall redox reaction into two half reactions
$\left(\mathrm{H}^{+}, \mathrm{OH}^{-}\right.$, and $\mathrm{H}_{2} \mathrm{O}$ can be omitted in the half reactions optionally; a molecular chemical equation is converted to an ionic chemical equation when needed)
Step 2. Balance all atoms in the two half reactions
a) Balance all atoms except H and O
b) Use 1 O to balance each O atom
c) Use $1 \mathrm{H}^{+}$to balance each H atom
d) Provide $2 \mathrm{H}^{+}$for each O
e) Convert $2 \mathrm{H}^{+}$and 1 O to $1 \mathrm{H}_{2} \mathrm{O}$

Step 3. Determine the net-charges of the two half reactions net-charge $=\Sigma$ charge (product) $-\Sigma$ charge (reactant)

Step 4. Make the net-charges of the two half reactions equivalent
Step 5. Combine the two half reactions
Step 6. Simplify the overall chemical equation
Step 7. Provide $1 \mathrm{OH}^{-}$for each H^{+}and simplify the overall chemical equation
(This is an optional step for converting an acidic solution to a basic solution.)

4. Procedures for Dividing an Overall Reaction into Two Half Reactions

The electrical charge method is a half reaction approach. The first and the most critical step is to divide an overall redox reaction into two half reactions by using the "ping-pong" strategy (Yuen \& Lau, 2022a). Its working procedures are as follows: (i) choose one of the reactants and identify all its non-H and non-O elements, (ii) link the reactant's element(s) on all products' element(s), (iii) keep linking left (reactants' side)-right (products' side)-left-right..., until a half reaction is attained, (iv) choose another reactant and repeat the steps (i), (ii), and (iii).
Given an overall reaction example: $\mathrm{HIO}_{3}+\mathrm{FeI}_{2}+\mathrm{HCl} \rightarrow \mathrm{FeCl}_{3}+\mathrm{ICl}+\mathrm{H}_{2} \mathrm{O}$ (Stout, 1995)
Choose the reactant HIO_{3}
(i) Start from $\mathrm{HIO}_{3} \rightarrow$
(ii) Link from left to right: $\mathrm{HIO}_{3} \rightarrow \mathrm{ICl}$
(iii) Link from right to left: $\mathrm{HIO}_{3}+\mathrm{HCl} \rightarrow \mathrm{ICl}$ (the first half reaction is attained)

Choose another reactant FeI_{2}
(i) Start from $\mathrm{FeI}_{2} \rightarrow$
(ii) Link from left to right: $\mathrm{FeI}_{2} \rightarrow \mathrm{FeCl}_{3}+\mathrm{ICl}$
(iii) Link from right to left: $\mathrm{FeI}_{2}+\mathrm{HCl} \rightarrow \mathrm{FeCl}_{3}+\mathrm{ICl}$ (the second half reaction is attained)

Given another overall reaction example: $\mathrm{CuSCN}+\mathrm{KIO}_{3}+\mathrm{HCl} \rightarrow \mathrm{CuSO}_{4}+\mathrm{KCl}+\mathrm{HCN}+\mathrm{ICl}+\mathrm{H}_{2} \mathrm{O}$ (Stout, 1995)
Choose the reactant CuSCN
(i) Start from $\mathrm{CuSCN} \rightarrow$
(ii) Link from left to right: $\mathrm{CuSCN} \rightarrow \mathrm{CuSO}_{4}+\mathrm{HCN}$ (the first half reaction is attained)

Choose another reactant KIO_{3}
(i) Start from $\mathrm{KIO}_{3} \rightarrow$
(ii) Link from left to right: $\mathrm{KIO}_{3} \rightarrow \mathrm{KCl}+\mathrm{ICl}$
(iii) Link from right to left: $\mathrm{KIO}_{3}+\mathrm{HCl} \rightarrow \mathrm{KCl}+\mathrm{ICl}$ (the second half reaction is attained)

5. Examples for Balancing Redox Reactions

Example 1. In an ionic chemical equation (at acidic medium)
Given an ionic chemical equation: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{Cr}^{3+}$
Convert to $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+\mathrm{Cr}^{3+}$
Step 1. Divide into two half reactions
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} \rightarrow \mathrm{Cr}^{3+}$
Step 2. Balance all atoms in the two half reactions
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+\mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+2 \mathrm{H}^{+}$
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+\mathrm{O}+2 \mathrm{H}^{+} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{H}^{+}$
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+4 \mathrm{H}^{+}$
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} \rightarrow \mathrm{Cr}^{3+}$
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{O}$
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{O}+14 \mathrm{H}^{+}$
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
Step 3. Determine the net-charges of the two half reactions
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+4 \mathrm{H}^{+} \quad$ (net-charge $=+4$)
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \quad$ (net-charge $=-6$)
Step 4. Make the net-charges of the two half reactions equivalent ($\mathrm{LCM}=12$)
$\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+4 \mathrm{H}^{+}\right) \times 3$
$\left(\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}\right) \times 2$
Step 5. Combine the two half reactions
$3 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+3 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+28 \mathrm{H}^{+} \rightarrow 3 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+12 \mathrm{H}^{+}+4 \mathrm{Cr}^{3+}+14 \mathrm{H}_{2} \mathrm{O}$
Step 6. Simplify the overall chemical equation
$3 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+2 \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+16 \mathrm{H}^{+} \rightarrow 3 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+4 \mathrm{Cr}^{3+}+11 \mathrm{H}_{2} \mathrm{O}$

Example 2. In an ionic chemical equation (at basic medium)
Given an ionic chemical equation: $\mathrm{NO}_{2}^{-}+\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{NO}_{3}^{-}+\mathrm{MnO}_{2}+\mathrm{OH}^{-}$

$$
\begin{array}{ll}
\hline \text { Step 1. } & \text { Divide into two half reactions } \\
& \mathrm{NO}_{2}^{-} \rightarrow \mathrm{NO}_{3}^{-} \\
& \mathrm{MnO}_{4}^{-} \rightarrow \mathrm{MnO}_{2}
\end{array}
$$

Step 2. Balance all atoms in the two half reactions

$$
\begin{aligned}
& \mathrm{NO}_{2}^{-}+\mathrm{O} \rightarrow \mathrm{NO}_{3}^{-} \\
& \mathrm{NO}_{2}^{-}+\mathrm{O}+2 \mathrm{H}^{+} \rightarrow \mathrm{NO}_{3}^{-}+2 \mathrm{H}^{+} \\
& \mathrm{NO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NO}_{3}^{-}+2 \mathrm{H}^{+} \\
& \mathrm{MnO}_{4}^{-} \rightarrow \mathrm{MnO}_{2}+2 \mathrm{O} \\
& \mathrm{MnO}_{4}^{-}+4 \mathrm{H}^{+} \rightarrow \mathrm{MnO}_{2}+2 \mathrm{O}+4 \mathrm{H}^{+} \\
& \mathrm{MnO}_{4}^{-}+4 \mathrm{H}^{+} \rightarrow \mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Step 3. Determine the net-charges of the two half reactions

$$
\begin{array}{ll}
\mathrm{NO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NO}_{3}^{-}+2 \mathrm{H}^{+} & (\text {net-charge }=+2) \\
\mathrm{MnO}_{4}^{-}+4 \mathrm{H}^{+} \rightarrow \mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O} & (\text { net-charge }=-3)
\end{array}
$$

Step 4. Make the net-charges of the two half reactions equivalent ($\mathrm{LCM}=6$)

$$
\begin{aligned}
& \left(\mathrm{NO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NO}_{3}^{-}+2 \mathrm{H}^{+}\right) \times 3 \\
& \left(\mathrm{MnO}_{4}^{-}+4 \mathrm{H}^{+} \rightarrow \mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}\right) \times 2
\end{aligned}
$$

Step 5. Combine the two half reactions

$$
3 \mathrm{NO}_{2}^{-}+3 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \rightarrow 3 \mathrm{NO}_{3}^{-}+6 \mathrm{H}^{+}+2 \mathrm{MnO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

Step 6. Simplify the overall chemical equation

$$
3 \mathrm{NO}_{2}^{-}+2 \mathrm{MnO}_{4}^{-}+2 \mathrm{H}^{+} \rightarrow 3 \mathrm{NO}_{3}^{-}+2 \mathrm{MnO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Step 7. Convert the overall chemical equation from acidic solution to basic solution

$$
\begin{aligned}
& 3 \mathrm{NO}_{2}^{-}+2 \mathrm{MnO}_{4}^{-}+2 \mathrm{H}^{+} \rightarrow 3 \mathrm{NO}_{3}^{-}+2 \mathrm{MnO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
& 3 \mathrm{NO}_{2}^{-}+2 \mathrm{MnO}_{4}^{-}+2 \mathrm{H}^{+}+2 \mathrm{OH}^{-} \rightarrow 3 \mathrm{NO}_{3}^{-}+2 \mathrm{MnO}_{2}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{OH}^{-} \\
& 3 \mathrm{NO}_{2}^{-}+2 \mathrm{MnO}_{4}^{-}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{NO}_{3}^{-}+2 \mathrm{MnO}_{2}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{OH}^{-} \\
& 3 \mathrm{NO}_{2}^{-}+2 \mathrm{MnO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{NO}_{3}^{-}+2 \mathrm{MnO}_{2}+2 \mathrm{OH}^{-}
\end{aligned}
$$

Example 3. In an ionic chemical equation
Given a biochemical equation: glucose $+\mathrm{NAD}^{+} \rightarrow$ pyruvate +NADH

Convert to $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{NAD}^{+} \rightarrow \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}_{3}{ }^{-}+\mathrm{NADH}$

Step 1. Divide into two half reactions

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}_{3}^{-}
$$

$$
\mathrm{NAD}^{+} \rightarrow \mathrm{NADH}
$$

Step 2. Balance all atoms in the two half reactions

$$
\begin{aligned}
& \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}_{3}^{-} \\
& \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow 2 \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}_{3}^{-} \\
& \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow 2 \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}_{3}^{-}+6 \mathrm{H}^{+} \\
& \mathrm{NAD}^{+} \rightarrow \mathrm{NADH} \\
& \mathrm{NAD}^{+}+\mathrm{H}^{+} \rightarrow \mathrm{NADH}
\end{aligned}
$$

Step 3. Determine the net-charges of the two half reactions

$$
\begin{array}{ll}
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow 2 \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}_{3}^{-}+6 \mathrm{H}^{+} & (\text {net-charge }=+4) \\
\mathrm{NAD}^{+}+\mathrm{H}^{+} \rightarrow \mathrm{NADH} & (\text { net-charge }=-2)
\end{array}
$$

Step 4. Make the net-charges of the two half reactions equivalent ($\mathrm{LCM}=4$)

$$
\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow 2 \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}_{3}^{-}+6 \mathrm{H}^{+}\right) \times 1
$$

$$
\left(\mathrm{NAD}^{+}+\mathrm{H}^{+} \rightarrow \mathrm{NADH}\right) \times 2
$$

Step 5. Combine the two half reactions

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+2 \mathrm{NAD}^{+}+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}_{3}^{-}+6 \mathrm{H}^{+}+2 \mathrm{NADH}
$$

Step 6. Simplify the overall chemical equation

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+2 \mathrm{NAD}^{+} \rightarrow 2 \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}_{3}^{-}+2 \mathrm{NADH}+4 \mathrm{H}^{+}
$$

Example 4. In a molecular chemical equation containing multiple sets of redox couples
Given an inorganic equation: $\mathrm{Pb}\left(\mathrm{N}_{3}\right)_{2}+\mathrm{Cr}\left(\mathrm{MnO}_{4}\right)_{2} \rightarrow \mathrm{~Pb}_{3} \mathrm{O}_{4}+\mathrm{NO}+\mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{MnO}_{2}$
Step 1. Divide into two half reactions

$$
\begin{aligned}
& \mathrm{Pb}\left(\mathrm{~N}_{3}\right)_{2} \rightarrow \mathrm{~Pb}_{3} \mathrm{O}_{4}+\mathrm{NO} \\
& \mathrm{Cr}\left(\mathrm{MnO}_{4}\right)_{2} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{MnO}_{2}
\end{aligned}
$$

Step 2. Balance all atoms in the two half reactions

$$
\begin{aligned}
& \mathrm{Pb}\left(\mathrm{~N}_{3}\right)_{2} \rightarrow \mathrm{~Pb}_{3} \mathrm{O}_{4}+\mathrm{NO} \\
& 3 \mathrm{~Pb}\left(\mathrm{~N}_{3}\right)_{2} \rightarrow \mathrm{~Pb}_{3} \mathrm{O}_{4}+18 \mathrm{NO} \\
& 3 \mathrm{~Pb}\left(\mathrm{~N}_{3}\right)_{2}+22 \mathrm{O} \rightarrow \mathrm{~Pb}_{3} \mathrm{O}_{4}+18 \mathrm{NO} \\
& 3 \mathrm{~Pb}\left(\mathrm{~N}_{3}\right)_{2}+22 \mathrm{O}+44 \mathrm{H}^{+} \rightarrow \mathrm{Pb}_{3} \mathrm{O}_{4}+18 \mathrm{NO}+44 \mathrm{H}^{+} \\
& 3 \mathrm{~Pb}\left(\mathrm{~N}_{3}\right)_{2}+22 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{~Pb}_{3} \mathrm{O}_{4}+18 \mathrm{NO}+44 \mathrm{H}^{+} \\
& \mathrm{Cr}\left(\mathrm{MnO}_{4}\right)_{2} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{MnO}_{2} \\
& 2 \mathrm{Cr}\left(\mathrm{MnO}_{4}\right)_{2} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{MnO}_{2} \\
& 2 \mathrm{Cr}\left(\mathrm{MnO}_{4}\right)_{2} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{MnO}_{2}+5 \mathrm{O} \\
& 2 \mathrm{Cr}\left(\mathrm{MnO}_{4}\right)_{2}+10 \mathrm{H}^{+} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{MnO}_{2}+5 \mathrm{O}+10 \mathrm{H}^{+} \\
& 2 \mathrm{Cr}\left(\mathrm{MnO}_{4}\right)_{2}+10 \mathrm{H}^{+} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{MnO}_{2}+5 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Step 3. Determine the net-charges of the two half reactions

$$
\begin{array}{ll}
3 \mathrm{~Pb}\left(\mathrm{~N}_{3}\right)_{2}+22 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{~Pb}_{3} \mathrm{O}_{4}+18 \mathrm{NO}+44 \mathrm{H}^{+} & (\text {net-charge }=+44) \\
2 \mathrm{Cr}\left(\mathrm{MnO}_{4}\right)_{2}+10 \mathrm{H}^{+} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{MnO}_{2}+5 \mathrm{H}_{2} \mathrm{O} & \text { (net-charge }=-10)
\end{array}
$$

Step 4. Make the net-charges of the two half reactions equivalent ($\mathrm{LCM}=220$)

$$
\left(3 \mathrm{~Pb}\left(\mathrm{~N}_{3}\right)_{2}+22 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{~Pb}_{3} \mathrm{O}_{4}+18 \mathrm{NO}+44 \mathrm{H}^{+}\right) \times 5
$$

$$
\left(2 \mathrm{Cr}\left(\mathrm{MnO}_{4}\right)_{2}+10 \mathrm{H}^{+} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{MnO}_{2}+5 \mathrm{H}_{2} \mathrm{O}\right) \times 22
$$

Step 5. Combine the two half reactions

```
\(15 \mathrm{~Pb}\left(\mathrm{~N}_{3}\right)_{2}+110 \mathrm{H}_{2} \mathrm{O}+44 \mathrm{Cr}\left(\mathrm{MnO}_{4}\right)_{2}+220 \mathrm{H}^{+} \rightarrow 5 \mathrm{~Pb}_{3} \mathrm{O}_{4}+90 \mathrm{NO}+220 \mathrm{H}^{+}+\)
\(22 \mathrm{Cr}_{2} \mathrm{O}_{3}+88 \mathrm{MnO}_{2}+110 \mathrm{H}_{2} \mathrm{O}\)
```

Step 6. Simplify the overall chemical equation

$$
15 \mathrm{~Pb}\left(\mathrm{~N}_{3}\right)_{2}+44 \mathrm{Cr}\left(\mathrm{MnO}_{4}\right)_{2} \rightarrow 5 \mathrm{~Pb}_{3} \mathrm{O}_{4}+90 \mathrm{NO}+22 \mathrm{Cr}_{2} \mathrm{O}_{3}+88 \mathrm{MnO}_{2}
$$

Example 5. In a molecular chemical equation containing uncertain oxidation numbers
Given a molecular chemical equation: $\mathrm{Fe}_{7} \mathrm{C}_{3}+\mathrm{HNO}_{3} \rightarrow \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+\mathrm{CO}_{2}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$
Step 1. Divide into two half reactions

$$
\begin{aligned}
& \mathrm{Fe}_{7} \mathrm{C}_{3}+\mathrm{HNO}_{3} \rightarrow \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+\mathrm{CO}_{2} \\
& \mathrm{HNO}_{3} \rightarrow \mathrm{NO}_{2}
\end{aligned}
$$

Step 2. Balance all atoms in the two half reactions

$$
\begin{aligned}
& \mathrm{Fe}_{7} \mathrm{C}_{3}+\mathrm{HNO}_{3} \rightarrow \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+\mathrm{CO}_{2} \\
& \mathrm{Fe}_{7} \mathrm{C}_{3}+\mathrm{HNO}_{3} \rightarrow 7 \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{CO}_{2} \\
& \mathrm{Fe}_{7} \mathrm{C}_{3}+21 \mathrm{HNO}_{3} \rightarrow 7 \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{CO}_{2} \\
& \mathrm{Fe}_{7} \mathrm{C}_{3}+21 \mathrm{HNO}_{3}+6 \mathrm{O} \rightarrow 7 \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{CO}_{2}+21 \mathrm{H}^{+} \\
& \mathrm{Fe}_{7} \mathrm{C}_{3}+21 \mathrm{HNO}_{3}+6 \mathrm{O}+12 \mathrm{H}^{+} \rightarrow 7 \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{CO}_{2}+21 \mathrm{H}^{+}+12 \mathrm{H}^{+} \\
& \mathrm{Fe}_{7} \mathrm{C}_{3}+21 \mathrm{HNO}_{3}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 7 \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{CO}_{2}+33 \mathrm{H}^{+} \\
& \mathrm{HNO}_{3} \rightarrow \mathrm{NO}_{2} \\
& \mathrm{HNO}_{3} \rightarrow \mathrm{NO}_{2}+\mathrm{O}+\mathrm{H}^{+} \\
& \mathrm{HNO}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{NO}_{2}+\mathrm{O}+\mathrm{H}^{+}+\mathrm{H}^{+} \\
& \mathrm{HNO}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Step 3. Determine the net-charges of the two half reactions

$$
\begin{array}{ll}
\mathrm{Fe}_{7} \mathrm{C}_{3}+21 \mathrm{HNO}_{3}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 7 \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{CO}_{2}+33 \mathrm{H}^{+} & (\text {net-charge }=+33) \\
\mathrm{HNO}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} & (\text { net-charge }=-1)
\end{array}
$$

Step 4. Make the net-charges of the two half reactions equivalent ($\mathrm{LCM}=33$)
$\left(\mathrm{Fe}_{7} \mathrm{C}_{3}+21 \mathrm{HNO}_{3}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 7 \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{CO}_{2}+33 \mathrm{H}^{+}\right) \times 1$
$\left(\mathrm{HNO}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}\right) \times 33$
Step 5. Combine the two half reactions

$$
\mathrm{Fe}_{7} \mathrm{C}_{3}+21 \mathrm{HNO}_{3}+6 \mathrm{H}_{2} \mathrm{O}+33 \mathrm{HNO}_{3}+33 \mathrm{H}^{+} \rightarrow 7 \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{CO}_{2}+33 \mathrm{H}^{+}+33 \mathrm{NO}_{2}+33 \mathrm{H}_{2} \mathrm{O}
$$

Step 6. Simplify the overall chemical equation

$$
\mathrm{Fe}_{7} \mathrm{C}_{3}+54 \mathrm{HNO}_{3} \rightarrow 7 \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{CO}_{2}+33 \mathrm{NO}_{2}+27 \mathrm{H}_{2} \mathrm{O}
$$

Example 6. In a complicated chemical equation
Given a molecular chemical equation (Stout, 1995; Ludwig, 1996; Hart, 1996; Nelson, 1997; Herndon, 1997)
$\left[\mathrm{Cr}\left(\mathrm{N}_{2} \mathrm{H}_{4} \mathrm{CO}\right)_{6}\right]_{4}\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]_{3}+\mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{MnSO}_{4}+\mathrm{CO}_{2}+\mathrm{KNO}_{3}+\mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$
Convert to $\mathrm{Cr}_{7} \mathrm{~N}_{66} \mathrm{H}_{96} \mathrm{C}_{42} \mathrm{O}_{24}+\mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{MnSO}_{4}+\mathrm{CO}_{2}+\mathrm{KNO}_{3}+\mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$
Convert to an ionic chemical equation (to eliminate spectator ions $\mathrm{K}^{+} ; \mathrm{SO}_{4}{ }^{2-}$)

$$
\mathrm{Cr}_{7} \mathrm{~N}_{66} \mathrm{H}_{96} \mathrm{C}_{42} \mathrm{O}_{24}+\mathrm{MnO}_{4}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{NO}_{3}^{--}+\mathrm{H}_{2} \mathrm{O}
$$

Step Divide into two half reactions
1.

$$
\begin{aligned}
& \mathrm{Cr}_{7} \mathrm{~N}_{66} \mathrm{H}_{96} \mathrm{C}_{42} \mathrm{O}_{24} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{CO}_{2}+\mathrm{NO}_{3}^{-} \\
& \mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}
\end{aligned}
$$

Step Balance all atoms in the two half reactions
2.

$$
\begin{aligned}
& \mathrm{Cr}_{7} \mathrm{~N}_{66} \mathrm{H}_{96} \mathrm{C}_{42} \mathrm{O}_{24} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{CO}_{2}+\mathrm{NO}_{3}^{-} \\
& 2 \mathrm{Cr}_{7} \mathrm{~N}_{66} \mathrm{H}_{96} \mathrm{C}_{42} \mathrm{O}_{24} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{CO}_{2}+\mathrm{NO}_{3}^{-} \\
& 2 \mathrm{Cr}_{7} \mathrm{~N}_{66} \mathrm{H}_{96} \mathrm{C}_{42} \mathrm{O}_{24}+565 \mathrm{O} \rightarrow 7 \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+84 \mathrm{CO}_{2}+132 \mathrm{NO}_{3}^{-}+192 \mathrm{H}^{+} \\
& 2 \mathrm{Cr}_{7} \mathrm{~N}_{66} \mathrm{H}_{96} \mathrm{C}_{42} \mathrm{O}_{24}+565 \mathrm{O}+1130 \mathrm{H}^{+} \rightarrow 7 \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+84 \mathrm{CO}_{2}+132 \mathrm{NO}_{3}^{-}+192 \mathrm{H}^{+}+1130 \mathrm{H}^{+} \\
& 2 \mathrm{Cr}_{7} \mathrm{~N}_{66} \mathrm{H}_{96} \mathrm{C}_{42} \mathrm{O}_{24}+565 \mathrm{H}_{2} \mathrm{O} \rightarrow 7 \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+84 \mathrm{CO}_{2}+132 \mathrm{NO}_{3}^{-}+1322 \mathrm{H}^{+} \\
& \mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{O} \\
& \mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{O}+8 \mathrm{H}^{+} \\
& \mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Step Determine the net-charges of the two half reactions
3.

$$
\begin{aligned}
& 2 \mathrm{Cr}_{7} \mathrm{~N}_{66} \mathrm{H}_{96} \mathrm{C}_{42} \mathrm{O}_{24}+565 \mathrm{H}_{2} \mathrm{O} \rightarrow 7 \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+84 \mathrm{CO}_{2}+132 \mathrm{NO}_{3}^{-}+1322 \mathrm{H}^{+} \\
&(\text {Net charge }=+1176) \\
& \mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}(\text { Net charge }=-5)
\end{aligned}
$$

Step Make the net-charges of the two half reactions equivalent (LCM=5880) 4.

$$
\begin{aligned}
& \left(2 \mathrm{Cr}_{7} \mathrm{~N}_{66} \mathrm{H}_{96} \mathrm{C}_{42} \mathrm{O}_{24}+565 \mathrm{H}_{2} \mathrm{O} \rightarrow 7 \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+84 \mathrm{CO}_{2}+132 \mathrm{NO}_{3}^{-}+1322 \mathrm{H}^{+}\right) \times 5 \\
& \left(\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}\right) \times 1176
\end{aligned}
$$

Step Combine the two half reactions
5.

$$
\begin{aligned}
& 10 \mathrm{Cr}_{7} \mathrm{~N}_{66} \mathrm{H}_{96} \mathrm{C}_{42} \mathrm{O}_{24}+2825 \mathrm{H}_{2} \mathrm{O}+1176 \mathrm{MnO}_{4}^{-}+9408 \mathrm{H}^{+} \\
& \rightarrow 35 \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+420 \mathrm{CO}_{2}+660 \mathrm{NO}_{3}^{-}+6610 \mathrm{H}^{+}+1176 \mathrm{Mn}^{2+}+4704 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Step Simplify the overall ionic equation and convert to the overall molecular equation 6.

$$
\begin{aligned}
& 10 \mathrm{Cr}_{7} \mathrm{~N}_{66} \mathrm{H}_{96} \mathrm{C}_{42} \mathrm{O}_{24}+1176 \mathrm{MnO}_{4}^{-}+2798 \mathrm{H}^{+} \rightarrow 35 \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+1176 \mathrm{Mn}^{2+}+420 \mathrm{CO}_{2}+660 \mathrm{NO}_{3}^{-}+1879 \mathrm{H}_{2} \mathrm{O} \\
& 10 \mathrm{Cr}_{7} \mathrm{~N}_{66} \mathrm{H}_{96} \mathrm{C}_{42} \mathrm{O}_{24}+1176 \mathrm{MnO}_{4}-+1176 \mathrm{~K}^{+}+1399 \mathrm{SO}_{4}{ }^{-2}+2798 \mathrm{H}^{+} \\
& \rightarrow 35 \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+70 \mathrm{~K}^{+}+1176 \mathrm{Mn}^{2+}+1176 \mathrm{SO}_{4}^{-2}+420 \mathrm{CO}_{2}+660 \mathrm{NO}_{3}^{-}+660 \mathrm{~K}^{+}+1879 \mathrm{H}_{2} \mathrm{O}+223 \mathrm{SO}_{4}^{-2}+446 \mathrm{~K}^{+} \\
& 10\left[\mathrm{Cr}\left(\mathrm{~N}_{2} \mathrm{H}_{4} \mathrm{CO}\right)_{6}\right]_{4}\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]_{3}+1176 \mathrm{KMnO}_{4}+1399 \mathrm{H}_{2} \mathrm{SO}_{4} \\
& \rightarrow 35 \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+1176 \mathrm{MnSO}_{4}+420 \mathrm{CO}_{2}+660 \mathrm{KNO}_{3}+223 \mathrm{~K}_{2} \mathrm{SO}_{4}+1879 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

6. Relationships among Net-Charge, Number of Transferred Electrons, and Change of Oxidation Numbers

6.1 Net-charge and Number of Transferred Electrons

The nature of redox reaction is an electron-transfer reaction. An ion-charge equation can be converted to an ion-electron equation by adding electrons to make the number of electrical charges even on both reactants' side and products' side. The quantitative relationship between net-charge and number of transferred electrons (Te^{-}) in a half reaction is demonstrated in the following examples.
In Example 1, the conversion is shown below:

$$
\text { ion-charge equation: } \quad \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
$$

net-charge $=\Sigma$ charge (product) $-\Sigma$ charge (reactant)
net-charge $=(+6)-(+12)=-6$
ion-electron equation: $\quad \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Te}^{-}(6$ electrons on the reactants' side $)=-6$
$\mathrm{Te}^{-}($gain of 6 electrons $)=-6$
net-charge $=\mathrm{Te}^{-}$
In Example 2 of " $\mathrm{NO}_{2}{ }^{-}+\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{NO}_{3}{ }^{-}+\mathrm{MnO}_{2}+\mathrm{OH}^{-}$", the half reaction of " $\mathrm{NO}_{2}{ }^{-}+2 \mathrm{OH}^{-} \rightarrow \mathrm{NO}_{3}{ }^{-}+2 \mathrm{H}_{2} \mathrm{O}^{\prime}$ " has a net-charge of +2 , which represents a loss of 2 electrons (" $\mathrm{NO}_{2}{ }^{-}+2 \mathrm{OH}^{-} \rightarrow \mathrm{NO}_{3}{ }^{-}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-"}$). The other half reaction of " $\mathrm{MnO}_{4}{ }^{-}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MnO}_{2}+4 \mathrm{OH}^{-}$" has a net-charge of -3 , which represents a gain of 3 electrons (" $\mathrm{MnO}_{4}{ }^{-}+2 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{e}^{-} \rightarrow \mathrm{MnO}_{2}+4 \mathrm{OH}^{-} "$).

6.2 Net-charge and Change of Oxidation Numbers

The mathematical equation of $\mathrm{Te}^{-}=\mathrm{n} \Delta \mathrm{ON}$ among Te^{-}, number of atoms with oxidation numbers change (n), and change of oxidation numbers ($\triangle \mathrm{ON}$) for one set of redox couple has been established (Yuen \& Lau, 2022b). In this article, the quantitative relationship between net-charge, n , and $\Delta \mathrm{ON}$ in a half reaction is shown as:

```
net-charge \(=\Sigma\) charge (product) \(-\Sigma\) charge (reactant)
net charge \(=\mathrm{Te}^{-}\)
\(\mathrm{Te}^{-}=\mathrm{n} \Delta \mathrm{ON}\)
net charge \(=\mathrm{n} \Delta \mathrm{ON}\)
```

By using Example 1 as a demonstration, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} / \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} / \mathrm{Cr}^{3+}$ are two individual sets of redox couples existing in two half reactions respectively.

```
net-charge \(=\Sigma\) charge (product) \(-\Sigma\) charge (reactant)
    \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+4 \mathrm{H}^{+}\)
    net-charge \(=\{(+4)-(0)\}=+4\)
    \(\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}\)
    net-charge \(=\{(+6)-(+12)\}=-6\)
net charge \(=\mathrm{n} \Delta \mathrm{ON}\)
\(\Delta \mathrm{ON}=\mathrm{ON}\) (product) - ON (reactant)
net charge \(=\mathrm{n}\{\mathrm{ON}(\) product \()-\mathrm{ON}(\) reactant \()\}\)
net charge \(=\mathrm{n}_{\mathrm{C}} \Delta \mathrm{ON}_{\mathrm{C}}\)
net charge \(=\mathrm{n}_{\mathrm{C}}\left\{\mathrm{ON}_{\mathrm{C}}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)-\mathrm{ON}_{\mathrm{C}}\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)\right\}\)
net charge \(=(2)\{(0)-(-2)\}=(2)(+2)=+4\)
net charge \(=n_{\mathrm{Cr}} \Delta \mathrm{ON}_{\mathrm{Cr}}\)
net charge \(=\mathrm{n}_{\mathrm{Cr}}\left\{\mathrm{ON}_{\mathrm{Cr}}\left(\mathrm{Cr}^{3+}\right)-\mathrm{ON}_{\mathrm{Cr}}\left(\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}\right)\right\}\)
net charge \(=(2)\{(+3)-(+6)\}=(2)(-3)=-6\)
```

When the net charges $=+4$, it represents an increase of oxidation number of two carbon atoms $\left(\Delta \mathrm{ON}_{\mathrm{C}}=+2 ; \mathrm{n}_{\mathrm{C}}=2\right)$ from $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\left(\mathrm{ON}_{\mathrm{C}}=-2\right)$ to $\mathrm{CH}_{3} \mathrm{COOH}\left(\mathrm{ON}_{\mathrm{C}}=0\right)$ whereas when net-charge $=-6$, it represents a decrease of oxidation number of two chromium atoms $\left(\Delta \mathrm{ON}_{\mathrm{Cr}}=-3 ; \mathrm{n}_{\mathrm{Cr}}=2\right)$ from $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\left(\mathrm{ON}_{\mathrm{Cr}}=+6\right)$ to $2 \mathrm{Cr}^{3+}\left(\mathrm{ON}_{\mathrm{Cr}}=+3\right)$.

6.3 Triangular Relationships among Net-charge, Te", and $\Delta O N$

All half redox reactions in Examples 1 to 3 contain one set of redox couple. The net-charge or Te^{-}of a redox couple can be counted by their ON (reactant), ON (product), and n. Their redox natures are shown in Table 1. The triangular relationships among net-charge, Te^{-}, and $\Delta \mathrm{ON}$ are demonstrated in Figure 1.

```
net charge = n \DeltaON = n {ON (product) - ON (reactant)}
```

$$
\mathrm{Te}^{-}=\mathrm{n} \Delta \mathrm{ON}=\mathrm{n}\{\mathrm{ON}(\text { product })-\mathrm{ON}(\text { reactant })\}
$$

Table 1. Net-charge, Te^{-}, and $\Delta \mathrm{ON}$ for defining half redox reactions

Figure 1. Triangular relationships among net-charge, Te^{-}, and $\Delta \mathrm{ON}$
With reference to Table 1 and Figure 1, the selected half reactions in Table 2 can be quantified, classified, and defined. Table 2. Net-charge, $\mathrm{Te}^{-}, \mathrm{n}$, and $\Delta \mathrm{ON}$ for quantifying and defining half redox reactions containing one set of redox couple

Balanced half ion-charge equation	Balanced half ion-electron equation	Net-charge	Te-	n	$\Delta \mathrm{ON}$	Type of reaction
$\mathrm{NO}_{3}{ }^{-}+4 \mathrm{H}^{+} \rightarrow \mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{NO}_{3}{ }^{-}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-} \rightarrow \mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}$	-3	-3	1	-3	reduction
$\mathrm{CO}_{3}{ }^{2}+2 \mathrm{H}^{+} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{CO}^{2}{ }^{2+}+2 \mathrm{H}^{+} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	0	0	1	0	non-redox
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+4 \mathrm{H}^{+}$	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$	+4	+4	2	+2	oxidation
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow 2 \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}_{3}{ }^{-}+6 \mathrm{H}^{+}$	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow 2 \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}_{3}^{-}+6 \mathrm{H}^{+}+4 \mathrm{e}^{-}$	+4	+4	6	+ $\frac{2}{2}$	oxidation
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2}+14 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{-2}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$	-6	-6	2	-3	reduction
$\mathrm{MnO}_{4}+4 \mathrm{H}^{+} \rightarrow \mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{MnO}_{4}{ }^{-}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-} \rightarrow \mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	-3	-3	2	-3	reduction

The relationships among the loss/gain of electrons, the increase/decrease of oxidation number, and the increase/decrease of charge are established in a half redox reaction. Regarding their triangular relationships, an example of oxidation is shown in Figure 2.

Figure 2. Triangular relationships among number of transferred electrons, change of oxidation numbers, and net-charge in a half oxidation reaction

6.4 Multiple Redox Couples in a Half Redox Reaction

By using Example 4 as a demonstration, the overall reaction of " $\mathrm{Pb}\left(\mathrm{N}_{3}\right)_{2}+\mathrm{Cr}\left(\mathrm{MnO}_{4}\right)_{2} \rightarrow \mathrm{~Pb}_{3} \mathrm{O}_{4}+\mathrm{NO}+\mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{MnO}_{2}$ " contains four sets of redox couples. In the first half oxidation reaction of " $3 \mathrm{~Pb}\left(\mathrm{~N}_{3}\right)_{2}+22 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Pb}_{3} \mathrm{O}_{4}+18 \mathrm{NO}+44 \mathrm{H}^{+}$", the resulting net-charge is +44 ($\mathrm{Te}^{-}=+44$; a loss of 44 electrons). In the second half reduction reaction of " $2 \mathrm{Cr}\left(\mathrm{MnO}_{4}\right)_{2}+10 \mathrm{H}^{+} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{MnO}_{2}+5 \mathrm{H}_{2} \mathrm{O}$ ", the resulting net charge equals -10 ($\mathrm{Te}^{-}=-10$; a gain of 10 electrons).
In the half oxidation reaction, there are two sets of redox couples shown as $\mathrm{Pb}^{2+} / \mathrm{Pb}_{3} \mathrm{O}_{4}$ and $\mathrm{N}_{3}-\mathrm{NO}$. The calculations of net-charges for them are shown as follows:

```
For \(3 \mathrm{~Pb}^{2+} \rightarrow \mathrm{Pb}_{3} \mathrm{O}_{4}\)
    net charge \(=n_{P b} \Delta O N_{P b}\)
    net charge \(=\mathrm{n}_{\mathrm{Pb}}\left\{\mathrm{ON}_{\mathrm{Pb}}\left(\mathrm{Pb}_{3} \mathrm{O}_{4}\right)-\mathrm{ON}_{\mathrm{Pb}}\left(\mathrm{Pb}^{2+}\right)\right\}\)
    net charge \(\left.=(3)\left\{\left(+\frac{8}{3}\right)-(+2)\right\}=(3)\left(+\frac{2}{3}\right)\right)=+2\)
```

For $6 \mathrm{~N}_{3}-\rightarrow 18 \mathrm{NO}$

$$
\begin{aligned}
\text { net charge } & =\mathrm{n}_{\mathrm{N}} \Delta \mathrm{ON}_{\mathrm{N}} \\
\text { net charge } & =\mathrm{n}_{\mathrm{N}}\left\{\mathrm{ON}_{\mathrm{N}}(\mathrm{NO})-\mathrm{ON}_{\mathrm{N}}\left(\mathrm{~N}_{3}^{-}\right)\right\} \\
\text {net charge } & =(18)\left\{(+2)-\left(-\frac{1}{3}\right)\right\}=(18)\left(+\frac{7}{3}\right)=+42 \\
\Sigma \text { net-charge (redox couple }) & =\text { net-charge }\left(3 \mathrm{~Pb}^{2+} \rightarrow \mathrm{Pb}_{3} \mathrm{O}_{4}\right)+\text { net-charge }\left(6 \mathrm{~N}_{3}-\rightarrow 18 \mathrm{NO}\right) \\
& =(+2)+(+42) \\
& =+44
\end{aligned}
$$

In another half reduction reaction, there are two sets of redox couples shown as $\mathrm{Cr}^{2+} / \mathrm{Cr}_{2} \mathrm{O}_{3}$ and $\mathrm{MnO}_{4}-/ \mathrm{MnO}_{2}$. The calculations of net-charges for them are shown as follows:

```
For \(2 \mathrm{Cr}^{2+} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{3}\)
    net charge \(=n_{\mathrm{Cr}} \Delta \mathrm{ON}_{\mathrm{Cr}}\)
    net charge \(=\mathrm{n}_{\mathrm{Cr}}\left\{\mathrm{ON}_{\mathrm{Cr}}\left(\mathrm{Cr}_{2} \mathrm{O}_{3}\right)-\mathrm{ON}_{\mathrm{Cr}}\left(\mathrm{Cr}^{2+}\right)\right\}\)
    net charge \(=(2)\{(+3)-(+2)\}=(2)(+1)=+2\)
For \(4 \mathrm{MnO}_{4}^{-} \rightarrow 4 \mathrm{MnO}_{2}\)
    net charge \(=\mathrm{n}_{\mathrm{Mn}} \Delta \mathrm{ON}_{\mathrm{Mn}}\)
    net charge \(=\mathrm{n}_{\mathrm{Mn}}\left\{\mathrm{ON}_{\mathrm{Mn}}\left(\mathrm{MnO}_{2}\right)-\mathrm{ON}_{\mathrm{Mn}}\left(\mathrm{MnO}_{4}-\right)\right\}\)
    net charge \(=(4)\{(+4)-(+7)\}=(4)(-3)=-12\)
\(\Sigma\) net-charge \((\) redox couple \()=\) net-charge \(\left(2 \mathrm{Cr}^{2+} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{3}\right)+\) net-charge \(\left(4 \mathrm{MnO}_{4}^{-} \rightarrow 4 \mathrm{MnO}_{2}\right)\)
\[
\begin{aligned}
& =(+2)+(-12) \\
& =-10
\end{aligned}
\]
```

The net-charge, n , and $\Delta \mathrm{ON}$ for multiple redox couples in Example 4 are summarized in Table 3. The mathematical relationships between a half reaction and multiple redox couples are demonstrated as follows:

```
net-charge \((\) half reaction \()=\Sigma\) net-charge (redox couple)
net-charge (half reaction) \(=\Sigma \mathrm{n} \Delta \mathrm{ON}\) (redox couple)
\(\mathrm{Te}^{-}(\)half reaction \()=\Sigma \mathrm{Te}^{-}\)(redox couple)
\(\mathrm{Te}^{-}(\)half reaction \()=\Sigma \mathrm{n} \Delta \mathrm{ON}\) (redox couple)
```

Table 3. Relationships among net-charge, n , and $\Delta \mathrm{ON}$ for multiple redox couples in a balanced redox reaction

Half reaction	Net-charge	Redox type	Redox couple	Net-charge	n	$\Delta \mathrm{ON}$Redox type	
$3 \mathrm{~Pb}\left(\mathrm{~N}_{3}\right)_{2}+22 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Pb}_{3} \mathrm{O}_{4}+18 \mathrm{NO}+44 \mathrm{H}^{+}$	+44	oxidation	$3 \mathrm{~Pb}^{2+} \rightarrow \mathrm{Pb}_{3} \mathrm{O}_{4}$	+2	3	$+\frac{2}{3}$	oxidation
			$6 \mathrm{~N}_{3} \rightarrow 18 \mathrm{NO}$	+42	18	$+\frac{-}{3}$	oxidation
$2 \mathrm{Cr}^{-}\left(\mathrm{MnO}_{4}\right)_{2}+10 \mathrm{H}^{+} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{MnO}_{2}+5 \mathrm{H}_{2} \mathrm{O}$	-10	reduction	$2 \mathrm{Cr}^{2+} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{3}$	+2	2	+1	oxidation
			$4 \mathrm{MnO}_{4} \rightarrow 4 \mathrm{MnO}_{2}$	-12	4	-3	reduction

With reference to Table 3, the half reduction reaction of " $2 \mathrm{Cr}\left(\mathrm{MnO}_{4}\right)_{2}+10 \mathrm{H}^{+} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{MnO}_{2}+5 \mathrm{H}_{2} \mathrm{O}$ " is quantified and defined by its net-charge of -10 (reduction), or summation of net-charges of $\mathrm{Cr}^{2} / \mathrm{Cr}_{2} \mathrm{O}_{3}$ (+2 ; oxidation) and $\mathrm{MnO}_{4} / \mathrm{MnO}_{2}$ (-12 ; reduction).

7. The Charge Model: A New Redox Model

The establishment of the electrical charge method for balancing redox reactions initiates and generalizes a new charge model. A comparison of the electron (e^{-}) model, the oxidation number (ON) model (IUPAC, 2019), and the charge model is shown in Table 4.

Table 4. Comparison of the electron model, the oxidation number model, and the charge model for redox reactions

Redox terms	Electron model	Oxidation number model	Charge model
oxidation	loss of e^{-}	ON increase	charge increase
reduction	gain of e^{-}	ON decrease	charge decrease
oxidizing agent	gain of e^{-}	ON decrease	charge decrease
reducing agent	loss of e^{-}	ON increase	charge increase

Net-charge can be a redox concept, which indicates charge increase or decrease in any balanced half ion-charge equation. With reference to Table 4, all ion-charge equations in Examples $1-6$ can be defined by the charge model and summarized in Table 5.

Table 5. Charge model for defining half redox reactions

Balanced ion-charge half equation	Charge	Type of redox reaction
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+4 \mathrm{H}^{+}$	$+4 ;$ increase	oxidation
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$	$-6 ;$ decrease	reduction
$\mathrm{NO}_{2}{ }^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NO}_{3}{ }^{-}+2 \mathrm{H}^{+}$	$+2 ;$ increase	oxidation
$\mathrm{MnO}_{4}{ }^{+}+4 \mathrm{H}^{+} \rightarrow \mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	$-3 ;$ decrease	reduction
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow 2 \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}_{3}{ }^{-}+6 \mathrm{H}^{+}$	$+4 ;$ increase	oxidation
$\mathrm{NAD}^{+}+\mathrm{H}^{+} \rightarrow \mathrm{NADH}^{2}$	$-2 ;$ decrease	reduction
$3 \mathrm{~Pb}\left(\mathrm{~N}_{3}\right)_{2}+22 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Pb}_{3} \mathrm{O}_{4}+18 \mathrm{NO}+44 \mathrm{H}^{+}$	$+44 ;$ increase	oxidation
$2 \mathrm{Cr}\left(\mathrm{MnO}_{4}\right)_{2}+10 \mathrm{H}^{+} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{MnO}_{2}+5 \mathrm{H}_{2} \mathrm{O}$	$-10 ;$ decrease	reduction
$\mathrm{Fe}_{7} \mathrm{C}_{3}+21 \mathrm{HNO}_{3}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 7 \mathrm{Fe}^{\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{CO}_{2}+33 \mathrm{H}^{+}}$	$+33 ;$ increase	oxidation
$\mathrm{HNO}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$	$-1 ;$ decrease	reduction
$2 \mathrm{Cr}_{7} \mathrm{~N}_{66} \mathrm{H}_{96} \mathrm{C}_{42} \mathrm{O}_{24}+565 \mathrm{H}_{2} \mathrm{O} \rightarrow 7 \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+84 \mathrm{CO}_{2}+132 \mathrm{NO}_{3}{ }^{-}+1322 \mathrm{H}^{+}$	$+1176 ;$ increase	oxidation
$\mathrm{MnO}_{4}+8 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$	$-5 ;$ decrease	reduction

8. Conclusion

The misconceptions among oxidation number, transferred electron, and electrical charge can cause difficulties for understanding redox reactions. This article studies the electrical charge method. The significance of this method is that it manifests both chemical and mathematical accuracy. It only requires simple mathematical manipulations for balancing, and then defining redox reactions. Instead of using the oxidation number and electron, it balances ion-charge equations and counts electrical charges. Due to this functionality, it works well for half redox reactions, including complicated cases where oxidation numbers are uncertain and where there are more than two sets of redox couples. Furthermore, the resulting net-charge can be applied to determine the number of transferred electrons in any balanced half redox equation. The electrical charge method also initiates and establishes a new charge model, which complements the conventional electron model and the oxidation number model for defining redox reactions.

References

Blakley, G. R. (1982). Chemical equation balancing - A general method which is quick, simple and has expected applications. Journal of Chemical Education, 59(9), 728-734. https://doi.org/10.1021/ed059p728
Brandriet, A., \& Bretz, S. L. (2014). Measuring meta-ignorance through the lens of confidence: Examining students' redox misconceptions about oxidation numbers, charge, and electron transfer. Chem. Educ. Res. Pract., 15, 729-746. https://doi.org/10.1039/C4RP00129J

Chang, R., \& Goldsby, K. A. (2013). Chemistry, McGraw-Hill International Edition, (11 ${ }^{\text {th }}$ ed.), USA. ISBN-13: 978-0077666958

Garnett, P. J., \& Treagust, D. F. (1992). Conceptual difficulties experienced by senior high school students of electrochemistry: Electric circuits and oxidation-reduction equations. Journal of Research in Science Teaching, 29(2), 121-142. https://doi.org/10.1002/tea.3660290204
Goes, L. F., Nogueira, K., \& Fernandez, C. (2020). Limitations of teaching and learning redox: A systematic review. Problems of Education in the 21st Century, 78(5), 698-718. https://doi.org/10.33225/pec/20.78.698
Hart, D. M. (1996). Redox Challenges. Journal of Chemical Education, 73(10), A226. https://doi.org/10.1021/ed073pA226.1
Herndon, W. C. (1997). On balancing chemical equations: past and present - A critical review and annotated bibliography. Journal of Chemical Education, 74(11), 1139-1362. https://doi.org/10.1021/ed063p978

IUPAC (2019). Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). Online version (2019-) created by S. J. Chalk. ISBN 0-9678550-9-8. https://doi.org/10.1351/goldbook
Kolb, D. (1979). More on balancing equations. Journal of Chemical Education, 56(3), 181-184. https://doi.org/10.1021/ed056p181
Ludwig, O. G. (1996). On balancing "Redox Challenges". Journal of Chemical Education, 73(6), 507. https://doi.org/10.1021/ed073p507
Nelson, R. S. (1997). Redox Challenges. Journal of Chemical Education, 74(11), 1256. https://doi.org/10.1021/ed074p1256.1
Olson, J. A. (1997). An analysis of the algebraic method for balancing chemical reactions. Journal of Chemical Education, 74(5), 538-542. https://doi.org/10.1021/ed074p538
Porter, S. K. (1985). How should equation balancing be taught? Journal of Chemical Education, 62(6), 507-508. https://doi.org/10.1021/ed062p507
Risteski, I. B. (2011). New discovered paradoxes in theory of balancing chemical equation. Materials and Technologies, 45(6), 503-522. https://bloqm.files.wordpress.com/2015/03/risteski2011.pdf

Stout, R. (1995). Redox challenges - Good times for puzzle fanatics. Journal of Chemical Education, 72(12), 1125. https://doi.org/10.1021/ed072p1125
Tro, N. J. (2020). Chemistry-A Molecular Approach, $5^{\text {th }}$ Edition, Pearson, USA. ISBN-13: 9780136874201
Yuen, P. K., \& Lau, C. M. D. (2022a). H-atom and O-atom methods: from balancing redox reactions to determining the number of transferred electrons. Chemistry Teacher International, 4(3), 207-220. https://doi.org/10.1515/cti-2021-0028
Yuen, P. K., \& Lau C. M. D. (2022b). From balancing redox reactions to determining change of oxidation numbers. Journal of College Science Teaching, 51(3), 22-26.
https://www.nsta.org/journal-college-science-teaching/journal-college-science-teaching-januaryfebruary-2022/bala ncing

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

