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Abstract 

Ionic liquids (ILs) are developing as potential solvents in lignocellulose solvation, which enables cellulase accessibility 

into the substrate. Nevertheless, ILs could result in enzyme deactivation because of the high polarity. Therefore, 

developing a system of ILs-compatible cellulase (IL-E) to promote lignocellulose conversion into sugars is a challenge 

in ILs applications. This study used an IL-E to attain high conversion yield of sugars from oil palm empty fruit bunch 

(EFB). Cellulase (Tr-Cel) from Trichoderma reesei was stable in the ILs, 1-ethyl-3-methyl imidazolium diethyl 

phosphate [EMIM]DEP and choline acetate [Cho]OAc. The inhibition and deactivation of cellulase were evaluated 

using the model substrate, carboxymethyl cellulose (CMC) and EFB as a lignocellulosic material to assess the 

hydrolytic activity. The enzyme kinetics revealed that [Cho]OAc acted as a noncompetitive inhibitor. Additionally, 

[EMIM]DEP may not be considered as an inhibitor as it increases the Vmax and does not significantly affect the KM. In 

both cases, the study proved that IL did not result in a severe loss of cellulase activity, which is a promising outcome for 

one-pot hydrolysis of lignocellulosic materials. 
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1. Introduction 

It is prominent that lignocellulose is one of the most beneficial and important renewable biomaterials which offers a 

sustainable substitute for fossil fuels resources (Varanasi et al., 2012) as it consists the desirable carbohydrates, cellulose 

and hemicellulose (Mamman et al., 2008). Oil palm empty fruit bunch (EFB) is the prime solid waste after oil 

extraction. Holocellulose contributes to 60-70% of the total weight of EFB. A biological conversion is required to utilize 

these components, however, as a result of the complex structure, high cost and lengthy treatment are required for the 

processing (Alonso, Bond, & Dumesic, 2010). Diverse approaches have been implemented in the pretreatment of 

lignocellulose including chemical (Pellera & Gidarakos, 2018) such as acidic (Harun & Danquah, 2011) and alkali 

treatment (Zainan, Alam, & Al-Khatib, 2013), physical or mechanical treatment (Barakat et al., 2014), physicochemical 

(Brodeur et al., 2011) and biological methods (Balat, 2011) using microbes (Alam, Kabbashi, & Hussin, 2009; Galbe & 

Zacchi, 2007). Nevertheless, these methods are associated with various disadvantages as they consume high energy, 

might be toxic, or may be pricey (Muhammad et al., 2014; Yang et al., 2010). More drawbacks include disposal 

challenge, cost of recovery and slow rate of reaction (Balat, 2011). In contrast to chemical hydrolysis, enzymatic 

hydrolysis is an eco-friendly substitute (Salihu & Alam, 2015). Though, conventional solvents could result in loss of 

enzyme activity and are associated with the environmental threats which directed the concern towards green solvents. In 

this context, ionic liquids (ILs) are good solvents for complex carbohydrates and offer many attractive properties such 

as stabilizing enzymes (Elgharbawy, Alam, Moniruzzaman, & Goto, 2016; Fu, Mazza, & Tamaki, 2010). Wang et al. 

(Wang, Radosevich, Hayes, & Labbé, 2011) reported that some cellulases were stabilized in IL when examined in 

[EMIM]OAc (15%) in the saccharification process of yellow poplar biomass, and [EMIM]OAc (10-20%) for enzymatic 

hydrolysis of switchgrass (Shi et al., 2013). Additionally, many studies have reported cellulases stability in systems that 
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are IL-E compatible, for instance, cholinium-based ILs (Ninomiya et al., 2015). Furthermore, single-step hydrolysis is 

the desired process where IL pretreatment of lignocellulose is integrated with enzymatic hydrolysis for bioethanol 

production, as it eliminates the regeneration stage of the cellulose.  

Two main paths may demonstrate the enzyme-catalyzed hydrolysis upon biomass IL-pretreatment, which include the 

regeneration of cellulose from the IL solution, to undergo enzymatic hydrolysis (Tan, Lee, & Mohamed, 2011; Zhao et 

al., 2009). The second path is regarded as a single-step process where the hydrolysis is directly performed in the IL in a 

water-based buffer solution by cellulase enzymes (Gunny, Arbain, Edwin Gumba, Jong, & Jamal, 2014). Various ILs 

showed promising results in lignocellulose structure modification and lignin removal, such as choline acetate [Cho]OAc 

(Asakawa, Kohara, Sasaki, Asada, & Nakamura, 2015). A group of researchers have tried to use IL-surfactant 

([BMIM]Cl+ PEG-8000) to facilitate sugarcane bagasse dissolution using both cellulase and xylanase, which are 

generated in house from Aspergillus assiutensis VS34. The bagasse was pretreated at 90 °C for 2 h, followed by 

enzymatic hydrolysis with both enzymes. Ninety percent of the activity was maintained in the IL (Sharma, Nargotra, & 

Bajaj, 2019). This shows the ability of IL to cater for compatibility with some enzymes (Elgharbawy, Alam, 

Moniruzzaman, et al., 2016; Ibrahim, Moniruzzaman, Yusup, & Uemura, 2015). On the contrary, Cellic® Htec2 

cellulase acting on CMC was deactivated in the presence of [BMIM]Cl but without surfactant, showing that [BMIM]Cl 

is a competitive inhibitor (Nemestóthy et al., 2017).  

2. Method 

2.1 Materials 

Sime Darby Plantation, Malaysia provided the oil palm empty fruit bunch (EFB) raw material used in this study. 

Cellulase (Tr-Cel) from Trichoderma reesei ATCC 26921, lyophilized powder (≥1 unit/mg solid) was purchased from 

Sigma-Aldrich, USA. Choline acetate [Cho]OAc was synthesized as reported in the previous publication (Elgharbawy, 

Alam, Jamal, Kabbashi, & Moniruzzaman, 2016). 1-Ethyl-3-methyl imidazolium diethyl phosphate [EMIM]DEP was 

obtained from Merck, Germany.  

2.2 Determination of Kinetics Parameters of Tr-Cel with CMC and EFB 

Tr-Cel was incubated for 60 min in various concentrations of ILs (10, 20, 40, 60, 80 and 100%). After incubation, the 

solution was subjected to cellulase activity assay using CMC as described by Salvador et al. (Salvador, Santos, & 

Saraiva, 2010).  

Dry EFB (500 mg) was weighed in a glass vial, and following IL addition the mixture was incubated for 60 min at 

90 °C, cooled to room temperature and a buffer solution (sodium citrate buffer pH 4.8±0.2, 50 mM) was added to the 

tubes to attain a solution with 10% IL. Lastly, the cellulase (Tr-Cel) was added to start the enzymatic hydrolysis.  

2.2 Determination of Kinetics Parameters of Tr-Cel with CMC and EFB in IL 

The kinetic parameters of Tr-Cel were studied by monitoring the IL-E at various concentrations with 500 mg of both 

CMC and EFB in 50 mM sodium citrate buffer (60 min, 50 °C, pH 4.8±0.2) and different loading of the enzyme (10, 20, 

30, 40 and 50 units). The linear equation of Michaelis-Menten was used to calculate the parameters (Vmax and KM), 

graphically based the velocity (V) of the enzyme-catalyzed reaction, at different substrate concentrations [S]. The 

enzyme activity was fixed at 50 units (50 FPU g-1) while varying the loading of substrates 100, 300, 500, 700 and 1000 

mg and then measuring the concentration of sugar.  

CMC substrate was prepared at these concentrations: 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 8.0, 10.0 g/L. The initial enzyme 

velocity was assessed using cellulase activity assay method (DNS reagent) (Zhang, Hong, & Ye, 2009). The reciprocal 

of substrate concentration 1/[S] (X-axis) and the reciprocal of initial enzyme velocity 1/V as (Y-axis), were plotted to 

obtain the Lineweaver-Burk double reciprocal graph. Lineweaver-Burk model was used as it is a common tool to 

determine important terms in enzyme kinetics, such as Vmax and KM.  

For EFB substrate, enzymatic activity was analyzed using linear Michaelis-Menten model to determine the kinetics 

parameters Vmax and KM. The model with the largest determination coefficient (R2) was regarded as the best fitted to 

describe the enzyme kinetics. 

3. Results and Discussion  

3.1 Determination of Kinetics Parameters of Tr-Cel with CMC and EFB 

The main function of an enzyme is to accelerate the rate of reaction. Kinetic parameters are essential to the understanding 

of enzyme activity and function. Figure 1 shows the kinetic models of Tr-Cel using CMC as a model substrate for the 

linear Michaelis-Menten model. The kinetic parameters for each linear model are summarized in Table 1. 
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Table 1. Kinetics parameters for Tr-Cel with two different substrates: EFB and CMC 

Model KM (mg. mL-1) Vmax (mg. mL-1 min-1) R2 

              Substrate  EFB CMC EFB CMC EFB CMC 

Lineweaver-Burk  0.184 0.045 11.19 68.49 0.9592 0.9059 

Hanes-Woolf 1.00 1.00 1.345 9.65 0.9961 0.9209 

Eadie-Hofstee 48.38 18.18 29.63 37.43 0.6058 0.8736 

The value of KM mainly measures the enzyme affinity to a substrate. The smaller the KM value, the greater the affinity of 

the enzyme for its substrate while the Vmax parameter is an indication of the maximum velocity once the substrate occupies 

all the active sites of the enzyme. Usually, most of the KM values are expressed in mM (mmol. L-1) and the value of KM is 

converted from mg. mL-1 to mM or µM using the molecular weight of the substrate. However, the compared substrate 

(EFB) does not have a well-recognized molecular weight; hence, the values were expressed in mg mL-1.  

Comparing the KM and Vmax values in case of CMC, using Hanes-Woolf and Lineweaver-Burk models, a higher value of 

Vmax was obtained when the enzyme was modelled with Lineweaver-Burk (68.49 mg.mL-1.min-1). Likewise, KM value 

was the lowest when the enzyme was modelled with Lineweaver-Burk. Eadie-Hoftsee model did not show a good fit for 

the enzyme with either substrate. The plots can be seen in Figure 1.  

In comparison, the EFB showed a good fit with both Lineweaver-Burk and Hanes-Woolf, although the values of KM and 

Vmax were more comparable with Lineweaver-Burk. It can also be seen that KM resulted in the same values in both cases 

when modelling the enzyme with Hanes-Woolf; therefore, Lineweaver-Burk was used to observe the contrast trend. The 

values varied with EFB as the enzyme fitted into both Lineweaver-Burk and Hanes-Woolf models with high R2 values. 

It can be seen that the KM obtained was similar in the Hanes-Woolf model for both substrates although Vmax was greater 

with CMC.  
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Figure 1. Kinetic model of (a) Michaelis-Menten hyperbolic plot, (b) Lineweaver-Burk plot, (c) Hanes-Woolf, (d) 

Eadie-Hofstee for in-house produced cellulase (Tr-Cel) using CMC as the substrate model, [S]= substrate concentration 

(mg. mL-1), V= reaction velocity (mg. mL-1 min-1). R2= coefficient of determination 

(b) 

(a) 

(d) 

(c) 

(c) 
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In this case study, it appears that the enzyme has more affinity towards CMC compared to EFB. This, to a great extent, 

could be explained as CMC has always been a model substrate for cellulases, and is considered as a good substrate 

(Wang, Post, Mayes, Frerichs, & Sindhu, 2012).  The lower KM might also be related to the complex structure of the 

lignocellulosic material. Adsorption of lignin to the surface of cellulase might occur in the case of EFB which occupies 

the active site in the absence of the IL (Noori & Karimi, 2016).  

3.2 Determination of Kinetics Parameters of Tr-Cel with CMC and EFB in IL 

Pretreatment with IL has been regarded as a promising approach that promotes the lignocellulose saccharification; 

nevertheless, the presence of IL in the medium could inhibit the function of cellulase. Hence, an investigation is 

required on the occurrence of inhibition by measuring both the reaction velocity and enzyme affinity to the substrate. 

Consequently, the kinetic parameters were assessed in the presence and in the absence of the ILs to describe the IL 

impact on the activity of cellulase during the one-step hydrolysis. The inhibition trend (Figure 2 and Figure 3) shows the 

pattern of inhibition of both [EMIM]DEP and [Cho]OAc, on the cellulase for the 60 min hydrolysis of CMC and EFB.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Lineweaver-Burk plot for the inhibition trend of cellulase in [EMIM]DEP, [Cho]OAc compared to buffer 

solution using carboxymethyl cellulose (CMC) as the substrate for hydrolysis. [S]= substrate concentration (mg. mL-1), 

V= reaction velocity (mg. mL-1 min-1). Conditions: pretreatment: 90 °C, 60 min; enzymatic hydrolysis: pH 4.8±0.2, 50 

mM, 50 °C, 60 min, 50 FPU. g-1) 
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Figure 3. Lineweaver-Burk plot for the inhibition trend of cellulase in [EMIM]DEP, [Cho]OAc compared to buffer 

solution using EFB as the substrate for hydrolysis. [S]= substrate concentration (mg mL-1), V= reaction velocity (mg. mL-1 

min-1) 

ILs resemble the mixed inhibitors where it is thought to occur when the inhibitor (IL) binds at a separate site other than the 

active site to either the enzyme-substrate complex or free enzyme (Figure 4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Illustration of mixed non-competitive inhibition in the cellulase-IL system 

We concluded that the inhibitor fits reversible, mixed inhibition in which is recognized when the KM and Vmax are both 

affected. It can be seen that Vmax is reduced as in noncompetitive inhibition whereas KM increased slightly, which can be 

described by mixed inhibition. The maximum velocity decreased when the hydrolysis was conducted in choline acetate 

[Cho]OAc, however, KM slightly increased, which points to less affinity towards the substrate. As calculated from the 

linear plot, KM rose from 0.045 to 0.056 mg. mL-1 while Vmax got reduced from 68.49 to 59.88 mg. mL-1 min-1. Therefore, 

it supports the hypothesis of mixed inhibition as both KM and Vmax changed. In the presence of [EMIM]DEP, the velocity 

of cellulase slightly increased to 70.42 mg. mL-1 min-1 when KM was not significantly affected.  
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The reaction sequence can be written as in Scheme 1 (Henderson, 1972): 

 

 

 

 

 

 

 

 

Scheme 1. Enzyme reaction sequence in the presence of the inhibitor (IL) (Henderson, 1972) 

At equilibrium, KM can be expressed as: 
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As enzyme concentration is not changing; hence, it can be stated as: 
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By substituting concentrations with the corresponding equilibrium terms and rearranging Equation 5:  
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moreover,  [  ] can be expressed as Vmax, and the Equation (3.8) turns out to be: 
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The equation could be arranged in linear relation (Gonze & Kaufman, 2016): 
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In this case, the mixed inhibition could be expressed through the modifications: 
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Where Ks is the term describing enzyme dissociation constant (from E.S or E.I). 

The new values of KM after the inhibition were 0.056 mg. mL-1 in [Cho]OAc system and 0.0443 mg. mL-1 in the case of 

[EMIM]DEP with CMC. The value of Ks was 22.22 min-1, Ks’ is 17.86 min-1, and since the concentration of the presumed 

inhibitor (IL), is known throughout the reaction, KI was calculated at 0.409 min-1. The catalytic efficiency (kcat/ KM) 

decreased from 30.71 to 24.46 min-1 mg-1 ml-1 in the presence of [Cho]OAc and increased to 31.86 min-1 mg-1 mL-1 in 

[EMIM]DEP. The maximum kcat/ KM value of an enzyme is 108-109 M-1s-1, and it is an indicator of the enzyme catalytic 

efficiency.  

It was observed in this study that the activity reduced IL concentration increases (Figure 5), which indicated that the 

enzyme affinity towards the substrate decreased. Nonetheless, though the [Cho]OAc resulted in slight inhibition, the KM 

and Vmax, did not change remarkably.  
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Figure 5. Effect of various concentrations of ILs [EMIM]DEP, [Cho]OAc on the cellulase activity compared to the buffer 

solution. CTRL= control 

The changes were different in the presence of [EMIM]DEP as it slightly increased the Vmax and did not significantly affect 

the affinity. It was reported that higher concentration of the substrate could promote surface accessibility and cellulases 

binding sites, hence, preventing inactivation effect. This could be able to explain the hydrolysis continuation for 48 h and 

the production of sugars regardless of the IL presence in the hydrolysis vessel (Elgharbawy et al., 2016). The slight impact 

of IL could also be explained by binding of IL anion to the lignin instead of the enzyme and therefore, the more free 

enzyme would be available which rescues the inactivation effect. Moreover, cellulase is surrounded by water molecules in 

the aqueous-IL system which could reduce the inhibition caused by IL or lignin (Zhao, 2016) as illustrated in Figure 6 

which also explained the pattern in this study. It can be observed that [Cho]OAc has a slight inhibitory effect if compared 

to [EMIM]DEP. This could be a result of the composition of the IL. [Cho]OAc consists of cholinium cations and acetate 

anions, and the former is derived from choline chloride, which is part of the vitamin-B complex, the latter is derived from 

intercellular metabolites. [Cho]OAc is a completely bioderived IL, which is more biocompatible, compared to 

imidazolium-based IL, [EMIM]DEP. This might also explain the behavior of the enzyme when water is added in both ILs 

(Asakawa et al., 2015). Enzymes usually require a certain amount of water in order to function in a particular reaction 

(Kohno, Saita, Murata, Nakamura, & Ohno, 2011).  

It was inferred by Engel et al. that the activity of T. reesei cellulase reduced to 15-30% in IL concentration of 10% (Engel 

et al., 2010). Their group have investigated the [DMIM]DMP effect on individual cellulases and showed that the 

β-glucosidase, cellobiohydrolase and endoglucanase retained 34%, 60%, and 63% of their relative activities in 10% 

[DMIM]DMP (Engel, Krull, Seiferheld, & Spiess, 2012). Furthermore, Hu et al. (2016) showed that low concentration of 

[EMIM]DEP has a reversible inactivation on endoglucanases, and they supported that by SDS-PAGE, however, 

irreversible effect took place at a high concentration of the IL (more than 40%). 

  

 

 

 

 

 

 

 

 

Figure 6. Illustration of interactions of the enzyme in acetate-containing IL: (a) between acetate anion with water 

molecules in diluted IL solution, and (b) between acetate anion and enzyme molecule in concentrated IL. Adapted from 

(Zhao, 2016) with permission from Wiley 
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Some hydrolases, such as certain lipases and chymotrypsin, retained their activity in pure IL or might show better 

enantioselectivity, thermal stability or selectivity, compared to traditional solvents. Nonetheless, few studies have 

reported tolerating cellulases that could withstand high concentrations IL (Hu et al., 2016). Furthermore, to date, the 

activity of commercial cellulases in [EMIM]OAc, [BMIM]Cl, [DMIM]DMP and [AMIM]Cl were reportedly used as 

pretreatment of cellulose.  

The kinetic constants for endoglucanase using different substrates have been documented. Vmax values were 18, 46 and 37 

µmol-1. mg protein-1 with CMC, β-glucan and xyloglucan, respectively. The value of KM was 13.3 mg. mL-1, 3.5 mg. mL-1 

and 5.66 mg. mL-1 with the same substrates order. The value of kcat was between 5.6 and 11.5 min-1, and kcat/KM was 

between 42 to 400. Reports have also revealed that endoglucanases vary in their affinity towards polysaccharides as 

supported by the observed values of KM (Kaur, Oberoi, & Chadha, 2015). Glucose and [EMIM]OAc acted as 

uncompetitive inhibitors for β-glucosidase (BG), which in this context indicated the probability of IL binding to the E-S 

complex. Most of the reported BG(s) are competitively inhibited by glucose; however, a non-competitive inhibition was 

also reported. Cellulase enzyme from Bacillus sp., MSL2 strain, from rice paddy field soil (48 kDa) retained 77% of its 

activity in [EMIM]OAc. The kinetic parameters of the purified enzyme revealed that the Vmax was 1000 μM. min-1, while 

KM value was 0.8 mg. mL-1 (Sriariyanun, Tantayotai, Yasurin, Pornwongthong, & Cheenkachorn, 2016). The types and 

concentration of inhibitors released throughout the pretreatment of lignocellulose depend on the composition of biomass, 

reaction conditions and pretreatment method.  

It can be concluded that IL systems with a small concentration of certain ions can contribute to supernatural alteration in 

enzyme enantioselectivity or activity. Hence, ILs may be precisely adjusted for anticipated applications in biocatalysis. 

For instance, chloride anions are not suitable for cellulase stability while acetate and phosphate showed good 

compatibility to a certain level. Selecting the appropriate IL for the enzymatic reaction is one of the most important key 

factors for IL-enzyme catalyzed reactions.  

4. Conclusions 

The IL presence in the hydrolysis vessel did not result in irreversible inhibition. Promising activities were recorded in both 

[EMIM] DEP and choline acetate [Cho]OAc. The kinetic study of the one-step hydrolysis showed that the ILs result in a 

non-competitive mixed inhibition in which both Vmax and KM and are changed compared to the non-IL reaction. In both 

cases, the study proved that IL did not result in a severe loss of the activity of cellulase as Vmax was not dropped 

dramatically nor the affinity. The study showed that a small amount of water is necessary in order to prevent the inhibition 

and activate the cellulase in the reaction medium that contains IL. More studies in terms of molecular simulation and 

modelling are required to generate a clear understanding of the cellulase behavior in ILs.  
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