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Abstract 

Malmquist Productivity Index (MPI) is widely used method to measure the productivity changes of Decision 
Making Units (DMUs) between two time periods. Although the conventional MPI requires accurate data, in 
many real life conditions the input and output data of DMUs usually involve uncertainty and only lower and 
upper bounds of data could be obtained. Grey (number) theory is one of the theories which are used for 
describing uncertainty. A grey number, with both a lower and upper bounds, is called an interval grey number. 
The purpose of this paper is to measure the productivity changes under uncertainty conditions based on the 
interval grey number theory. In the paper, new grey MPI models are proposed to measure productivity changes 
of DMUs which have interval data. A numerical example is provided to illustrate the application of the proposed 
models. Results of the numerical example show us that the proposed models are easy to handle and applicable 
for real life problems. 
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1. Introduction 

Data Envelopment Analysis (DEA) is a nonparametric method to measure the relative efficiencies of enterprises 
(Decision Making Units-DMUs) which use multiple inputs in order to produce multiple outputs. In the efficiency 
measurement of DEA, different production functions are defined for each DMU and DMUs that are producing 
maximum output(s) by using minimum input(s) constitute the efficiency frontier by enveloping all possible 
producible input-output combinations. Efficiency values of DMUs are measured according to the distance to 
efficiency frontier. DEA can be used to calculate the relative efficiency measurement at a specific time period. 

Fare et al. (1992, 1994) developed DEA based MPI which measures the productivity change of DMUs over time. 
The Malmquist Index was first suggested by Malmquist (1953) as a quantity index to be used in the analysis of 
consumption of inputs. Fare et al. (1992) combined ideas on the measurement of efficiency from Farrell (1957) 
and the measurement of productivity from Caves et al. (1982) to construct a MPI directly from input and output 
data using DEA (Chen & Ali, 2004). 

Although conventional MPI requires all inputs and outputs of exact values of DMUs, in reality the data of DMUs 
often include ranges (interval data) and implies uncertainty. Grey system theory which is developed by Deng 
(1982) is a mathematical method to solve problems containing interval data which are named as grey numbers. 
Although there are studies in the literature of the measurement of MPI with interval data by using fuzzy set 
theory, a study using grey system theory/numbers has not been reached. 

The aim of this paper is to propose grey MPI models for DMUs with interval grey data. In the paper, interval 
grey input and output data are whitenized by using equal weight whitenization and equal weight mean 
whitenization functions. 

The rest of the paper is presented as follows: The literature is reviewed in section 2. MPI method and distance 
function formulations are described briefly in section 3. Section 4 overviews grey system theory as well as some 
fundamental definitions and functions on grey numbers. New grey MPI approaches are introduced in section 5. 
In section 6, a numerical example is provided to illustrate proposed models. Finally, conclusions are drawn in the 
last section. 
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2. Literature Review 

Under uncertainty conditions, measurement of MPI has not been studied extensively in the literature and in all 
the studies conducted; fuzzy set theory is applied to describe uncertainty. From the optimistic and pessimistic 
viewpoint, Jahanshahloo et al. (2006) measured upper and lower bounds of MPIs by using α-level based 
approach. To apply the model, the number of distance function model must be as follows: number of DMUs*8 
for each α-level. In this respect, the application of the model takes a long time. Jahanshahloo et al. (2007) 
proposed a model in which fuzzy data is transformed to crisp data by using linear ranking function. Lotfi et al. 
(2009) developed the distance function model by using ranking of L-R fuzzy data based on the comparison of 
α-level. In order to apply the model, for each α-level, the number of distance function model must be set up as 
follows: number of DMUs*4. Emrouznejada et al. (2011) developed a model that not only for measuring MPI, 
but also measuring the change in the level of profit. In this study, the price data of input and output that is fuzzy 
is applied. The model provides the maximum value of distance functions for any α-level. Hatami-Marbini, 
Tavana & Emrouznejad (2012); developed a model that distance functions are established as primal DEA models. 
In this proposed model, the numbers 0 and 1 are taken as fuzzy. In the establishment of the model α-level and 
variable transformation are used. Payan and Sharifi (2013) used the credibility theory as a basis in their studies. 
In the study, the objective function and fuzzy constraints are defined as a fuzzy case. The fuzzy DEA models are 
first defuzzied by applying the credibility theory. The obtained results are used for calculating MPI on fuzzy 
data. 

3. Malmquist Productivity Index 

MPI, which is defined in terms of distance functions, measures the productivity change of a DMU between two 
time periods. The distance function can be presented as an input distance function or an output distance function. 
If xt denotes an input vector and yt an output vector at period t, then the production technology is the set St. Input 
distance function at period t is defined as (Fare et al., 1992) , : , : ,                         (1) 

while the output distance function is expressed as follows (Fare et al., 1994) , : , : , .                       (2) 

There is a relation D y , x D x , y  between input and output distance functions. Input distance 
function measures the largest possible contraction of xt, while output distance function measures the reciprocal 
of the maximum proportional expansion of the output vector yt.  

As in the distance functions, MPI can be calculated input or output based as well. Output based MPI between 
periods t and t+1 can be evaluated with the following equation (Fare et al., 1994): 

M ,,
	 , , , ,

	
          (3) 

MPI bases the reason of productivity changes on the efficiency change and technical change. Efficiency change 
measures relative technical efficiency at periods t and t +1, that is, whether production is getting closer or farther 
from the efficiency frontier. Technical change is the geometric mean of two productivity indexes and measures 
the shift in the efficiency frontier between periods t and t+1. After calculations Mo can take three different values. 
Mo > 1 denotes productivity growth, while Mo < 1 indicates productivity decline, and Mo=1 means no change in 
productivity from period t to t+1 (Fare et al., 1994).  

Distance function calculation requires two single periods D t 	and	D t 1  and two mixed periods D t 1 	and		D t  measures (Chen & Ali, 2004). A set of n DMUs consume a set of m inputs (xij) to produce a 
set of s outputs (yrj) at periods t and t+1. Distance functions for kth DMU can be denoted as below: 
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4. Grey System Theory and Grey Numbers 

Deng (1982) introduced the grey system theory as a tool for studying system uncertainty (Hajiagha, Zavadskas, 
& Hashemi, 2013). This theory is a decision making method for studying uncertain problem with less data and 
poor information. The theory studies on the small sample, poor information systems with partial information 
known, partial information unknown. It describes correctly and monitors effectively system’s operation and 
evolution, through extracting valuable information from known information (Liu & Forrest, 2007). In grey 
system theory, completely known information is named as white systems, systems with completely unknown 
information as black systems, and systems with partially known and partially unknown information as grey 
systems, respectively (Liu & Lin, 2006).  

Grey number, which is used to describe uncertain or partially known information, is the basic element of grey 
systems theory. A grey number is such a number whose exact value is unknown but a range within that the value 
lies is known. In applications, a grey number in general is an interval or a general set of numbers (Liu & Lin, 
2006). 

Definition 1: A grey number with both a lower limit x and an upper limit x is called an interval grey number, 
denoted as ⊗ 	∈ x, x . 

Definition 2: When ⊗ 	∈ ∞,∞  or ⊗ 	∈ ⊗ ,⊗ , that is, when ⊗  has neither an upper limit nor lower limit, 
or the upper and the lower limits are all grey numbers, ⊗  is called a black number.  

Definition 3: When ⊗ 	∈ x, x  and x x, ⊗  is called a white number.  

Definition 4: For a general interval grey number ⊗ 	∈ x, x , its whitenization value ⊗ 	is taken as ⊗ αx1 α x,			α ∈ 0, 1  is called equal weight whitenization. 

Definition 5: In an equal weight whitenization, the whitenization value, obtained when taking α = 1/2, is called 
an equal weight mean whitenization. When the distribution function of an interval grey number is hardly known, 
usually the equal weight mean whitenization is used. 
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5. MPI with Interval Grey Data 

In a set of DMUs, suppose the inputs ⊗ x ,			x  and outputs ⊗ y ,			y  are interval grey numbers at 

periods t and t+1. Grey distance function model for kth DMU can be written as the following: D ⊗ a max∑ u y ,			y 																							a t, t 1									b t, t 1                    8  

s.t. 

ur

s

r=1

y ,			y vi
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v x ,			x 1 

vi, ur≥0 ∀	i, r 
5.1 Proposed Model-I (PM-I) 

Step 1: The upper bound of distance function for kth DMU happens when it produces maximum output by using 
minimum input, while other DMUs produce least output by using maximum input. So, upper bounds of distance 
functions can be calculated by (9) for single periods and with (10) for mixed periods. 
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Similarly, the lower bound of distance function for kth DMU occurs once it produces the least output by using 
maximum input, whereas, other DMUs produce maximum output by using minimum input. Hence the lower 
bound models can be defined as (11) for single periods and as (12) for mixed periods. 
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Step 2: By using minimum and maximum values of distance functions, upper and lower bounds of MPI in order 
to kth DMU can be measured as below: 

M ⊗ ⊗⊗ ⊗⊗                                          (13) 

M ⊗ ⊗⊗ ⊗⊗                                 (14) 

Step 3: The models (13) and (14) provide that possible MPI of kth DMU which lies in a bounded interval 
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M ⊗ , M ⊗ 	  which is an interval grey number. Since the distribution function of MPI is hardly known, the 
equal weight mean whitenization function in the definition 5 can be used to whitenize it with the following: M PM I	 ⊗ 1/2	 M ⊗ 	M ⊗ 	                          (15) 

Due to the value of M PM I	 ⊗  is exact, it can be deduced that M PM I	 ⊗ 1 denotes productivity growth, 
while M PM I	 ⊗ 1 indicates productivity decline, and M PM I	 ⊗ 1 means no change in productivity 
from period t to t+1. 

5.2 Proposed Model II (PM-II) 

Step 1: If equal weight whitenization function at definition 4 is applied, interval grey inputs and outputs are 
obtained as below: ⊗ α 	x 1 α x 	,			α ∈ 0, 1                            (16) ⊗ β 	y 1 β y 	,			β ∈ 0, 1                           (17) 

Step 2: Assume that α β α, then (4.1) can be converted into the following distance function model: D ⊗ a max∑ u y α y y 																												a t, t 1								b t, t 1																										(18) 

s.t. 

ur

s

r=1

y α y y vi

m

i=1

x α x x 0									j 1, … n 

v x α x x 1 

vi, ur≥0 ∀	i, r 
Step 3: (18) is a nonlinear model because of the variables ur, vi and α. In order to linearize that model, following 
substitutions can be applied: 

(dr = urα)               (hi = viα) 

Due to 0 α 1, it is possible to write: 

dr ur hi vi 

Step 4: By these substitutions distance function model can be denoted as below: D ⊗ a max∑ u y d y y 																								a t, t 1								b t, t 1																										(19) 

s.t. 

u y d y ys

r=1

v x h x xm

i=1

0													j 1, … n	 
v x h x x 1 

dr ur 0																																									∀		r 
hi vi 0																																										∀		i 
dr, hi,  ur, vi 0																																	∀	i, r 

Step 5: By using four distance functions which are obtained at step 4, MPI between periods t and t+1 can be 
measured with the following equation: 

M PM II ⊗ ⊗⊗ ⊗⊗                             (20) 

5.3 Proposed Model III (PM-III, Extension of PM-II) 

If assumption in proposed model II is ignored, then substitutions at step 2 can be applied as, 

(drj = urβrj) (hij = viαij) 

By these substitutions distance function model can be rewritten as: 
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D ⊗ a max∑ u y d y y 																								a t, t 1								b t, t 1																																				(21) 

s.t. 

u y d y ys

r=1

v x h x xm

i=1

0												j 1, … n					 	j k		for	single	periods  

v x h x x 1 

drj ur 0																																									∀		r 
hij vi 0																																										∀		i 
drj, hij,  ur, vi 0																																	∀	i, r, j 

Since it is possible that drk=0, hik=1, vi=1 and drj=1, hij=0, ur=1 are applicable in (21), the variables necessarily 
take the values to maximize objective function and as a result model turns into upper bounds of distance 
functions. In this case, MPI can be calculated as follows: 

M PM III ⊗ ⊗⊗ ⊗⊗                             (22) 

6. Numerical Example 

A numerical example is considered to illustrate the application of the models developed. The grey interval data 
of five DMUs which use two inputs to produce one output are given in table 1. 

 

Table 1. Grey interval data of illustrative example 

DMU 

Periods 

t  t+1 

Output-I Input-I Input-II  Output-I Input-I Input-II 

A [10, 12] [14, 18] [16, 19]  [12, 15] [13, 16] [13, 15] 

B [11, 14] [18, 20] [9, 11]  [15, 17] [15, 18] [8, 9] 

C [17, 21] [22, 25] [10, 13]  [21, 25] [29, 32] [18, 21] 

D [20, 24] [15, 17] [26, 29]  [23, 27] [26, 28] [30, 34] 

E [14, 16] [21, 25] [7, 9]  [18, 21] [25, 28] [13, 18] 

 

Measured MPIs of DMUs are given in table 2. Lower and upper bounds of MPIs for each DMU (possible MPI of 

a DMU lies within bounds) are shown in second column of table 2. It can be deduced from this column, because 

of M ⊗ 1, productivity of DMU D indicates a decline. Due to M ⊗ 1 and M ⊗ 1, nothing can be said 

about productivity changes of the other DMUs. 

 

Table 2. MPIs of DMUs 

DMU 	 ⊗ , ⊗ ⊗ ⊗ ⊗  

A [0.66, 2.48] 1.57 1.33 1.18 

B [0.96, 2.49] 1.72 1.62 1.33 

C [0.53, 1.58] 1.06 0.89 0.97 

D [0.48, 0.95] 0.71 0.78 0.76 

E [0.50, 1.51] 1.01 0.84 0.95 

 

MPIs of DMUs by using PMs are given in the third, fourth and last column of table 2 respectively. As shown in 
table 2, ranking of MPIs is the same (B>A>C>E>D) and also productivities of DMU A and DMU B indicate 
growth while productivity of DMU D indicates decline according to all 3 methods. Productivities of DMU C and 
DMU D indicate decline by PM-II and PM-III whereas they indicate growth with reference to PM-I. 
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7. Conclusion 

In this paper, MPI models are developed to measure productivity changes of DMUs which have interval grey 
data. In the study, three different approaches are held by using grey whitenization functions. In the first approach, 
maximum and minimum values of inputs and outputs are used to measure upper and lower bounds of MPIs. As 
the distribution function of MPI is unknown; the equal weight mean whitenization function is used to whitenize 
the grey MPI. In the second approach, nonlinear distance function model is transformed into linear model by 
using variable substitutions under the assumption of all grey numbers have the same α and β values. The only 
difference of the third approach from the second is that the values of α and β. In PM-III, different α and β 
variable is defined to each DMU, input and output. We should indicate once again that as a limitation of the 
study, to be able to use the proposed methods, all interval grey numbers must have the equal (mean) weight 
whitenization function. 

As it can be seen in the numerical example, the proposed models are easy to handle with grey data. As the paper 
shows that this kind of inter-method studies started to be investigated and there is a need growing in the literature. 
New theoretical attempts will not only test the validity of theoretical consequences but also provide a detailed 
horizon for new improvements. 
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