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Abstract 
Maintenance of offshore wind turbines is critical for expanding wind energy production, yet it presents 
significant challenges due to harsh operational conditions. This issue, discussed extensively in Operations and 
Maintenance (O&M) periodicals, can hinder the economic viability of wind energy. With European and 
emerging markets planning large-scale wind energy production, optimizing installation and maintenance 
resources is crucial. Our research focuses on numerical techniques to inform maintenance strategies and 
decisions, addressing key discussion areas. Our methodology involves a systematic literature review of 122 
scientific works, with descriptive and content analyses revealing insights into maintenance planning. 
Quantitative techniques, while studied separately, can enhance understanding of technical aspects in maintenance 
decision-making, provided their limitations are addressed. The research underscores the importance of 
considering various factors in offshore wind farm maintenance planning to align with planner objectives. 
Keywords: offshore wind energy, O&M, optimization, artificial intelligence, operations research 
1. Introduction 
The production of renewable energy has expanded worldwide encouraged by decarbonization initiatives of major 
economies, the rearrangements of supply chains, caused by the COVID-19 pandemic as well as geopolitical 
conflicts, such as the Russia-Ukraine war. Wind energy, especially offshore, has stood out in this scenario due to 
its significant capacity factor (in some projects, equivalent to 40 ~ 50%) and the regulation of its environmental 
requirements for installation projects, which is aligned to the sustainable performance goals formulated by 
multilateral institutions such as the United Nations (UN) (Iea, 2019; Nerlinger & Utz, 2022; Serafini et.al, 2022). 
The growth registered by the wind industry in the last two years is unprecedented: in 2021 there was a growth of 
1.8% in installed capacity when compared to 2020, which totalled 94 GW. Onshore and offshore wind farms 
correspond, respectively, to 77% and 23% of this total. These results support the understanding of the energy 
sector's resilience in the face of the serious economic crises that affect countries in the second decade of the 21st 
century. In 2023, relevant political changes in emerging countries such as Brazil and interventions by 
international monetary authorities in the most industrialized nations to reduce inflationary trends will have 
repercussions as well as the enactment of policies that accelerate the expansion of renewable energies by 2030. 
(Mckenna et.al, 2015; Reis et.al, 2021; Gwec, 2022; Gwec, 2023). 
This significant growth is a result of the new offshore wind farms, supported by European and emerging 
countries as a strategy to remain competitive in the production of durable consumer goods and commodities. 
However, there are considerable challenges to be overcome in this industry, such as the high dependence on an 
adequate port infrastructure, close to the energy producing parks; regional regulatory and technical aspects that 
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can hinder the production and distribution of the energy; and the maintenance of wind turbines, a limitation 
which can severely impair continuous growth due to high industrial costs (Baagøe-engels & Stentoft, 2016; 
Akbari et.al, 2016; De castro, 2019; Nguyen et.al, 2022). 
Studies on wind turbine maintenance present computational models that improve the accuracy of Maintenance 
Planning and Control initiatives by up to 94%, contributing to the optimization of the costs involved in this 
process. The offshore environment, unlike onshore, limits the accessibility to wind turbines and subjects them to 
faster degradation processes than on land, which makes operation and maintenance challenging and expensive 
(Boccard, 2009; Sinha & Stell, 2015; Poulsen & Hasager, 2016; Kang et.al, 2019; Falani et.al, 2020). 
Some works have been addressing the main gaps identified in the studies on offshore wind turbine maintenance. 
For stance, a study carried out by Ilić et.al (2011) addresses the issue of preventive maintenance for wind 
turbines, including the identification of failures, maintenance techniques and maintenance schedule optimization. 
Moreover, another study carried out by Morales et.al (2018) proposes a model for scheduling the maintenance of 
offshore wind turbines using mathematical optimization techniques. Likewise, a study carried out by Skaare et.al 
(2016) analysed the impact of maintenance on the availability and lifetime of offshore wind turbines. Also, Costa 
et.al (2021) addresses the maintenance of offshore wind turbines, identifying gaps in terms of monitoring, 
inspection and fault diagnosis. The authors highlight the importance of new technologies and tools for the 
maintenance of offshore turbines, including drones, robots and remote sensors. Finally, Chen (2019) highlights 
the importance of preventive and corrective maintenance for offshore wind turbines, as well as the lack of 
accurate data on the performance and lifetime of these turbines. The authors highlight the importance of a 
systematic approach to the maintenance of offshore turbines, which takes into account factors such as reliability, 
safety and cost-effectiveness. 
Accordingly, the current systematic review focuses on the discussion of numerical techniques commonly 
addressed to direct the most appropriate maintenance strategies, maintenance scheduling and health diagnosis of 
critical components within wind installations, especially those offshore, in order to ensure the maintainability of 
these assets, reducing operation and maintenance costs. 
Thus, some of the key questions the current work seeks to address are: a) What are the main techniques used to 
optimise operations and maintenance of wind turbines, especially in the offshore scenario? b) What is the main 
data needed to analyse the predictability of failures of these assets? c) What are the advantages and 
disadvantages of the different methods presented in the studies? d) Which methods lack an in-depth conceptual 
discussion and therefore make room for new basic research? e) Although some of these methods are studied 
individually, what are the consequences of overcoming their distinctions for the planning of Operations and 
Maintenance of offshore wind turbines?  
It is evident that the techniques of Artificial Intelligence and Operations Research, usually applied in optimising 
the aspects discussed so far, although acting axiomatically with distinct preference structures, can converge to a 
complete understanding of the technical aspects involved in the decision to perform preventive, predictive or 
corrective maintenance, mitigating the uncertain conditions under which the decision maker has to act (Roy, 
1996; Hillier; Lieberman, 2013).  
2. Method 
According to the definition of the Oslo Manual (1997) of the Organization for Economic Cooperation and 
Development (OECD), scientific research is "original and planned investigation that aims to discover new 
knowledge and achieve advances in scientific understanding. Similarly, according to Kerlinger (1986), scientific 
research is the process of formulating problems, collecting data, analysing and interpreting them, in addition to 
disseminating results, with the aim of answering questions of knowledge. Also, Bunge (2003) argues that 
scientific research is a systematic, controlled, empirical and critical investigation of hypotheses about the 
relationship between phenomena.  
A systematic review is a structured and methodologically rigorous approach to the identification, evaluation and 
synthesis of all relevant studies on a specific research question (Moher et.al, 2009); applying clearly defined 
methods to obtain relevant evidence from a specific research topic, with the aim of identifying gaps in 
knowledge and guiding future research (Grant & Booth, 2009; Higgins & Green, 2011; González & Toledo, 
2012). The current study is a systematic literature review. Thus, it aims to generate structured knowledge on a 
topic whilst it is developed in stages, which are detailed in Figure 1. 
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Figure 1. Research stages 

 
In the first stage, the research sought to identify studies that addressed methods for optimising decision-making 
in Operations and Maintenance (O&M) in the Offshore Wind Energy based on research in the Periódicos Capes 
database (which brings together Scopus, Web of Science and Science Direct databases, amongst others, allowing 
access to a wide quantitative range of studies aligned with the research theme).  
Subsequently, the second stage was initiated, which consisted of finding articles through a search on the platform 
Periódicos CAPES, using the following keywords: “AI decision making”, “Optimization”, “Big Data”, 
“Computer Simulation”, “Offshore Wind”; “Operations Management Installation”, “Operations and 
Maintenance”, “Maintenance Scheduling” and “Offshore Wind Farms”.  
In the third stage, the relevant articles were selected and their abstracts analysed. Articles that were not related to 
the research objective were excluded. As a result, 122 articles were selected (73 as content articles and 49 as 
support articles for the analysis).  
In the fourth stage of the research, the texts were read and extracted, as well as their classification in terms of 
structure and content, through the elaboration of an Excel® spreadsheet, observing the following elements: 
keywords, title, year, author, country where the research was conducted, origin of the authors, journal/congress 
proceedings, University/Research Center/Company, type of study, approach, objectives, research object, research 
focus, objective of the article, results found, employed quantitative/qualitative method, advantages and 
disadvantages of the catalogued methods. Finally, in the fifth stage, the results were prepared for subsequent 
publication. 
3. Results and Discussions  
3.1 Quantitative Methods and Decision Making 
Decision-making can be conceived as the choice by a decision-making centre (an individual or a group of 
individuals) of “the best” amongst “the possible ones”; thus, decision is related to reasoning. One of the possible 
definitions of artificial intelligence (AI) refers to cognitive processes and, mainly, to reasoning. Before making 
any decision, people also reason, so it is expected to explore the links between AI and decision making 
(Rezamand et.al, 2020; Bouzekri et.al, 2017; Antoniadou et.al, 2015). 
When focusing on areas in which the presence of judgement, decisions and human evaluations is significant, 
such as decision analysis, the decision-making process may be convoluted; thus, the application of formal 
modelling tools is highly complex, leading to difficulties in addressing the imprecision related to such areas and 
problems (Zadeh, 2015). 
In order to account for the imprecision related to such situations, it is necessary the use of fuzzy sets: the variety 
with which they could be used would require a significant registration effort, a fact that makes a more specialised 
theoretical contribution necessary, which is not the objective of the current study.  The current authors have 
attempted to exemplify its most common representation, which is the triangular shape, explained axiomatically 
in the following definitions purposes. 
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Definition 1: Consider X a space of objects generically represented by x. In that case, a fuzzy set Ã in 𝑋 is 
characterised by an association or compatibility function 𝜇Ã(𝑥) that associates each object in Ã with a real 
number between 0 and 1 (Zadeh, 1965). Ã = ቄቀx, μÃ (x)ቁቚx ϵ Xቅ                                 (1) 

Definition 2: The real fuzzy numbers are then defined as a convex and normalised fuzzy subset  𝐴ሚ of the real 
line 𝑅 with the association function 𝜇Ã(𝑥) that satisfies the following properties (Dubois & Prade, 1980; Liao 
et.al, 2013; Castro, 2020): 

a) μÃ(x) is a continuous mapping of R for the closed range [0,1].  
b) μÃ(x) = 0 for all objects x ϵ (−∞, a). 
c) μÃ(x) is strictly increasing on the interval [a, b]. 
d) μÃ(x) = 1 for all objects x ϵ [b, c]. 
e) μÃ(x) is strictly decreasing on the interval [c, d]. 
f) μÃ(x) = 0 for all objects x ϵ [d,+∞]. 

Whence a, b, c and d are Real Numbers. 
Assuming 𝑥, 𝑙, 𝑚, 𝑢 𝜖 𝑅 → [0,1], so that {𝑥 𝜖 𝑅 | 𝑙 < 𝑥 < 𝑢}. A triangular fuzzy number T෩ is defined as: μ୘෩(x) = { ଵ୫ି୪ x − ୪୫ି୪ ,   x ϵ [l, m] ଵ୫ି୳ x − ୳୫ି୳ ,   x ϵ [m, u] 0, Otherwise        (2) 

Figure 2 illustrates the triangular fuzzy numbers’ behaviour. 

 

Figure 2. Triangular fuzzy number. 
Source. Elizabeth and Sujatha (2015). 

Definition 3: Assuming two triangular fuzzy numbers denoted as Ã = (𝑙, 𝑚, 𝑢) and 𝑌෨(𝑦ଵ, 𝑦ଶ, 𝑦ଷ), operations 
with fuzzy numbers are as follows (Chen, 2000; Elizabeth; Sujatha, 2015; Castro, 2020) 

a) Addition: A෩(+)Y෩ = (l + yଵ, m + yଶ, u + yଷ)  l ≥ 0, yଵ ≥ 0; 
b) Subtraction: A෩(−)Y෩ = (l − yଵ, m − yଶ, u − yଷ)  l ≥ 0, yଵ ≥ 0; 
c) Multiplication: A෩(×)Y෩ = (l × yଵ, m × yଶ, u × yଷ)  l ≥ 0, yଵ ≥ 0; 
d) Division: A෩(÷)Y෩ = (l ÷ yଵ, m ÷ yଶ, u ÷ yଷ) l ≥ 0, yଵ ≥ 0. 

Assuming a scalar or constant k ∈  R there will also be the following operations: 
a) Multiplication: A෩(×)k = (l × k, m × k, u × k)  l ≥ 0, k ≥ 0; 
b) Division: A෩(÷)k = (l ÷ k, m ÷ k, u ÷ k)  l ≥ 0, k ≥ 0. 

Another important operation applied to fuzzy numbers is the distance between two numbers. The vertex method 
will be considered, however, there are several methods to calculate the distance:    d൫A෩, Y෩൯ = ටଵଷ [(l − yଵ)ଶ + (m − yଶ)ଶ + (u − yଷ)ଶ                     (3) 

Definition 4: Linguistic variables are variables that have their values represented by linguistic terms (ZADEH, 
1975). These variables give support to approach complex or ill-defined decision-making situations that make it 
difficult to use quantitative expressions (Chen, 2001; Zadeh, 1975). 
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Trapezoidal fuzzy numbers are an extension of triangular fuzzy numbers and are widely used in fuzzy control 
systems. They are defined by a trapezoidal membership function, which assigns a membership value to each 
possible value of the fuzzy variable. The trapezoidal membership function is defined by four parameters: a, b, c 
and d, wherein a ≤ b ≤ c ≤ d, according to the following equations (Wang et.al, 2007; Kumar et.al, 2013): 

μ(x)  =  ൝(x − a)/(b − a), a ൑  x ൑  b (c − x)/(c − b), b ൑  x ൑  c0                       (4) 
Figure 3 illustrates the behaviour of trapezoidal fuzzy numbers: 

 
Figure 3. Trapezoidal fuzzy number 

Source. Dinagar, Kamalanathan and Natarajan (2017). 

 
Fuzzy logic is often used in control systems, as it allows dealing with situations in which accuracy is not 
critical, such as the maintenance of offshore wind turbines (Sierra-Garcia; Santos, 2021). Offshore wind 
turbine maintenance involves performing maintenance and repair tasks on such turbines. These tasks can be 
expensive and dangerous, and it's important to ensure they are only done when necessary. Fuzzy logic can be 
used to help determine when maintenance is required (Dao et.al, 2021). 
A fuzzy logic system can be constructed using linguistic rules that define the conditions under which 
maintenance is required. For instance, a rule might be "If turbine vibration is high and wind speed is low, then 
maintenance is required". Fuzzy logic allows these rules to be expressed in terms like "high" and "low" rather 
than precise values (Qu et al., 2020). The system can then be fed with data from sensors such as wind speed 
and turbine vibration and produce output that indicates whether maintenance is required. The output can also 
be expressed in terms such as "highly recommended" or "cautiously recommended" (Suganthi et.al, 2015). 
Artificial Neural Networks (ANN) are mathematical models that seek to reproduce the biological brain’s 
behaviour pattern, including the ability to acquire, maintain and generalise knowledge. The most basic 
structure of an ANN is the artificial neuron (Aladag et.al, 2010; Van Belle et.al, 2014) 
As in the biological structure, an artificial neuron has n inputs referring to external stimuli. These signals are 
weighted by synaptic weights and then linearly combined. The result of this combination undergoes the action 
of an activation function whose main characteristic is to be a differentiable function, as shown in Figure 4 
(Guresen & Kayakutlu, 2011; Hajian & Styles, 2018):  

 

Figure 4. Schematic representation of an artificial neuron 
 
The activation function controls the level at which the neuron is activated besides the signal strength at the 
neuron's output. In general, nonlinear activation functions are used, which translates into a rich ability to 
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approximate functions. Two of the most common activation functions are the sigmoidal, or logistic, function and 
the hyperbolic tangent (TANH) function. g(z) = σ(z) = ଵଵାୣష౰                                       (5) g(z) = tanh tanh (z)  = (ୣ౰ିୣష౰)(ୣ౰ାୣష౰)                               (6) 
In which: 𝑦 = 𝑤𝑇 ∗ 𝑥                                               (7) 
Several studies address Neural Networks and Genetic Algorithms for decision-making processes that require 
satisfactory performance in a context of randomness (Morshed & Kaluarachchi,1998; Li et.al, 2021). These 
studies explore the advantages and disadvantages of these two techniques, aspects that will be explored in the 
current article. 
In the discussion involving metaheuristics, heuristics, simulation models and mixed integer linear programming, 
classical techniques, such as the travelling salesman problem (TSP), are associated with models that propose the 
search for suboptimal solutions that adequately represent the described optimization problem. On the other hand, 
simulation models based on Marcovian data series legitimately seek alongside FIT functions to optimise 
scenarios that involve significant costs to achieve predictability. Whereas the simulation models build 
statistically reliable scenarios, it is evident that these models are far from being integrated with the sequencing 
algorithms, which could contribute to improve the simulation results, since they address the allocation of 
resources in restricted scenarios (Kleinrock,1975; Law, 2007; Hillier & Lieberman, 2006; Arenales, 2007). 
Sequencing problems are understood as those that occur, mainly, in production facilities. Its basic formulation 
predicts that for each set of jobs n there is a number of machines m that are capable of executing them 
considering all the constraints to carry out the planned jobs set (Hoogeveen, 2005; Zhou, 2018). 
3.2 Descriptive analysis 
Bibliometric results show decreasing trends in the number of works on the subject. Thus, further research may be 
relevant to boost current discussions, pointing to future new paths to qualified scientific research. Figure 5 
outlines this trend. 

 
Figure 5. Trend in quantity of qualified publications per year 

 
The analysed works are mostly of a quantitative approach (studies that explore the advantages and disadvantages 
of artificial intelligence techniques, combinatorial optimization and simulation to the planning and control of 
maintenance). There is, nonetheless, a significant percentage of qualitative research, utilising techniques that 
allow mapping decisions related to planning oriented to maintenance strategies. These listed points are illustrated 
in Figure 6. 

 
Figure 6. Approach to systematised studies 
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Most of the research analysed are classified as modelling and simulation followed by case studies. Thus, it is 
possible to infer that research developers on the subject are interested in evaluating scenarios in applied contexts 
to test the sensitivity of variables that are of interest to decision models, despite the need to investigate 
randomness of the maintenance cost variable as well as its relationship with the reliability of the assets that are 
under scrutiny of the operations planning. Figure 7 shows the categorization of studies regarding its methods. 

 
Figure 7. Catalogued search methods 

 
Based on the presented data, the authors found the need to observe in what sense the key words of these studies 
were aggregated and what likely subjects may influence the current literature review. The result showed that the 
maintenance of wind turbines in the offshore scenario; the understanding of its logistical aspects (such as the 
modals that should assist in the transport of the teams that performed these maintenances); and the monitoring 
and evaluation of failures to ensure reliability in the aggravating scenario of energy production at sea, since 
faster degradation of wind turbine components is expected, seems to be the main scope on which the current 
research will focus. Figure 8 displays the keyword analysis. 

 
Figure 8. Keywords analysis 

Source. Wordle (2023).  

 
The highest impact publications come from Europe, the United States and China, following a global trend of 
qualified knowledge concentration; as seen in Figure 9. 

 
Figure 9. Percentage of publication by countries 

 
The main universities and research institutes that publish relevant research on the topic are mostly concentrated 
in the United Kingdom, China and Germany. Figure 10 represents the total number of studies published by the 
10 main technology centres in those countries. 
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Figure 10. Studies published in the ten main research centres 

 
The top ten qualified journals observed in this literature review are shown in Figure 11. These journals are 
presented according to the number of citations presented in the study, as well as their respective Journal Citation 
Report (JCR): qualifying metric for high-impact scientific productions. 

 
Figure 11. Top journals, citations and JCR 

 
The main quantitative methods observed for wind turbine maintenance optimization are shown in Figure 12. It is 
possible to observe the design of the four main groups of quantitative techniques that will be explored in the 
current research: neural networks, fuzzy sets, simulation and scheduling models. 

 
Figure 12. Main quantitative techniques observed 

 
These methods are the subject of the current content analysis discussion. The main advantages and disadvantages 
of the systematic group will be presented alongside their use limitations; furthermore, it will be presented the 
gaps found in the scientific discussion. 
3.3 Content Analysis  
The maintenance of offshore wind turbines is a critical area of research to ensure the reliability and performance 
of these systems. Efficient preventive maintenance strategies, based on continuous monitoring data, can 
minimise downtime and maximise energy production (Zhang et.al, 2018). Predictive maintenance plays a key 
role in the efficient management of offshore wind turbine maintenance. The use of advanced sensors and data 
analysis techniques, such as machine learning, allows early detection of failures and proper scheduling of 
maintenance activities, reducing costs and improving operational availability (Li et.al, 2019). 
The maintenance of offshore wind turbines presents unique challenges due to the harsh environment in which 
these systems operate. Corrosion, vibrations and adverse weather conditions can significantly impair the service 
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life of components. It is essential to develop maintenance strategies based on risk analysis and consideration of 
life cycle costs to ensure the reliable operation of such equipment (Schröder et al., 2019). 
The use of remote access technologies and robotics has shown to be promising for the performance of 
maintenance tasks on offshore wind turbines. Autonomous inspection and repair systems can reduce the need for 
human intervention in hazardous and difficult-to-access environments, improving safety and reducing 
maintenance costs (Artigao et.al, 2021). 
Optimising maintenance logistics is key to reducing operating costs in offshore wind farms. Efficient scheduling 
of maintenance activities, spare parts inventory management and careful planning of human resources are crucial 
aspects for successful maintenance of offshore wind turbines (Ding et.al, 2018). 
Based on the specialised literature, some works propose useful models for predicting failures and optimising 
maintenance planning for offshore wind turbines. For instance, Hou et.al (2019) proposes an optimization model 
based on genetic algorithms to determine the best maintenance schedule for offshore wind turbines, considering 
multiple objectives, such as minimising maintenance costs and maximising the availability of wind. 
More recently, Jagtap et.al (2020) presents an optimization model based on a particle swarm optimization 
algorithm to determine the optimal maintenance plan for offshore wind farms. Their study considers factors such 
as maintenance costs, component reliability and operational constraints. 
Furthermore, Li et.al (2017) propose the application of Markov decision processes to optimise the preventive 
maintenance of offshore wind turbines. The model takes into account the age of the equipment, maintenance 
costs and operational performance. 
Finally, Lin et.al (2018) presents a comprehensive framework to optimise the operation and maintenance of 
offshore wind farms, incorporating multi-objective optimization techniques to maximise the availability of wind 
turbines, and minimise maintenance costs whilst considering the conditions of the marine environment. 
3.4 Framework  
To schematise the diversity of quantitative methods used to optimise the planning of maintenance operations for 
offshore wind turbines involves the understanding of the peculiarities common to these methods, their 
similarities and their objectives, which makes any attempt to represent them in a simple diagram rather 
challenging. However, the theoretical framework and their respective methods are shown in Figure 13. 

 
Figure 13. Theoretical framework 
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The systematic group ‘Artificial Intelligence’ aims to highlight situations that guide the investigation of 
components failure mainly from the monitoring of vibration and temperature data of the wind turbines, 
signalling the need for preventive, predictive and corrective maintenance. The defects monitored through these 
models are predicted by ISO series regulations and contribute to energy production planning, since they indicate 
the most opportune moment to carry out repairs when integrated with key performance indicators of energy 
production losses by maintenance needs (Jiang, 2021; Mills et.al, 2018). 
Software such as SCADA and sensors arranged on wind towers are useful for handling vibration data from 
critical components such as nacelles and blades. The significant volume of data requires Big Data storage and 
the application of database techniques. Furthermore, statistical treatments in an unsupervised learning 
environment to convert vibration data into digital signals are useful for data analysis and management 
evaluations. Thus, SOM networks (Self Organizing Maps*) with regions indicating which type of fault may 
occur when the data shows a given trend are useful representations for decision guidance (Blanco-M et.al, 2018; 
Lin; Liu, 2020). 
These techniques do require significant computational support, as they present an investigation of the decision 
maker's preferences, observing in which situations the decision maker feels comfortable to deliberate in a 
controlled condition of risk and uncertainty. Albeit essentially theoretical, models based on fuzzy logic can 
contribute to this purpose for maintenance planning, as they model the results observed from sensors and are 
able to delineate a probable range of decision acceptance that is intelligible (Khan et.al, 2022; Aryanfar et.al, 
2022). 
The presence of subjectivity in the decision-making process implies the emergence of techniques that seek to 
highlight biases and observe patterns that may be useful for the decision makers. For maintenance planning, such 
techniques may guide the structuring of strategies that trace the directions that should be adopted depending on 
the type of maintenance and the parameters investigated (ArzaghI et.al, 2017; Pinciroli et.al, 2023).  
In operational research, so long as it is intended to observe the behaviour of specific variables, scenarios are 
opportune to model the decision through techniques such as Simulation. It proposes to investigate situations in 
which the arrival of entities in a system presents known continuous or discrete probability distributions based on 
hypothesis tests such as the χଶ and the Kolmogorov-Smirnov, for instance, in which the fit of the distribution 
for the data series is observed. Because it is safe and practical, its usability stands out and is relevant for 
reliability estimates of the assets in the present study (Law, 2007). 
Although theoretically different from Scheduling problems, which seek to allocate restricted resources into 
carrying out work taking into account significant levels of efficiency; simulation can, along with these problems, 
have benefits in terms of the quality of the solutions presented, for instance, in industrial operations modelling, it 
can display the effects that a reprogramming or maintenance of machines has for the reduction of the total time 
of the routine operations (the makespan), which is applicable to the planning of energy production (Mohan et.al, 
2019; Carreno et.al,  2019; Ahmadian et.al,  2021).  
Other studies have presented the problem of Multicriteria Scheduling: a technique that aims to drive the decision 
maker into choosing the technical factors that should be the object of scrutiny by him or the group of decision 
makers, and from mathematical programming and data from reliable measurement systems to investigate the 
feasibility of solutions, proposing, if necessary, relaxations. The construction of scenarios together with the idea 
of sequencing operations and contributing to the optimization of systems taking into account the subjectivity of 
the decision maker seems to be the main advantage of this technique, which has not found significant growth in 
discussion in recent years although it is robust and structured (T’kindt & Billaut, 2003; Hoogeven, 2005; Lara et 
al., 2021).  
The techniques presented in Figure 13 are detailed in terms of their advantages and disadvantages in Tables 1 
and 2. The authors sought to detail the understanding of these models and problems, suggesting, when necessary, 
situations applicable to them. 
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Table 1. Advantages and disadvantages of AI techniques for optimising maintenance of offshore wind turbines 
Methods - References Advantages Disadvantages 

Artificial neural network (ANN) - 
Bangalore & Tjernberg (2013); 
Adouni et.al (2016); Bangalore 
et.al (2017); Gantasala, Lunend & 
Aidanpää (2017); Hossain et.al 
(2017); Ali et.al (2018). 

I) Adaptive Learning: ANNs can learn to perform 
tasks through a training process. II) 
Self-organization: ANNs can create their own 
structure to represent information. III) Fault 
tolerance: The ANN can still operate when its 
structure is damaged (degradation tolerance), and 
distorted or incomplete when the data is noisy 
(data tolerance). IV) Online operation: It is 
implemented alongside other systems, working 
seamlessly, as It is specially programmed to carry 
out online processes. V) Practical 
implementation: There are specialized chips that 
can facilitate the integration of ANNs into 
different systems. 

I) ANNs need considerable size samples to 
generate information, making a significant 
number of observations necessary, which 
may be inconvenient. II) Another 
disadvantage is that the optimization of the 
hidden layer of the ANN is time 
consuming, adding further complications 
into the computational process. 

Deep learning (DL) - LeCun, 
Begio and Hinton (2015); 
Voulodimos et.al (2017); 
Bach-andersen, Rømer-odgaard & 
Winther (2018); Chen et.al (2019). 

I) Learning distributed representations allows 
generalization to new combinations of learned 
resource values further to those observed during 
training; II) another significant advantage would 
be the composition of representation layers in a 
deep network 

I) It can become ineffective if there are 
errors in the first layers, such errors can 
cause the network to learn to reconstruct the 
average of the training data. II) It requires a 
very large amount of data to obtain superior 
performance over other techniques. 

Fuzzy logic (FL)** - Rezamand 
et.al (2021); Zhong et.al (2019); 
Nguyen et.al (2022); Amina et.al 
(2016); Azadegan et.al (2011); 
Bernardes et.al (2019); Choi & 
Kim (2017); Pezeshk & Mazinani 
(2019). 

I) A simple and intelligent process. II) Easy to 
understand and implement. III) Allows for a 
more user-friendly and efficient implementation 

I) The development of a fuzzy system 
model is rather challenging. II) Difficult to 
find suitable membership values for fuzzy 
systems. III) A fuzzy system cannot be 
applied to solve a problem that is not 
available in the form of if-then rules. 

Extreme learning machine (ELM) - 
Bakri et.al (2019); Wang et.al 
(2021). 

I) Showed greater accuracy and lower training 
cost than any other neural network structure, 
including Random Neural Network. II) it is 
possible to develop new neural network 
structures using extreme machine learning 

I) Albeit extreme machine learning´s hidden 
layer input weights and threshold values are 
randomly generated; inappropriate 
parameters will lead to unsatisfactory 
regression results. II) When the sample 
imbalance is relatively large or training 
samples are relatively small, extreme 
machine learning generalization 
performance is not optimal. 

Model-based reasoning (MBR) in 
AI - Echavarria et.al (2008); 
Khandelwal & Sharma (2013). 

I) The ability to use functional/structural domain 
knowledge in problem solving, enhancing the 
DM´s ability to deal with a variety of problems, 
including those that the system designers have 
not anticipated. II) model-based decision makers 
tend to be very robust, complete and flexible 
problem solvers. III) Some knowledge is 
transferable between tasks, for model-based 
decision-makers are often developed using 
scientific and theoretical methods, since science 
strives for  
general application theories, this generality often 
extends to decision makers-based models. IV) 
Often, model-based decision makers can provide 
explanations; these can convey a deeper 
understanding of the failure to human users. 

I) Lack of experiential (descriptive) 
knowledge of the domain - the heuristic 
methods used by rule-based approaches 
reflect a valuable class of expertise. II) 
Model-based reasoning usually operates at 
a level of detail that leads to high 
complexity; this is one of the main reasons 
experts developed heuristics in the first 
place. III) Unusual circumstances, for 
instance, bridge failures or the interaction 
of various failures in electronic components 
can change the functionality of a system in 
ways that are difficult to predict using an a 
priori model. 

Model predictive controller (MPC) 
- Huang et.al (2017); Kazda et.al 
(2018); Schwenzer et.al (2021). 

I) Strong modelling, learning and forecasting 
capabilities. II) the MPC determines the control 
law automatically through a model-based 
optimization. 

I) If the drive cycle undergoes dramatic 
changes, the forecast will become 
unreliable; II) the disadvantage of MPC lies 
in the complexity of its algorithm, which 
requires more time than other controllers. 

Digital Twin - Adamenko et.al 
(2020); Lopéz et.al (2022); Menon 

I) Significant increase in transparency: the 
various models, which have updated information, 

I) Difficulty in predicting the exact cost of 
the product in the initial phase of the life 
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et.al (2023) 
 

facilitate the supervision of the product or 
system. The information is displayed in such a 
way that the user can see the current status 
directly and clearly. II) The digital twin reduces 
the time needed to take a product to market: 
simulations can be used in advance of how the 
product or system will behave before it is even 
completed, mitigating its weaknesses and 
improving its strengths. 
 

cycle due to less data availability; II) It 
requires efficient machine learning and data 
analysis algorithms to manage and interpret 
the enormous amounts of data produced by 
digital twins. 
 

 
The models based on artificial intelligence emphasise the investigation and analysis of vibrations caused by the 
weathering actions to which offshore wind turbines are subjected (mainly winds and tides). These data are 
captured, mostly, by sensors installed in these towers and evaluated by specialists who present these numbers 
through data visualisation tools in order to guide and support the decision to carry out maintenance, preventive 
and predictive. formulation of performance indicators related to interference (stops caused by failures or 
reduction of energy generation capacity that impacts production targets) and its implications for the economic 
viability of the wind farm. 
 
Table 2. Advantages and disadvantages of decision analysis for maintenance optimization of offshore wind 
turbines 
Problem -Methods - References Advantages Disadvantages 

Simulation -Monte Carlo Simulation 
-Loizou & French (2012); Barthelemy 
(2019); Koukoura et.al (2021); Welte 
(2017); Faulstich et.al  (2016); Scheu 
et.al (2017); Lei & Sandborn (2018); Pérez 
(2022). 

I) Allows greater scope, clarity, rigor and 
understanding to the developer, leading to 
more consistent and rational decisions. II) By 
dehumanizing, to a certain extent, the 
decision-making process, it permits risk 
rationalization, increases consistency and 
exposes the multiplicity and extent of the 
risks involved. III) Provides insight not only 
into potential changes to the project to 
increase its profitability, but more 
importantly, it allows the sources of risk to be 
classified. 

I) It is necessary to know probability 
distributions for each choice outcome. II) 
historical information is not always reliable 
or appropriate. III) subjective estimates. IV) 
continuous distribution of inputs gives rise to 
an infinite number of results which is 
unrealistic. V) it is easier to predict the 
capital cost item than the effective demand, 
therefore, more appropriate to cost-benefit 
issues rather than project profitability (NPV); 
VI) there is a correlation between the 
variables (economic, organizational, 
technical) so that when the independent 
variables are aggregated for risk assessment 
purposes, the effect of varying one may be 
offset by varying the other in an opposite 
direction. VII) the result of continuous 
probability can render the data inadequate, 
hiding causal relationships. VIII) It may 
direct attention to radical policies and design 
alternatives. IX) Demands more staff time 
for data collection and analysis. 

Simulation -Markov Chains -Possan & 
Andrade (2014); Dawid et.al (2016); 
Boumi & Vela (2020). 

I) In some cases, the use of this technique can 
be advantageous to explain the variability in 
the main parameters that have a significant 
influence on the degradation process 
(depreciation); II) The Markov Chain is a 
special case of a stochastic process chain with 
discrete parameters whose development can 
be carried out through a series of transitions 
between the scenarios of a system. 

I) Significant computational costs associated 
with calculating the State Transition Matrix 
are widely reported. II) The accuracy of 
estimates using Markov chains is quite 
sensitive to data availability, making it 
unreliable in contexts small data sample 
sizes, 

Simulation -Hidden Markov Model -Lau 
et.al (2012); Ramaki, Razoolzadegan & 
Jafari (2017); Zhao (2022). 

I) By modelling several processes 
simultaneously, it allows the estimation of 
population-level effects, as well as more 

I) It is reported that the application of the 
Hidden Markov Model implies infinite 
scenarios which makes the data integration 
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efficient estimates of parameters that are 
common to all processes. II) These models 
are relatively easy to interpret. III) Allows 
greater flexibility in the modelling correlation 
structure because they relax the assumption 
that observations are independent given 
hidden scenarios 

processes involved in the modelling very 
challenging. II) Complexity and high time 
consumption for training this model is also 
reported. 

Scheduling -Heuristic Multi-Objective 
Multicriteria Decision Making (HMM)*** 
-Hajibandeh et.al  (2018); Gutjahr & 
Pichler (2016). 

I) This model, when integrated with different 
components of electrical systems involved in 
the production of wind energy, leads to the 
understanding of scenarios that demand 
balance in the load profile. 

I) The decision maker is forced to define the 
particular form of aggregation. II) this 
stochastic method takes into account the 
dependence between the stochastic 
objectives, but it has the obvious 
disadvantage that the aggregation function u, 
which should represent the decision maker's 
utility function to make the optimization 
model meaningful, must be known before 
computational analysis can be initiated. 

Scheduling -Preventive Maintenance 
Scheduling Problem with Interval Costs 
(PMSPIC)**** -Bangalore & Patriksson 
(2018); Yu et.al  (2021); Figueredo et.al 
(2020). 

I) Case studies demonstrated that the model is 
capable of providing optimal hybrid 
maintenance plans, which consider both 
condition and failure rates based on 
component age. 

I) The approach performs poorly when the 
level of unmodeled randomness is 
significant. 

Scheduling -Mixed-Integer Second-Order 
Cone Programming (MISOPC)***** 
-Benson & Sağlam (2013); Ge et.al 
(2020). 

I) Several of the examples of this model arise 
as reformulations or even relaxations of 
mixed-integer nonlinear programming 
problems (MINLPs), because MISOCPs can 
sometimes have advantages over MINLPs. 

I) Convex MINLP solvers are not applicable 
for MISOPC, if they use linear 
gradient-based external approximations, 
since the second order cone constraints are 
not continuously differentiable. 

Scheduling -Travelling salesman 
problem/Travelling Repairman Problem 
(TSP/TRP) ******* - Fischetti et.al 
(1993); Feng et.al (2021); Ouaarab et.al 
(2013). 

I) The travelling salesman problem belongs 
to an important class of scheduling problems; 
it is easily stated and is one of the most 
studied problems in the literature due to its 
applicability to a large number of real cases. 
II) Minimizes the average time of departures 
considering the location of multiple 
customers 

I) Heuristic methods (such as TSP) present 
difficulties in solving problems involving 
multiple nodes (cities, for instance). II) There 
is no efficient algorithm for the TSP and all 
its variants or relevant problems of the same 
class. The need to quickly find good (not 
necessarily optimal) solutions to these 
problems led to the development of various 
approximation algorithms, such as 
metaheuristics. 

Scheduling -Routing and Scheduling 
Problem of a Maintenance Fleet for 
Offshore Wind Farms 
(RSPMFOWF)****** -Dai et.al (2014). 

I) Its objective, essentially, is to achieve the 
cheapest maintenance operation in the 
defined period, which involves service vessel 
costs and lost production. 

I) It is useful for a limited period, for 
instance, one or several weeks in summer, 
when maintenance tasks can be carried out 
continuously. II) It does not take into account 
the cost of technicians on service vessels. 

Stochastic optimization  
(Metaheuristics) -Genetic algorithm 
-Cabrera, Simon & Prado (2002); Zhou 
et.al  (2020). 

I) Good convergence. II) Easy and 
multi-objective optimization. III) Define an 
initial population improved by objective 
function approximations, making use of 
natural selection mechanisms and the laws of 
natural genetics. IV) Low computational cost.

I) It is not easy to fall into the optimum 
location. II) Low practicality. III) Limited to 
simulation 

Stochastic optimization  
(Metaheuristics) -Ant colony algorithm 
-Liu et.al (2014); Zuo et.al  (2015); Ren 
et.al  (2020);  Kefayat et.al  (2015); 
Meng et.al (2012). 

I) The algorithm is characterized by a high 
rate of convergence when preceded by the 
generation of "pheromones" through other 
techniques such as the Genetic Algorithm. II) 
All traces of pheromones are eventually 
reduced by an evaporation rate, which avoids 
stalling at a local minimum. III) Solves the 
multi-objective optimizations scheduling 

I) Slow convergence, which requires 
strategies for the generation of pheromones. 
II) Precocity. 
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problem. 

Stochastic optimization  
(Metaheuristics) -Bat algorithm - Wu & 
Lin (2019); Fister et.al (2014) 

I) Uses simple concepts and structures. II) 
Presents good exploration skills. III) 
Possibility to be applied as a global optimizer 
as well as a local optimizer. IV) Deals with 
multimodal problems efficiently; having a 
very fast rate of convergence due to the 
ability to focus on a region of promising 
solutions 

I) Needs an improved control strategy to 
switch between refinement and variation at 
the right time. II) Requires techniques that 
accelerate the convergence so that an 
adequate performance can be observed. 

Stochastic optimization  
(Metaheuristics) -Adaptive large 
neighborhood search (ALNS) -Lazakis & 
Khan (2021); Sacramento et.al (2019); 
Bach et.al (2019); Kuhn et.al (2020). 

I) Optimizes vessel routes for the distribution 
of technicians amongst different wind farms 
in various periods. II) Neighborhoods are 
defined by destruction and repair operators, 
the former removes multiple requests from 
the current solution, whilst the latter reinserts 
removed requests to arrange a new solution. 
A diverse set of destroy and repair operators 
is important to ALNS performance. 

I) A strong local search can block the ALNS 
acceptance mechanism to overcome local 
optima. II) Presents limitations in terms of 
coordination between order picking and 
routing decisions, which can be difficult to 
manage when planning offshore wind turbine 
maintenance operations. 

Stochastic optimization  
(Metaheuristics) -Non-dominated Sorting 
Genetic Algorithm II (NSGA - II) -Konak 
et.al (2006); Zhong et.al  (2018). 

I) Single parameter (N). II) It has been 
exhaustively tested. III) Efficient 

I) The agglomeration distance works only in 
objective space. 

Mixed Linear Integer Programming/Mixed 
Integer Programming( MLIP/MIP) 
-Branch-and-check (B&C) -Thorsteinsson 
(2001); Froger (2017);  

I) B&C shows a clear benefit, especially with 
a larger number of features. II) Cuts can be 
calculated by solving a continuous linear 
model. III) It can rule out more solutions for 
RMPs (restricted master problem) 
contributing to model accuracy. 

I) For situations in which the subproblem 
arising from the master problem is difficult, 
B&C can result in significantly longer 
execution times. 

Mixed Linear Integer Programming/Mixed 
Integer Programming( MLIP/MIP ) 
-Vehicle routing problem (VRP) 
-Goetschalckx & Jacob-Blecha (1989); 
Applegate et.al  (2002); Liu et.al  
(2019); Bao et.al  (2021). 

I) The importance of the vehicle routing 
problem and all its variations and extensions 
are based on the significant cost of physical 
distribution. II) Indicates optimized routes 
that involve sets of customers that need to be 
served by vehicles located in a common 
depot. III) Assuming that travel time is 
proportional to distance travelled, and that an 
insignificant amount of time is spent at the 
customer's location, the above objective is 
achieved by minimizing the length of the 
longest route, starting from the common 
depot, taken by a vehicle, contrasting with the 
typical objective centered on minimizing the 
total distance travelled by the fleet. 

I) Studies show computational cost 
disadvantages in large-scale or complex 
problems optimized from VRP due to 
combinatorial explosion. II) Heuristic 
methods (such as the VRP) present difficulty 
in solving problems involving multiple 
constraints. 

Mixed Nonlinear Integer Programming 
(MILNP) -Redundancy optimization 
problem (ROP) -Nourelfath & Dutuit 
(2004); Kim & Yun  (1993); Shafiee et.al  
(2011). 

I) The design objective is achieved by 
choices made from elements available on the 
market. II) For a problem with monotonically 
non-decreasing constraints (which is 
generally true for the redundancy 
optimization problem), the Kohda and Inoue 
algorithm performs a series of selection and 
exchange operations within the region (i.e., a 
selected solution by a certain criterion is 
examined by subtracting a redundancy from 
one subsystem and adding a redundancy to 
another to see if this trade-off produces an 
improved viable solution) 

I) Studies that apply it assume unlimited 
repair resources to solve it. II) The 
redundancy optimization problem is usually 
formulated as a nonlinear integer problem 
that is difficult to solve due to the 
considerable amount of computational effort 
required to find an exact optimal solution. 



ijbm.ccsenet.org International Journal of Business and Management Vol. 19, No. 3; 2024 

15 
 

 
The current analysis of the quantitative techniques leads to the belief that some methods still lack a detailed 
conceptual development so that they can be consolidated as applicable and useful models. The case of 
Scheduling techniques shows that heuristic models, although easy to implement, constitute suboptimal modelling, 
indicating the most likely path to reach an interesting solution to the problem, albeit neither a definitive nor a 
best set of solutions. 
Some techniques, albeit relevant for theoretical research, are not characterised as pertaining to the systematic 
groups considered in the current theoretical review, this is due to several factors, such as: i) a qualitative 
approach; ii) investigation focused on cyclicality in energy generation as well as its effects on the predictability 
of energy losses; iii) mapping of the main stakeholders; iv) development of surveys that seek to map the various 
decisions necessary for the elaboration of maintenance strategies; and v) associations with some complementary 
technique (Devriendt et.al, 2014; Shafiee, 2014;Optehostert et al., 2017; Ahsan & Pedersen, 2018; Dao et.al, 
2021; Rezamand et al., 2021). 
Thereby, it is relevant to elucidate some concepts that are useful in the real situations of maintenance planning 
and the integration of the groups of methods considered so far: i) The concept of base condition for maintenance 
takes into account the real situation of an asset in order to decide which maintenance should be done, presenting 
indicators catalogued continuously; ii) Condition-based monitoring in maintenance is focused on preventing 
asset failures, downtime and unnecessary practices, monitoring the health of assets to determine what 
maintenance needs to be completed and when (Scarf, 2007; Srinivasan & Parlikad, 2013; Ali & Abdelhadi, 2022); 
and iii) Maintenance health diagnostics which are used to readily identify the health status of the equipment, 
besides distinguishing and determining fault locations and the requirements for effective maintenance of a given 
device.  
It presents the application of Artificial Intelligence to situations involving preventive maintenance and health 
diagnosis based on qualitative information (e.g., service reports) and quantitative (e. g., vibrations and sensor 
data). They attest to the need for inspection and issuance of work orders, as well as managerial decisions to carry 
out the repairs, in a situation in which it is minimally required to understand and predict the weather conditions 
in loco as well as predictability of the wind turbine power. Thus, it is possible to determine material and human 
resources that should be committed to this maintenance. 
4. Conclusions 
The current work describes the main quantitative techniques, their advantages, disadvantages and overall 
application within offshore wind energy production. However, some questions remain open due to the extensive 
theoretical material available about the theme, showing potential for future research on many areas; for instance, 
the dimensioning of the variables involved in the base condition problems and maintenance monitoring of 
offshore wind turbines. 
Another key point for future investigations is related to the scope of the study focused on the offshore scenario; 
some of the considerations presented are also applicable on the onshore reality, as long as they are duly 
substantiated. Countries such as Brazil (in which the research was based), for instance, have extensive areas that 
can be used for onshore wind energy generation and, therefore, there is a substantial demand for theoretical 
discussion to support the decision-making process of this emerging renewable energy industry. 
As for quantitative techniques, the study revealed that it is necessary to integrate methods to overcome their 
advantages and disadvantages in a real context. Some of these models are studied separately and their advantages 
and disadvantages are not properly explored, at least in theory, which limits further understanding. 
During the current research, it was identified that studies on maintenance optimization of offshore wind turbines, 
regardless of the techniques addressed, consider the reliability curve to predict possibilities of failure in the 
maintenance function. From the mathematical and conceptual point of view of maintenance management, this 
technical direction is acceptable; although, from the point of view of comfort in the decision, there are potential 
limitations. The decision maker may not understand the real meaning of reliability (categorised by very clear 
indicators such as MTBR, MTTF and other interferences). In this sense, it is suggested that future works may 
consider the risk function as a frontier (and not reliability) for decision-making regarding the maintenance of 
offshore assets, particularly wind farms and their wind turbines; Given that it is understood that the risk function 
(odds) better translates the subjectivity of the decision-maker and allows for a decision-making process that is 
more sensitive to losses due to unscheduled stops, penalties arising from the need to man crews for maintenance 
at sea, and, consequently, the costs arising from these maritime operations. 
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As for the research limitations, it is necessary to point out, firstly, the possibility of the likelihood of bias in the 
review, given the subjective aspects of the analysis, even after the consultation of the extensive theoretical 
framework presented. Secondly, the systematisation of the models presented was also complex due to the 
peculiarities of each algorithm under discussion, which required a specific theoretical study to detail their 
particularities, which constitutes a recommendation by the authors so that future applications of these techniques 
are carefully carried out under the supervision of data scientists and specialists in computational mathematics. 
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