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Abstract 
The purpose of this paper is to suggest an instructional approach in the introductory business statistics course 
that utilizes relationships between separately introduced topics. The paper will explore three “useful 
relationships” that can assist classroom instruction: (1) the relationship between the simple arithmetic mean, the 
weighted arithmetic mean, and the expected value of a discrete probability distribution; (2) the relationship 
between the use of the multiplication rule to calculate the joint probability associated with two events, use of tree 
diagrams, and the use of the binomial and hypergeometric distributions; and (3) the relationship between the 
geometric mean and the compound interest rate. Each discussion includes detailed examples of calculations to 
demonstrate the relationships.  
Keywords: statistics, teaching statistics, teaching pedagogy 
1. Introduction 
In most any courses of instruction, students receive a considerable amount of information that, to them, appears 
unrelated and isolated. This inability to relate topics is particularly apparent in the introductory business statistics 
course. 
Students in an introductory business statistics course receive instruction in a variety of topics including 
descriptive statistics, probability and probability distributions, inferential statistics, and regression analysis. As 
part of the instruction, a large number of equations are utilized. In many cases each equation appears, to many 
students, to be totally unrelated to any material previously studied. In such circumstances, the students believe 
that each topic is independent and that the material learned previously does not help in understanding a new 
topic. Such thinking is really far from reality. 
The reality is that there are many useful relationships that exist among different statistics topics. If these 
relationships are noted and explained, students are frequently able to learn new topics more easily. The learning 
process is supported by previously learned material, and thus the relative proportion of new material to learn is 
reduced, sometimes significantly. While some textbooks do a good job of identifying these relationships, an 
instructor may choose to supplement a text to accommodate alternate learning styles. 
Students learn in different ways. As suggested by Fleming and Mills (1992), the primary four modes of learning 
are: (1) Visual, (2) Aural, (3) Read/Write, and (4) Kinesthetics [Hands-on]. However, regardless of how a student 
learns, reinforcement of a new topic by connecting a previous topic can be useful in developing the new topic. 
This paper presents three “useful relationships” that can assist classroom instruction. The paper explores (1) the 
relationship between the simple arithmetic mean, the weighted arithmetic mean, and the expected value of a 
discrete probability distribution; (2) the relationship between use of the multiplication rule to calculate the joint 
probability associated with two events, use of tree diagrams, and the use of binomial and hypergeometric 
distributions; and (3) the relationship between the geometric mean and the compound interest rate. Each 
relationship will be discussed utilizing detailed examples.  
2. Material Studied 
While the use of relationships in teaching Statistics offers a fresh approach, a review of the literature reveals a 
variety of methodologies designed to enhance student learning. Kellogg’s (1939) recognition of student fear as a 
primary challenges in teaching statistics led to his conclusion that “by changing teaching methods temporary 
improvement may be accomplished” (p. 305). Others have similarly cited the difficulty in teaching statistics as a 
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basis for alternate teaching methods (Khan, 2013; Prabhakar, 2008).  
Still others have focused on the importance of active forms of learning. In their literature review of how students 
learn statistics, Garfield and Ben-Zvi (2007) rely on the work of Keeler and Steinhorst (1995), Giraud (1997), 
Magel (1998), and Meletiou and Lee (2002) in concluding that cooperative learning generally yields positive 
results. Additionally, Hillmer (1996) proposes a problem-solving approach that aligns examples with the daily 
data analysis needs of managers. Johnson and John (2003) advocate for the use of demonstrations and 
experiments. Gandhi (2006) stresses the importance of communicating results, as do Green, Jones, and Bean 
(2015), who present a strategy for using scaffolded communication assignments to enhance depth of student 
learning.  
The need for a variety of teaching methods, including active learning techniques, better accommodates 
differences in student learning styles. As a result of his review of statistics courses across multiple disciplines, 
Garfield (1995) offers eight principles for learning statistics. In doing so, he stresses the importance of regular 
assessment and an openness to alternate teaching methods. Strasser and Ozgur’s review of teaching 
methodologies (1995) also highlights the use of presentations, demonstrations, and cases as important 
alternatives to lecture.  
Further evidence is provided by Lockwood, Ng, and Pinto (2007), who apply diverse learning and teaching 
styles to the interpretation of statistical results. They use team projects as a way of encouraging cooperative 
learning and ultimately find improvements in attrition and student learning. Similarly, Dunn, Carey, Richardson, 
and McDonald (2016) explore the role of linguistic challenges in teaching statistics. They present several 
methods for overcoming these challenges, and ultimately encourage instructors to be flexible in their teaching 
methods and adapt to the needs of learners.  
Existing research highlights the benefits of using multiple teaching methods. This paper offers useful 
relationships as one technique for using variety and repetition to enhance student learning.  
3. Methods and Techniques 
3.1 The Relationship between the Simple Arithmetic Mean, the Weighted Arithmetic Mean, and the Expected 
Value of a Discrete Probability Distribution 
As part of the first few weeks of a basic statistics course, the following three equations are usually introduced. 
Equation (1) is for the simple arithmetic mean (sample data); Equation (2) is for the weighted arithmetic mean; 
and Equation (3) is for the expected value (for a discrete probability distribution). 𝑋ത =  ∑ ௑௡ =  ௑భା ௑మା௑యା ...ା௑೙௡                                   (1) 
Where: 𝑋ത = arithmetic mean 
x = each data item 
n = number of data items 𝑋ത𝑤 =  ∑(ௐ௑)∑ ௐ =  ௐభ௑భା ௐమ௑మାௐయ௑యା ...ାௐ೙௑೙௪భା௪మା ௪యା⋯ା௪೙                            (2) 
Where: 𝑋തw = weighted arithmetic mean 
X = each data item 
W = weight for each data item 𝜇 = 𝐸(𝑋) =  ∑[𝑥𝑃(𝑋 = 𝑥)] = 𝑥ଵ𝑃( 𝑋 = 𝑥ଵ) + 𝑥ଶ𝑃(𝑋 = 𝑥ଶ) +  𝑥ଷ𝑃(𝑋 = 𝑥ଷ)+. . . +𝑥௡𝑃(𝑋 = 𝑥௡)  (3) 
Where: µ = E(X) = mean of a discrete probability distribution 
x = each data item 
P(X=x) = probability of each data item 
First, using the data set (2, 4, 6, 8, 10), the relationship between Equation (1) and Equation (2) can be examined. 
Substituting the values (2, 4, 6, 8, 10) into Equation (1) produces the following result.  

𝑋ത =  ∑ 𝑥𝑛  = 2 + 4 + 6 + 8 + 105 =  305  

𝑋ത = 6 

Next, using Equation (2) and the same data set (2, 4, 6, 8, 10) results in the following solution, with equal 
weights (arbitrarily choosing the weight = three). 
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𝑋ത𝑤 =  ∑(௪௫)∑ ௪   =  ଷ(ଶ)ାଷ(ସ)ାଷ(଺)ାଷ(଼)ାଷ(ଵ଴)ଷାଷାଷାଷାଷ  = ଺ାଵଶାଵ଼ାଶସାଷ଴ଵହ   = ଽ଴ଵହ 𝑋ത𝑤 = 6 

Thus, by using a simple data set, the equivalency of Equation (1) and Equation (2) is demonstrated. This 
equivalency occurs when the weights (Ws in Equation (2)) are “equal”. That is, if the values (such as 2, 4, 6, 8, 
10) are equally important, Equation (1) or Equation (2) will produce the correct answer. 
The next step is to relate Equation (2) to Equation (3). The first relationship to point out is that the P(X=x)s in 
Equation (3) are really weights and thus they have the same importance in Equation (3) as the Ws have in 
Equation (2). Using the discrete probability distribution shown below, the equivalency of Equation (2) and 
Equation (3) can be demonstrated. 
 
Table 1. Hypothetical discrete probability distribution 

x P(X=x) 
2 0.2 
4 0.2 
6 0.3 
8 0.2 
10 0.1 

 
Using Equation (3), the expected value (5.6) is calculated as shown below.  

𝜇 = 𝐸(𝑋) =  ෍[𝑥𝑃(𝑋 = 𝑥)] 
𝜇 = 2(0.2) + 4(0.2) + 6(0.3) + 8(0.2) + 10(0.1) 𝜇 = 0.4 + .8 + 1.8 + 1.6 + 1.0 𝜇 = 5.6 

And using Equation (2), the weighted arithmetic mean computation yields the results below. 

𝑋ത𝑤 =  ∑(𝑊𝑋)∑ 𝑊   =   .2(2) + .2(4) + .3(6) + .2(8) + .1(10). 2 + .2 + .3 + .2 + .1   =  0.4 + 0.8 + 1.8 + 1.6 + 1.01.0    =   5.61  
𝑋ത𝑤 =  5.6 

After using Equation (2) and Equation (3), it can be observed that both equations yield the same value for the 
mean (expected value) of 5.6. This equivalency occurs because the probability numbers are the same as weights. 
For example, referring to Table 1, the variable (x = 2) has P(x = 2) = 0.2, and variable (x = 10) has P(x = 10) = 
0.1, thus x = 2 is twice as important as x = 10. Consequently, the probability numbers are really weights which 
allows the use of Equation (2) or Equation (3). 
Summarizing the preceding discussion, it can be pointed out that Equation (1), used to calculate the simple 
arithmetic mean, is a special case of Equation (2) where the weights (Ws) are all equal to one (W = 1). Further, it 
can be pointed out that Equation (2) and Equation (3) are equivalent because the ∑ 𝑊 = ∑ 𝑃 = 1.00. So, both 
equations are utilizing the same weighting scheme and thus yield the same result. 
Finally, it is also useful to demonstrate that when the weights (also probabilities) are equal that Equations (1), (2), 
and (3) will yield identical answers when using the same data set. 
 
Table 2. Comparison of three data sets 

Data Set For
Equation (1)

Data Set for 
Equation (2)

Data Set for 
Equation (3)

x x W x P(X=x)
3 3 3 3 .25 
6 6 3 6 .25 
9 9 3 9 .25 
12 12 3 12 .25 
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Now, let’s see how the binomial does the same thing. The binomial distribution utilizes Equation (5) to calculate 
exact probabilities of specific outcomes and is appropriate when there are two outcomes (such as red and green) 
and replacement is utilized. 𝑃(𝑋 = 𝑥)        =    𝐶௫𝑝௫(1 − 𝑝)௡ି௫௡            (5) 
Where: P(X = x) = probability that a particular event (X = number) will occur 
n = number of trials 
x = number of items of interest 𝐶௫ = 𝑛!𝑋! (𝑛 − 𝑋)! (𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑜𝑟𝑖𝑜𝑙 𝑓𝑜𝑟𝑚𝑢𝑙𝑎]௡  

p = probability of item of interest 
1-p = probability of other item 
Thus the following calculations can be made. 
Probability of one red marble (item of interest) when n = 2, x=1, p = 0.6. 𝑃(𝑋 = 𝑥)      =    𝐶௫𝑝௫(1 − 𝑝)௡ି௫௡  𝑃(𝑋 = 1)      =    𝐶ଵ(0.6)ଵ(0.4)ଵଶ    =    2(0.6)(0.4) 𝑃(𝑋 = 1) = 0.48 [same answer produced by Eq. 4 and tree diagram (Figure 1)] 
Probability of two red marbles when n = 2, x = 2, p = 0.6. 𝑃(𝑋 = 𝑥)      =    𝐶௫𝑝௫(1 − 𝑝)௡ି௫௡  𝑃(𝑋 = 2)     =   𝐶ଶ(0.6)ଶ(0.4)଴ଶ    =    1(0.36)(1) 𝑃(𝑋 = 2)  = 0.36 
Probability of zero red marbles when n = 2, x = 0, p = 0.6. 𝑃(𝑋 = 𝑥)     =   𝐶௫𝑝௫(1 − 𝑝)௡ି௫௡  𝑃(𝑋 = 0)     =   𝐶଴(0.6)଴(0.4)ଶଶ     =    1(1)(0.16) 𝑃(𝑋 = 0)  =  0.16 
Thus, we have demonstrated that P(X = one red) [probability of selecting one red marble in two draws using 
replacement] = 0.48 can be calculated using: (1) the multiplication equation for two independent events 
[Equation (4)], (2) a tree diagram, or (3) the binomial distribution [Equation (5)]. Now let’s examine the 
hypergeometric distribution.  
3.2.2 The Hypergeometric Comparison 
Now, let’s examine the same situation when the experiment is conducted using no replacement (dependent 
events). The following situation will be utilized. 

GIVEN: An urn with 6 red marbles and 4 green marbles 
REQUIRED: Probability of selecting one red marble using two draws without replacement 

First, as we did with the binomial situation, we will calculate the probability of one red marble using the 
multiplication rule when there are dependent events (no replacement). Equation (6) is given below.  

P(A and B) =  P(A) • P(B\A)                        (6) 
Where: P(A and B) = probability that both A and B will occur 
P(A) = simple probability that event A will occur 
P(B\A) = conditional probability that event B will occur after event A has occurred. 
The conditional probability provides the probability that a particular event will occur after a previous event has 
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Where: P(X = x) = probability that a particular event [X = number] will occur 
x = number of items of interest in the sample 
N1 = number of items of interest in the finite population 
N2 = number of all other items in the finite population 
N = N1 + N2 
n = sample size selected with no replacement. 
Using Equation (7), the following calculations are made. 
Probability of one red marble when n = 2, x = 1, N1 = 6, and N2 = 4  

𝑃(𝑋 = 1)        =     𝐶௫ 𝐶௡ି௫ேమேభ 𝐶௡ே = 𝐶ଵ ସ𝐶ଵ଺ 𝐶ଶଵ଴ = ൤ 6!1! (6 − 1)!൨ ൤ 4!1! (4 − 1)!൨10!2! (10 − 2)!  

=  ቂ6 · 5!1! 5! ቃ ቂ4 · 3!1! 3! ቃ10 · 9 · 8!(2!)(8!)  

𝑃(𝑋 = 1) = (଺)(ସ)వబమ  = ଶସସହ = 0.533 

Where: N = 10 
N1 = 6 (Red) 
N2 = 4 (Green) 
n = 2 
x = 1 (red) 
n - x = 2 - 1 = 1 (green) 
Probability of two red marbles when n = 2, x = 2, N1 = 6, and N2 = 4 𝑃(𝑋 = 2)       =     𝐶௫ 𝐶௡ି௫ ேమேభ 𝐶௡ே = 𝐶ଶ ସ𝐶଴଺ 𝐶ଶଵ଴ = 1545 = 0.333 

Probability of zero red marbles 𝑃(𝑋 = 0)     =     𝐶௫ 𝐶௡ି௫ ேమேభ 𝐶௡ே = 𝐶଴ ସ𝐶ଶ଺ 𝐶ଶଵ଴ = 645 = 0.133 

As we did with the binomial, we have now demonstrated the same situation under the condition of selecting 
without replacement which makes the hypergeometric probability distribution the appropriate discrete 
probability distribution to employ. The P(X = one red) [probability of selecting one red marble in two draws 
without replacement] = 0.533 has been calculated three different ways: (1) the multiplication equation for 
dependent events, (2) a tree diagram, and (3) the hypergeometric probability distribution. The fact that each 
calculation yields the same answer confirms the relationship between the different solution approaches.  
3.3 The Relationship between the Geometric Mean and the Compound Interest Rate  
The measure of central tendency known as the geometric mean is calculated using Equation (8). Arithmetically, 𝐺𝑀   =        ඥ(𝑋ଵ)(𝑋)ଶ(𝑋ଷ) … (𝑋௡)೙                                (8) 
Where: x = each data item 
n = number of data items 
For example, consider the four data items (6, 8, 9, 12). The geometric mean would be (using Equation (8)):  𝐺𝑀   =        √6 · 8 · 9 · 12ర = √5 184ర = 8.4853 
At this point, the calculation of GM appears to produce a rather abstract number. Actually, this calculation has a 
significant financial interpretation: the geometric mean is calculating the average per period change for a given 
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data set. Consider the following example. 
 
Table 3. Geometric mean calculation 

(1) (2) (3) 
Period Data ($) Percent of Previous Period
1 1 000 -- 
2 1 075 1.0750 
3 1 120 1.0419 
4 1 200 1.0714 
5 1 300 1.0833 

 
Column (2) presents five data items occurring in five sequential periods (column (1)). The third column 
calculates the ratio of two adjacent columns: for example, Data item from period (3) divided by Data item from 
period (2) = 1 120/1 075 = 1.0419. Using the column (3) information and Equation (8), the geometric mean is 
calculated as follows 𝐺𝑀    =     ඥ(1.0750)(1.0419)(1.0714)(1.0833)ర  𝐺𝑀    =     √1.2999747ర   = (1.2999747).25 𝐺𝑀    =     1.06778 
and the financial interpretation is shown below. 
Average percentage change per period = GM – 1 = 1.06778 – 1 = 0.06778. 
Financially, this average percentage change per period is the equivalent of an average rate of interest needed to 
grow an initial value to a future value in a particular number of periods. This growth effect is known as the 
compounding effect. That is, each year, the principle earns interest; and after year one, the interest also earns 
interest. So, to accurately determine the future value of an initial value that increases at a particular interest rate, 
the geometric mean is appropriate. 
To demonstrate the financial interpretation, Equation (9) is utilized. 

Future value = [Initial Value] * [1 + average percentage change per period]n-1        (9)  
Where: Future value = the final value after the initial value is increased by the number of compounding periods 
by the average percentage increase per period 
Initial value = first data item 
Average percentage change per period = GM - 1  
n = number of data items 
n-1 = number of compounding periods 
Using Equation (9), the future value of 1 000 after four (5-1) periods of change is calculated as follows 

Future value = (1 000)(1 + 0.06778)4= (1 000)(1.29995)= 1 299.95 𝑜𝑟 1 300.00 

Referring back to Table 3, it is noted that the period one value of $1 000 becomes $1 300 in period five after four 
changes in the five periods. 
Now, a final comment for this section introduces Equation (10), which is a more direct (quicker) calculation for 
the average percentage change per period. 

Average percentage change per period = ටி௨௧௨௥௘ ௏௔௟௨௘ூ௡௜௧௜௔௟ ௏௔௟௨௘೙షభ − 1               (10) 

Where: Future value = ending desired value 
Initial value = beginning value 
n-1 = number of compounding periods 
Then, using Equation (10) and previous data: 
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Average percentage change per period = ටଵ,ଷ଴଴ଵ,଴଴଴ర − 1 =√1.3ర − 1= (1.3).25 – 1=1.06778 -1 

Average percentage change per period = 0.06778 
4. Conclusion 
The purpose of this paper is to present and encourage the utilization of “relationships” that are present in 
statistics but often appear to be isolated topics to students. Three such relationships are discussed in detail: (1) 
the relationship between the simple arithmetic mean, the weighted arithmetic mean, and expected value of a 
discrete probability distribution; (2) the relationship between the use of the multiplication rule to calculate joint 
probabilities, use of tree diagrams, and the use of the binomial and hypergeometric probability distributions; and 
(3) the relationship between the geometric mean and the compound interest rate. Identifying, discussing, and 
demonstrating “relationships” such as the three discussed in this paper will assist the student in understanding 
more fully relationships that are not immediately obvious. 
The use of detailed examples to demonstrate these three handy relationships incorporates both use of equations 
and where appropriate, the use of tree diagrams. Using equations and tree diagrams coupled with a detailed 
discussion of the examples reaches several different learning modes:  
(1) Aural through hearing a thorough lecture demonstrating the use of the equations utilizing example 
problems plus a thoughtful selection and discussion of frequently asked questions. 
(2) Visual through seeing the equations and diagrams (such as a tree diagram) presented on the board or using 
powerpoint plus providing a detailed handout of the equation and pictures such as tree diagrams for the student 
to have and review.  
(3) Read/write through providing detailed printed material of equations and problem solutions plus devoting 
class time to reading and writing solutions to problems incorporating the previously discussed equations. 
(4) Kinesthetic through a combination of seeing equations and tree diagrams plus devoting class time to the 
actual drawing of tree diagrams and creating sample problems that demonstrate the equations that were discussed 
in the lecture.  
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