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Abstract 
Partial insolvency in leasing contracts may entail to afford additional late payment costs. In this paper we focus 
on the case that the lessee makes partial payments in due time and settles the debt augumented by the late 
payment interests later. The presence of the extra-costs drives the lease Effective Annual interest Rate (EAR) to 
deviate from the lease contract rate. The aim of this work is to illustrate how design the contract payback 
amortization to stick EAR to the lease contract rate, when the lease contract rate, the late payment rate and the 
contract term are exogeneously fixed. First we achieve a proxy for EAR given by the lease contract rate plus an 
extra-charge rate addendum. We show that this latter addendum is sensitive to the payback Macaulay Duration, a 
weighted size and timing average. Specifically, the longer the Macaulay Duration, the smaller the extra-charge 
rate addendum. As a consequence, two general rules to drive EAR close to the lease contract rate roll out, 
specifically: (1) the payment pattern should be set with a long Macaulay Duration; and (2) the surrender value of 
the leased good should be put large. As the contract settlement is given, we show that EAR is delimited by a 
lower bound and an upper bound. Then the payback amortizations with fixed instalments are studied. To get 
insight on the importance of EAR inputs we roll sensitivity analysis out through illustrative applications. The 
results of the paper are useful to provide policymakers a better knowledge about the effects on EAR of the 
contract conditions on the pattern of payments. 
Keywords: consumer credit, Effective Annual interest Rate (EAR), late payment fees, Macaulay duration, partial 
insolvency, policy 
1. Introduction 
An evergreen issue in designing leasing contract conditions is to keep the Effective Annual interest Rate (EAR) 
under control in the presence of extra-costs. In recent times the question has become even more pressing due to a 
growing number of insolvencies of payments by debtors. Consequently, the need to monitor the cost of credit 
plays a significant role so that it is kept below some interest rate caps on loans imposed also by the legislation of 
various countries (see Maimbo & Gallegos, 2014, Migliavacca et al., 2018). The main reason for using interest 
caps on loans is to protect consumers from excessive interest rates, to increase access to finance and to make 
loans more affordable.  
Within this policy framework, this article analyses the extra-costs effects on EAR when the lessee is partially 
insolvent and the contract interest rate, the late payment rate and the contract term are exogeneously fixed at the 
beginning of the contract. We get insights on the link between the cashflow pattern and the EAR under lessee’s 
partial insolvency. Our main result concerns to show that the Macaulay Duration (Macaulay, 1938) a weighted 
size and timing average, can be used as a worthwhile sensitivity measure of the effects of extra-costs on EAR.  
Designing leasing contract conditions that allow to move EAR - all else being equal - is a key issue in developing 
contract conditions on the pattern of payments (see Carretta & Nicolini, 2009; Quattrocchio et al., 2018). A 
general rule comes out: to stick EAR to the contract lease rate the Macaulay Duration should be set long. 
We also carry out a number of simulations to assess the robustness of our results and to stress test for different 
types of patterns of contractual payments characterized by different Macaulay Durations. 
The remainder of the paper is organized as follows. In Section 2, the model is set up. In Section 3 we study the 
impact on EAR of the payment payback settlement. In Section 4 we study the case of the payment of fixed 
payments and the possible option of the payment of the surrender value at the contract terminal date. Section 5 
presents our results through simulations and discusses the outcomes of several sensitivity checks. Section 6 
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concludes the note. The proofs are collected in the Appendix. 
2. Notation and Layout of the Model 
We lay out the notation used throughout the paper. Let 
• A be the leased amount, that is to be intended as the sum of the good price plus the initial costs needed to 
settle the contract;  
• i be the annual compound lease contract rate;  
• n be the number of installments of the contract. To explanatory purposes we assume that the installments 
are annually paid and so, n coincides with the contract terminal date;   
• 0sR ≥  be the payment due at the date s, with 1,...,s n= . Each sR  is given by the sum of the capital 
share and the interest share; 
• E with 0E ≥  be the surrender value of the leased good to be paid at the date n in addition to the last 
payment nR  so that the payments sR , 1,...,s n= , with E payback the initial debt A 
• ρ , with 0 1ρ≤ ≤  be the fixed percentage of the instalment paid in due time; 
• sRρ ⋅  be the amount paid at the date s, with 1,...,s n= ; 
• ( )1 sRρ− ⋅  be the unpaid amount at the date s, with 1,...,s n= ; 
• m be the late payment annual interest rate. Usually the annual late payment interest rate is given as a 
nominal annual interest rate convertible the same number of times of the installments in a year. Without loss of 
generality, we can indicate with m the periodical compound interest rate with the same period of installments 
dates where, in this paper, the period is the year. 
We assume that contract expires at the date n, when the lessee pays the last installment plus the unpaid amounts 
augumented by the late payment interests and the surrender value if provided for by the contract. 
The basic contract conditions are assumed to hold, see for example Brealey et al. (2014) and Yoshida et al. (2016, 
and the literature cited therein). We assume that the payments sR , 1,...,s n=  are arbitrary chosen and solve the 
payback closure condition, i.e.  

( ) ( )1 1 1

n
s

s n
s

R EA
i i=

= +
+ +

                               (1) 

Under the constraint (1) there are infinite different ways to settle the payment stream sR , 1,...,s n= . In the 
following we will give a guide to select to proper payback amortization in order to move EAR toward an 
appropriate target value. 
By definition the Net Present Value (NPV) at the lease contract rate i of the contract is null 

( )
( ) ( )1

0
1 1

n
s

s n
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= − − =
+ +

  

3. Partial Payments in Fixed Percentage of the Due Amounts 
Let us assume that the lessee pays a fixed percentage ρ , with 0 1ρ≤ ≤  of the payment in due time. So the 
amount sRρ ⋅  with 1,...,s n=  is paid in due time. The unpaid amounts overcharged by the late payment 
interests are settled at the contract expiration date n. 
The Discounted Cash Flow of the contract including the extra-costs caused by payment delays is given by the 
Net Present Value ( lateNPV ) 
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 

 
            (2) 

Where x is the annual interest rate used for discounting.  
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By definition the Effective Annual interest Rate (EAR) of the contract solves the following equation (Note 1) 

( ) 0lateNPV EAR =                                     (3) 

By construction ( )lateNPV x is a strictly increasing function in x. In the following we set conditions to sign the 

spread between EAR and the contract lease rate. 
Remark 1. The impact of the late payment interest rate on EAR 
Let the contract payments sR , with 1,...,s n=  be regularly paid in fixed percentage ρ , with 0 1ρ≤ ≤  and 
the outstanding debt overcharged with the late payment rate m be settled through a lump-sum payment at the 
contract term n. Let the lease contract rate i, the late payment rate m and the contract term n be exogenously 
given. The sign of the spread between EAR and the lease contract rate i is driven by the late payment rate 

a. if m i<  then m EAR i< < ; 
b. if m i=  then EAR i= ; 
c. if i m<  then i EAR m< < . 

See Appendix A for the proof.  
Remark 1 spotlights the impact of the late payment rate in defining EAR bounds. Under cheap late payment 
conditions, i.e. m i< , EAR flaws lower than the contract lease rate; vice versa under expensive late payment 
costs, i.e. m i> , EAR goes higher than the contract lease rate. If m i=  late payments have no effect on EAR.  
3.1 A Measure of the Spread between EAR and the Contract Lease Rate 
Now we are ready to formulate an EAR proxy. 
Result 1. An “extra-charge rate addendum” 
A proxy of EAR is given by the sum of lease contract rate i plus an “extra-charge rate addendum”  

( )
( ) ( ) ( )

( )
( ) ( )
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1 1

' 1 1

n
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n
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M E i ANPV i
EAR i i i

NPV i A D M E i n
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ρ ρ

−

−

 + ⋅ + −−  ≅ + = + + ⋅ − ⋅
 ⋅ ⋅ + − ⋅ + ⋅ + ⋅ 

           (3.1) 

where  

• 
( )1

1
1 1

n n
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s

RmM
i m=

+ = ⋅ +  +
                                                         (3.1.1) 

is the present value at the lease contract rate i of the lump-sum due at the contract term n if no payments are 
made before; 

• 1 1

1
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
, with 1 D n≤ ≤   

is the Macaulay Duration of the contract payback discounted at the lease contract rate i. The Macaulay Duration 
is a well-established and practical concept in finance literature (see Macaulay, 1938; de La Grandville, 2003) and 
permits to summarizes, in a single time number, the relevant characteristics of contract payments (size and 
timing). 

The term 
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                  (3.2) 
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is called the “extra-charge rate addendum”. Clearly, if 1ρ =  and payments sR  with 1,...,s n=  are regularly 
paid, 0ε = . 
By Remark 1. the EAR proxy (3.1) can be re-written: 

a. if m i<  , then ( ) ( )
( )

( ) ( )
1

1 1
1 1

n

n

M E i A
m EAR i i i

A D M E i n
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ρ ρ
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−

 + ⋅ + − < ≅ − + ⋅ − ⋅ <
 ⋅ ⋅ + − ⋅ + ⋅ + ⋅ 

; 

b. if m i=  , then EAR i=  ;                                                          (4) 

c. if i m< , then ( ) ( )
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M E i A
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 + ⋅ + − < ≅ + + ⋅ − ⋅ <
 ⋅ ⋅ + − ⋅ + ⋅ + ⋅ 

 

where ...  stands for the absolute value operator. See the proof in Appendix B. 

3.2 The Impact of the Pattern of Payments on EAR 

The choice of the contract payback settlement plays a crucial role in the determining the late extra-charges. As 
intuition suggests if “small payments come first and large payments come later”, in the event of partial 
insolvency, the late payment costs turn low because the late payment costs are computed for small amounts, 
although for long periods. Under this payback schedule, EAR is expected to be close to the contract lease rate i. 
Vice versa if “large payments come first and small payments come later”, the late payment costs are expected to 
be expensive, because the late payment costs are referred to large amounts and computed for long periods. In 
such circumstances EAR is expected to be significantly divergent from the contract lease rate i. 
The Macaulay Duration D of the contract payback, where 1 D n≤ ≤  allows to formalize the above intuitive 
reasoning. D achieves its minimum and maximum when the payment streams are concentrated in a lump-sum at 
the extreme dates, more precisely: 

• the minimum 
1

1
min

(1 ) (1 ) nR i n E iD
A

− −⋅ + + ⋅ ⋅ +
=  is achieved if the payment payback provides a 

lump-sum at the time 1, i.e. the payment stream is ( ) 1
1 21 (1 ) ,    0,..., 0n

nR A i E i R R− += ⋅ + − ⋅ + = =  and 

the surrender value E payment at the time n; and   
• the maximum maxD n=  is achieved if contractual payback provides the contract payment stream 

1 2 10, 0,..., 0nR R R −= = =  and ( )1 n
nR A i E= ⋅ + −  and the surrender value E payment at time n.. 

By properly choosing the payback schedule we can drive EAR in (3.1) to approach or diverge from the contract 
lease rate. 
Result 2. The Macaulay Duration as a sensitivity measure of the lease contract rate and EAR spread 
Let the contract period n be fixed and the contract payments sR , with 1,...,s n=  and the surrender value E 
satisfy the closure condition (1), then 
• the more “the small payments come first and the large payments come later”, the more the Macaulay Duration 

D goes long and the more EAR approaches to the contract rate i; 
• the more “the large payments come first and the small payments come later”, the more Macaulay Duration D 

goes short and the more EAR diverges from the contract rate i. 
See Appendix C.1 and C.2 for the proofs. 
A way to complain the condition “the small payments come first and the large payments come later” is to 
provide the payment stream sR  with 1,...,s n=  increasing in size. A further strategy is to provide for a large 
surrender value E to be paid at the date n. In fact, a large payment at the terminal date n reduces the payments 
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sR , with 1,...,s n=  and it pushes the Macaulay Duration toward maxD n= . Vice versa, to complain the 
condition “the large payments come first and the small payments come later” the payments sR  with 1,...,s n=  
should be set decreasing in amount and the surrender value E should be set small. 
Now we are ready to identify a lower bound and an upper bound for EAR. By (3.1) the maximum divergence of 

EAR from the contract rate i occurs when the absolute value of the extra-change addendum ε  is maximum. 

The extreme values for EAR occur if the contract payments sR  with 1,...,s n=  are settled to minimize the 

Macaulay Duration D, i.e. 
1

1
min

(1 ) (1 ) nR i n E iD
A

− −⋅ + + ⋅ ⋅ +
=  (see Result 2) therefore the payment stream is 

( ) 1
1 2 1 (1 ) ,     0,..., 0n

nR A i E i R R− += ⋅ + − ⋅ + = =  and E is paid at time n. The extreme EAR value, denoted by 

minDAPR solves the equation 

( ) ( ) ( ) ( )
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nn n
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x x x

ρ ρ −− + − +   ⋅ ⋅ + − ⋅ + − ⋅ ⋅ + − ⋅ + ⋅ +   − − − =
+ + +

 

Result 3. A lower bound and an upper bound for EAR  
Let the contract payments sR , with 1,...,s n=  be regularly paid in fixed percentage ρ  with 0 1ρ≤ ≤  and 
the outstanding debt overcharged, the late payment extra-costs and the surrender value E settled at the contract 
term n. Assume that the lease contract rate i, the late payment rate m and the contract term n be exogenously 
given: 

a. if m i<  then 
min

min DEAR EAR= , that is approximated by 
min

min DEAR i ε≅ − . The minimum EAR 

is obtained because of taking advantage of the cheap late payment extra-costs. This advantage is 
emphasized by minD  such that large unpaid payments are settled at cheap late payment costs at date n 

min
min maxD D nEAR EAR EAR EAR EAR i== ≤ ≤ = = ; 

b. if m i=  then EAR i= ; 

c. if i m<  then 
min

max DEAR EAR=  that is approximated by 
min

max DEAR i ε≅ + . The maximum EAR 

is due to the expensive late payment costs which are settled at expensive late payment costs at date n 

min
min maxD n DEAR EAR i EAR EAR EAR== = ≤ ≤ =  

The proof follows from Result 2. 
3.3 Strategies to Design Leasing Contract Conditions to Meet the Appropriate EAR Target 
Designing leasing contract conditions that allow to move EAR toward an appropriate target is a key issue in 
developing contract conditions.  

Cheap late payment charges (i.e. m i< ) may incentive the lessee to delay payments; whereas expensive late 
payment extra-costs (i.e. m i> ) may induce the lessee to turn down the contract. Therefore, if m i<  we 
expect that the policyholder be wishing to design contract conditions able to push EAR up; vice versa, if m i>  
to push EAR down. In the both cases, the policyholder is expected to be willing to set EAR as close as possible to 
the contract rate i. 
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Result 4. How designing contracts to move EAR close to the contract rate 
Let the contract payments sR  with 1,...,s n=  be regularly paid in fixed percentage ρ  with 0 1ρ≤ ≤  and 
the outstanding debt overcharged with the late payment interests and the surrender value E be settled through a 
lump-sum payment at the contract term n. Let the lease contract rate i, the late payment rate m and the contract 
term n be exogenously given. A strategy to reduce the absolute value ε  of the extra-charge addendum is to 
make the Macaulay Duration D long.  

If the contract expiration date n is fixed, the only way to prolong the Macaulay Duration D is to properly set the 
payment stream sR  with 1,...,s n=  and the surrender value E. A sufficient way to achieve this target is 

• to set the contract payments sR  with 1,...,s n=  increasing in amount and,  

• if the contract provides for the surrender value E, set this value large.  
As it has been already discussed, maxD n=  is achieved if contractual payback provides 

( )1 2 10, 0,..., 0, 1 n
n nR R R R A i E−= = = = ⋅ + −  and at time n it provides the surrender value E, therefore the 

outflow at time n is of ( )1 nA i⋅ + . Clearly in such circumstance, there is no insolvence, EAR i=  and 0ε = . 

4. Fixed Installments  
Let the leased amount A be paid back through the payment of fixed installments at the dates 1, 2,..,s n= . We 
separately consider the option of a zero-price and positive-price surrender value. 
4.1 Zero-Price Surrender Value 
Let the surrender value be 0E = . According to the French amortization, the fixed instalments 

1 2 ,... nR R R R= = =  at the dates 1, 2,..,s n=  are equal to 

n i

AR
a

=  

where 
( )1 1 n

n i

i
a

i

−− +
=  is the present value of a unitary ordinary annuity. 

The Macaulay Duration of the contract payments is 

( )
1 1

0

1 1

(1 ) (1 )
11

1 1(1 ) (1 )

n n
s s

s s
E n n n

s s

s s

s R i s i
nD

i iR i i

− −

= =
=

− −

= =

⋅ ⋅ + ⋅ +
= = = + −

+ −⋅ + +

 

 
 , with 0

11 1ED
i=≤ < +       (5) 

see Dierkes and Ortmann (2015). Formula (5) shows that 0ED =  is independent on the leased amount A and the 
installment R. As a consequence, the Macaulay Duration 0ED =  is uniquely determinated by the contract interest 
rate i and the contract term n.  

4.2 Positive-Price Surrender Value 
Let E be the surrender value with 0E ≥ . The fixed installment becomes 

( ) ( ) ( )1 1 1n n n

E
n i n i n i n i n i n i n i

A E i A i A i EE A E ER R
a s a s s s s

−− ⋅ + ⋅ + ⋅ + −
= = − = − = − =  

where R is the fixed payment in (6) due if 0E = and n is  is the final amount of an ordinary annuity. If the 

surrender value 0E >  the periodical payments reduce, i.e. ER R< .  
The Macaulay Duration of an outflow including the surrender value E is 
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( )1
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E iD D n D
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=
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⋅ ⋅ + + ⋅ ⋅ +
⋅ += = + ⋅ −


  where 01 ED D n=≤ ≤ ≤   (6) 

where 0ED =  is defined in (5), see Appendix D for the proof.  
It is worthwhile noting that the Macaulay Duration D in (6) depends on the leased amount A and the surrender 
value E. 

Therefore,  
• if 0E =  then 0ED D ==  defined in (5); and 
• if 0E >  then 0ED D =>  and the larger the surrender value E, the longer the Macaulay Duration D. 

We can rewrite the lateNPV  formula (2) with fixed installments ER , surrender value E , with 0E ≥  
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 
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The exact EAR value solves the equation ( ) 0lateNPV x = . A proxy of EAR is given by formula (3.1) and follows 

( ) ( )
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1 1
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n m
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n i
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E E E

n i n i n i
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s
EAR i i

sE ER D R n
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 
⋅ − 
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 with 0E ≥  

where ( )1 n
n m n ms m a= + ⋅  and ( )1 n

n i n is i a= + ⋅ , see Appendix E for the proof. 

We are ready now to illustrate the main strategies to drive EAR close to the contract interest rate i. 

Result 5. Fixed payments: how designing contracts to move EAR close to the contract rate 
Let the fixed contract payments be regularly paid in fixed percentage ρ  with 0 1ρ≤ ≤  and the outstanding 
debt overcharged with the late payment interests be settled through a lump-sum payment at the contract terminal 
date n in addition to the surrender value 0E ≥ . Let the lease contract rate i, the late payment rate m and the 
contract term n be exogenously given.  
If the surrender value E increases, then EAR goes up if the late payment rate m is cheap (i.e. m i< ), and EAR 
goes down if the late payment rate m is expensive (i.e. m i> ). 
5. Numerical Illustrative Examples 
This section sheds light on how the payback pattern may differently impact on EAR. 
Throughout this Section we assume that the leased amount is 150,000A = , the annual compound lease contract 
rate is 5.087%i = , the annual compound late payment rate is 7.719%m =  and the installments are monthly 
paid. 
To highlight the key drivers in determining EAR, we consider contracts with fixed installments and surrender 
value E, with 0E ≥  to be paid at the contract term. Note that we consider the case m i> . 
To ascertain the impact of the Macaulay Duration on EAR we set a number of illustrative examples.  
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Example 1: The impact of the surrender value on EAR  
As discussed in Result 4 a way to stick EAR to contract lease rate is to prolong the Macaulay Duration D. If the 
surrender value E becomes higher, the Macaulay Duration D becomes longer and consequently EAR flaws down, 
see Table 1. 

 
Table 1. The higher the surrender value, the longer the Duration and the smaller EAR 

# Montly 

payments 

Fixed 

installments 

Payment level 

ρ 

Surrender 

value=%A 

Surrender 

value 
Duration 

True annual 

EAR 

24 6579 60% 0.00% 0 12.30 5.812% 

24 6499 60% 1.33% 2000 12.44 5.800% 

24 6420 60% 2.67% 4000 12.58 5.788% 

24 6341 60% 4.00% 6000 12.73 5.776% 

 
Example 2: The solvency level and EAR  
Result 2 shows that the longer the Macauly Duration, the closer EAR to the lease contract rate i. As intuition may 
suggest, if m i>  the lower the solvency payment level ρ  the higher EAR, see Table 2. 
If the payments Rρ  paid in due time are decreasing in size, because of ρ  is decreasing then EAR increases 
and goes further from the contractual rate. 
 

Table 2. The lower the ρ the higher EAR. If the surrender value increases the EAR decreases 
# Montly 
payments 

Fixed installments 
Payment 
level ρ 

Surrender 
value=%A 

Surrender 
value 

Duration True annual EAR

24 6499 60% 1.33% 2000 12.44 5.800% 
24 6499 40% 1.33% 2000 12.44 6.028% 
24 6499 20% 1.33% 2000 12.44 6.207% 
24 6420 60% 2.67% 4000 12.58 5.788% 
24 6420 40% 2.67% 4000 12.58 6.014% 
24 6420 20% 2.67% 4000 12.58 6.192% 
24 6341 60% 4.00% 6000 12.73 5.776% 
24 6341 40% 4.00% 6000 12.73 6.000% 
24 6341 20% 4.00% 6000 12.73 6.177% 
 
Example 3: Accuracy of EAR numerical estimate 
Table 3. confirms the EAR approximation accuracy with respect to the true EAR value. The EAR linear 
approximation underestimates the true EAR and the estimate EAR is more accurate with increasing surrender 
value and the level ρ of installment payments. 

 
Table 3. Data confirm the approximation accuracy 

Payment level ρ Surrender value=%A Duration True annual EAR Estimated annual EAR 
     Δ EAR 
   true - estimate

60% 1.33% 12.44 5.800% 5.796% 0.000044 
40% 1.33% 12.44 6.028% 6.020% 0.000080 
20% 1.33% 12.44 6.207% 6.195% 0.000119 
60% 2.67% 12.58 5.788% 5.784% 0.000042 
40% 2.67% 12.58 6.014% 6.006% 0.000078 
20% 2.67% 12.58 6.192% 6.181% 0.000116 
60% 4.00% 12.73 5.776% 5.772% 0.000041 
40% 4.00% 12.73 6.000% 5.992% 0.000076 
20% 4.00% 12.73 6.177% 6.166% 0.000113 
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6. Conclusion 
Delays in payment incur extra-costs that make the lease EAR to deviate from the lease contract rate. Motivated 
by the practical need to design leasing contracts that keep EAR under control, because of the presence in Italian 
and European law to kept below some interest rate caps on loans, in this paper we assume that the lease contract 
rate i, the late payment rate m and the contract term be exogenously given. First we formalize the condition “the 
small installments come first and the large installments come later”: in the event of partial insolvency, extra-costs 
are limited, because they are referred to small amounts, and EAR remains stick to the contract lease rate i. Vice 
versa if “the large installments come first and the small installments come later” EAR diverges from the contract 
lease rate i.  
We provide two general rules for the payback settlement able to make EAR close to the contract rate: (1) to set 
the payback settlement Macaulay Duration long; and (2) to set a large surrender value. A sufficient condition to 
achieve the former goal is to set the payments increasing in amount. 
In the case of fixed payments, the formulae become simpler but the advices to make EAR stick to the contract 
rate remain the same. 
To make evidence of our results we roll sensitivity analysis out through numerical examples. The results of the 
paper are useful to provide policymakers a better knowledge about the effects of the allocation the payback 
amounts over the contract life. 
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Appendix A  
Considering the ( )lateNPV x  of the contract including the extra-costs as a function of the annual interest rate x 
used for discounting.  
By (2) for x i=  we get 
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By (2) for x m=  and by the equation (1) it follows 
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                 (A.2) 

Since by construction, ( )lateNPV x is a strictly increasing function in x and ( ) 0lateNPV EAR = , then 

1. if m i<  then ( ) 0lateNPV i >  and ( ) 0lateNPV m < . Therefore m EAR i< < ; 

2. if m i=  then ( ) 0lateNPV i = . Therefore EAR i= ; 

3. if m i>  then ( ) 0lateNPV i <  and ( ) 0lateNPV m >  Therefore i EAR m< < . 

 
Appendix B 

Given the annual compound lease contract rate i, let approximate the function (2) ( )lateNPV x with Taylor’s 

approximation 

( ) ( ) ( ) ( )'late late lateNPV x NPV i NPV i x i≅ + ⋅ −                      (B.1) 

Let x EAR= . By definition ( ) 0lateNPV EAR =  and (B.1) can be solved. For EAR i≠ :  

( )
( )'

late

late

NPV i
EAR i

NPV i
−

≅ + , with ( )' 0lateNPV i ≠                      (B.2) 
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where ( )'lateNPV i  is the derivative of ( )lateNPV x  with respect to x at x i= .  

• By the NPV formula (2) we calculate 
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 is the Macaulay Duration of the contractual payback given by the 

payments 1 2, ,.., nR R R  at dates 1,..,s n=  and the payment of surrender value E at date n. 
If extra-costs occur, then EAR i≠  and formula (B.2) holds. Substituting in (B.2) the expressions of 

( )lateNPV x  and ( )'lateNPV i  with ( )' 0lateNPV i ≠  because ( )'lateNPV i  is a sum of positive addenda, we 

obtain 
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Appendix C.1 The payment spread over time influence on the Macaulay Duration 
Let the contract term n be exogeneously fixed and the contract payments sR , with 1,...,s n=  and the surrender 
value E satisfy the closure condition (1). Denote by D the Macaulay Duration of the payback. 

• Let us modify the payment stream sR  with 1,...,s n=  and the surrender value E be fixed. 
We will show that if we move forward a portion of a payment then the Macaulay Duration becomes longer. 
Let z be fixed, with 1,..., 1z n= − . Let us assume that the payment zR  is reduced by the amount zQ  with 
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0 z zQ R< ≤ . At the epoch z k+  where 1 1k n z≤ ≤ − −  is paid the capitalized amount ( )1 k
zQ i⋅ +  in 

addition to the payment z kR + . The modified stream  

 [ ] ( )1,.., ,..., 1 ,..,k
z z z k z nR R Q R Q i R+

 − + ⋅ +                     (C.1) 

and the surrender value E satisfy the closure condition (1), because  
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The Macaulay Duration of the modified payments (C.1) becomes 
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              (C.2) 

It is immediate to check that ( )zD  is an increasing function of the k period payment postponement of the 

amount zQ . The same reasoning can be rolled out by modifying simultaneously more than one payment. A 
fortiori the Macaulay Duration increases. 
 

• Let 'E  be the surrender value with 'E E> . 
The modified payment stream 'sR , with 1,...,s n=  must satisfy the closure condition (1) 
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It follows that there exists at least one z, such that 'z zR R< and ( ) ( )' ' 1 n z
s zE E R R i −= + − ⋅ +  with 'z zR R=  

with s z≠ . Denoted by 'D  the Macaulay Duration of the payment stream 'sR  with 1,...,s n= , it results 
'D D> . 

In conclusion the more postponed the payments, the longer the Macaulay Duration; and the sooner the payments, 
the shorter the Macaulay Duration. 
 
Appendix C.2 The influence of Macaulay Duration on EAR 
Let us calculate (3.1.1) for the modified stream in (C.1): 
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By construction, ( )zD  in (C.2) is such that ( )zD D> , and 
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a) if m i< , then ( )zM M> ; then the larger ( )zM , the longer the Macaulay Duration ( )zD  and the 

function ( )D D M=  is increasing;  

b) if i m< ,  then ( )zM M< ; then the larger ( )zM , the shorter the Macaulay Duration ( )zD , therefore 

the function ( )D D M=  is decreasing. 

The extra-charge addendum defined in (3.1) is given by 
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Then 

a) if m i< , due to Remark 1 and formulae (4), 0ε < ; therefore ( )1 0nM E i A− + ⋅ + − <  . Since 

0M
D

∂ ≥
∂

, the numerator of (C.3) is non negative and 0
M
ε∂ ≥

∂
;  

b) if m i= ,  due to Remark 1, 0ε = ;        

c) if i m< ,  due to Remark 1 and formulae (4), 0ε > ; therefore ( )1 0nM E i A− + ⋅ + − >  . Since 

0M
D

∂ ≤
∂

, the numerator of (C.3) is non negative and 0
M
ε∂ ≥

∂
. 

Then 
a) if m i< , the longer the Macaulay Duration D, the larger M, the greater ε . Then the longer the 

Macaulay Duration D, the more EAR is closer to i; 
b) if m i= ,  then EAR i= ;  
c) if i m< , the longer the Macaulay Duration D, the smaller M, the smaller ε . Then the longer the 

Macaulay Duration D, the more EAR is closer to i. 
We conclude that the longer the Macaulay Duration, the shorter |ɛ| and the closer EAR to the contract rate i. Vice 
versa, the shorter the Macaulay Duration, the longer |ɛ| and the more EAR goes to its extreme values. 
 
Appendix D   Fixed instalements: the Macaulay Duration  

The Macaulay Duration of a level annuity with zero-price surrender value is 
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see Dierkes and Ortmann (2015). Note that 0ED =  is independent of the amount R of the fixed instalment and the 
leased amount A. 
The Macaulay Duration of the payment stream in the presence of E with 0E ≥  becomes 
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Therefore,  
• if 0E =  then 0ED D == ; and 
• if 0E >  then 0ED D => . 

 
Appendix E. Fixed installments: EAR  
The extra-charge rate addendum is given by (3.2): 
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