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Abstract 
Metabolomics, the systematic identification and quantification of all metabolites in a biological system, is 
increasingly applied towards identification of biomarkers for disease diagnosis, prognosis and risk prediction. 
Applications of metabolomics extend across the health spectrum including Alzheimer's, cancer, diabetes, and 
trauma. Despite the continued interest in metabolomics there are numerous techniques for analyzing metabolomics 
datasets with the intent to classify group membership (e.g. Control or Treated). These include Partial Least Squares 
Discriminant Analysis, Support Vector Machines, Random Forest, Regularized Generalized Linear Models, and 
Prediction Analysis for Microarrays. Each classification algorithm is dependent upon different assumptions and 
can potentially lead to alternate conclusions. This project seeks to conduct an in depth comparison of algorithm 
performance on both simulated and real datasets to determine which algorithms perform best given alternate 
dataset structures. Three simulated datasets were generated to validate algorithm performance and mimic 'real' 
metabolomics data: (Han et al., 2011) independent null dataset (no correlation, no discriminatory variables), 
(Davis, Schiller, Eurich, & Sawyer, 2012) correlated null (no discriminating variables), (Guan et al., 2009) 
correlated discriminatory. This comparison is also applied to 3 open-access datasets including two Nuclear 
Magnetic Resonance (NMR) and one Mass Spectrometry (MS) dataset. Performance was evaluated based on the 
Robustness-Performance-Trade-off (RPT) incorporating a balance between model classification accuracy and 
feature selection stability. We also provide a free, open-source R Bioconductor package (OmicsMarkeR) that 
conducts the analyses herein. The proposed work provides an important advancement in metabolomics analysis 
and helps alleviate the confusion of potentially paradoxical analyses thereby leading to improved exploration of 
disease states and identification of clinically important biomarkers. 
Keywords: feature selection, machine learning, metabolomics, multivariate analysis 
1. Introduction 
Metabolomics, similar to the other two common ‘omics’ approaches (i.e. transcriptomics and proteomics), is defined 
as the systematic identification and quantification of all metabolites in a biological system. Such data is commonly 
acquired via Nuclear Magnetic Resonance spectroscopy (NMR) or Mass Spectrometry (MS). Metabolomics has 
been increasingly applied towards identification of biomarkers for disease diagnosis, prognosis and risk prediction. 
Applications extend across the health spectrum including Alzheimer’s (Han et al., 2011), cancer (Davis et al., 2012; 
Guan et al., 2009; Nishiumi et al., 2010), diabetes (Bain et al., 2009), and trauma (Determan et al. 2014).  
Following the initial pre-processing (e.g. peak picking, deconvolution, integration, etc.), a metabolomics dataset 
must ultimately be analyzed to typically classify two or more classes/conditions in addition to identifying the most 
important metabolites for the discrimination (e.g. biomarker studies). The availability and use of multivariate 
approaches is rapidly becoming critical with decreased cost and increased access to high-throughput metabolomics 
platforms including NMR and MS resulting in “large p, small n” problems (i.e. many more variables than samples). 
The common univariate tests become grossly underpowered to assess every feature and require a secondary model 
if classification is desired. The restrictive assumptions of univariate tests (e.g. normality) are typically avoided 
with more sophisticated multivariate, machine learning algorithms.  
But despite the continued interest in metabolomics there is no standard statistical approach resulting in numerous 
techniques applied inconsistently across experiments. Common methods include Partial Least Squares 
Discriminant Analysis (PLSDA), Lasso and Elastic-Net Regularized Generalized Linear Models (GLMNET), 
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Support Vector Machines (SVM), Random Forests (RF), Gradient Boosting Machines (GBM), and Prediction 
Analysis for Microarrays (PAM). Although each method is an effective classification algorithm, previous 
comparisons of algorithms in gene expression experiments report that different algorithms provide improved 
accuracy for different datasets (JW Lee, JB Lee, Park, Song, 2005).  
Limited algorithm comparisons in metabolomics studies (i.e. comparing two or three methods) often measure 
performance solely on accuracy and neglect the stability of features selected (i.e. how consistently the same 
features are identified). Even though an analysis reports high accuracy, repeating the biomarker discovery 
procedures can result in different feature subsets even within the same datasets (Ein-Dor, Zuk, & Domany, 2006; 
Michiels, Koscielny, & Hill, 2005; Zucknick, Richardson, & Stronach, 2008). Feature selection can also introduce 
optimistic bias into statistical inference because the signal-noise ratio of the data set is increased by the feature 
selection procedure. An extreme example is that all features are irrelevant to a response, but the selected features 
will still appear fairly predictive to the response which is, however, completely by chance (Ambroise & 
McLachlan, 2002). Therefore, to determine which algorithms perform optimally, both feature selection stability 
and overall classification accuracy must be evaluated together.  
In this work, we evaluate the six aforementioned classification algorithms performance and stability on both in 
silico and experimentally acquired datasets. Metabolomics datasets are inherently multivariate with both 
independent and multicollinear variables in addition to possessing a mix of Gaussian and non-Gaussian 
distributions. To evaluate algorithm performance on such datasets it is necessary to generate standardized datasets 
that mimic true metabolomics data and possess known results as a benchmark. Furthermore, an application to 
previously acquired datasets from multiple platforms with previous results is provided herein. 
The goal of this experiment has been to demonstrate variability in algorithm performance across multiple datasets 
of different characteristics (e.g. sample size, number variables, etc.) and various methodologies (e.g. ensemble). 
To our knowledge, this is also the first integration of feature stability with model performance to metabolomics 
datasets. Furthermore, the ability to conduct multiple analyses utilizing accepted methods resulting in similar 
conclusions adds further support to any conclusions in a field where reproducibility is often a major concern. 
2. Methods 
2.1 Datasets 
Despite the growth of metabolomics, there is no commonly accepted gold standard dataset for algorithm evaluation. 
This necessitates the production of simulated datasets that accurately mimic typical metabolomics datasets from both 
NMR and MS. This requires the perturbation of normality in multiple variables and inclusion of multicollinearity as 
is typical of metabolite distributions and relationships. It is also necessary to determine the performance of algorithms 
when examining the null condition wherein there is no difference between conditions. Therefore, three simulated 
datasets were generated (null independent, null correlated, and correlated discriminatory) to analyze algorithm 
performance that may also be used by others for further performance evaluations with respect to mimicking 
biological datasets as opposed to datasets designed to evaluate specific algorithm performances. This was repeated 
twice, once at the NMR scale and once at the MS scale, as the number of resolvable features between the two 
techniques can be an order of magnitude; NMR typically can resolve 50-75 metabolites whereas MS can resolve 
100’s to 1000’s of metabolites (Wishart 2010). Although exceedingly large datasets are possible with in silico data 
the sample sizes herein were selected to more accurately reflect empirical datasets given the limits from costs and/or 
sample availability. Low and high sample sizes were set at 25 and 50 samples per group respectively. Although these 
are still high for many applications, this allows the use of leave k-fold out cross-validation. For very small datasets 
one may use leave-one-out cross-validation or the option to forgo validation, if appropriate parameters are known. 
2.1.1 Simulated Datasets 
Each simulated dataset consists of N samples and p variables representing the individual samples and metabolites 
of an experiment. In addition, for the purposes of classification, groups are assigned to represent classes within a 
dataset (e.g. Control, Cancer). 
1) Null: A null dataset was generated to provide an absolute base where no classification should be found. 

Simulated data were generated with the create.random.matrix function following previously established 
methods (Wongravee et al., 2009) with the following noted modifications. The initial datasets was generated 
with random numbers from a normal distribution, each dataset consisting of N samples (nsamp, 25/50 per 
group, low and high) and p variables (nvar, NMR = 50, MS = 1000). The normal distribution was also 
perturbed by adding a second matrix containing uniform random numbers between -0.2 and 0.2 (perturb = 
0.2). The samples were then assigned to groups of equal numbers. 
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2) Null Correlated: To mimic ‘real’ metabolomics datasets, correlations were induced for the null correlated 
datasets with the create.corr.matrix function. This provided a dataset that could be used to evaluate the effect 
of correlations on classification and feature selection performance. Blocks of variables of size b 
(min.block.size = 2, max.block.size = 5) were randomly assigned and had values replaced with correlated 
values derived from the first variable of the specific block. We elected to incorporate blocks of size 1 
(min.block.size = 1) as the smaller metabolomics datasets in NMR more likely possess independent variables. 
This induced correlation was also perturbed to more accurately represent real data. Derived correlation 
coefficients were compared to real metabolomics datasets to validate the method (data not shown). 

3) Discriminatory: To facilitate discriminatory analysis, D variables (NMR = 10, MS = 20) were randomly 
induced to be discriminatory with the create.discr.matrix function. A discriminatory index (l) was selected 
and for each variable D whereby a random number between –l and l was added to one group and subtracted 
from the other. 

2.1.2 Real Datasets 
NMR datasets included a binary (i.e. 2 groups) urine dataset analyzing cachexia (Eisner et al., 2011) and 
multi-class (i.e. 4 groups) rumen fluid dataset investigating the impact of altered diets of cows (Ametaj et al., 2010). 
The MS explores potential biomarkers of Hepatocellular Carcinoma in serum samples (Xiao et al. 2012) and was 
accessed from the open source metabolomics data repository Metabolights (Haug et al., 2013) accession number 
MTBLS19. 
2.2 Classifier and Feature Selection Algorithms 
Below we describe six classification algorithms utilized in the metabolomics literature, with built-in or added 
feature selection capability. We briefly describe how we used each for classification and feature selection. With 
respect to feature selection, investigators also may or may not have an approximate idea of how many features (i.e. 
metabolites) they expect to be discriminating. As such two methods, defined herein as ‘subset’ and ‘model 
derived’, are applied whereby a specific number of variables are specified a priori or the specific model is allowed 
to return an internally determined number of variables respectively. 
2.2.1 Partial Least Squares Discriminant Analysis (PLSDA) 
Partial Least Squares Discriminant Analysis is a dimension reduction technique analogous to principal component 
analysis. The algorithm focuses on maximizing the variance of the dependent variables explained by the 
independent variables (Wold, 1975). It is robust to multicollinearity, missing data, and skewed distributions 
(Cassel, Hackl, & Westlund, 1999). These models were tuned on the number of components to be retained. Feature 
selection was accomplished by ranking features on the sum of squares of their loading weights, a technique known 
as variable importance of projection (VIP)(Wold, Johansson, & Cocchi, 1993). Model derived features were 
selected as those with a VIP score >= 1.0. PLSDA is commonly used in metabolomics investigations including 
multiple forms of cancer, cardiac ischemia, parkinson’s disease and asthma (Nishiumi et al., 2010; Bodi et al., 
2012; Bogdanov et al., 2008; Carraro et al., 2007; Chen et al., 2011; Duarte et al., 2010; Qiu et al., 2010). This 
technique has also been previously implemented in our lab investigating hemorrhagic shock (Lexcen, Lusczek, 
Witowski, Mulier, & Beilman, 2012). It is readily available in the R package DiscriMiner (Sanchez, 2012). 
2.2.2 Regularized General Linear Model (GLMNET) 
Generalized linear models are a more flexible form of linear regression that allows the response variables to have 
non-parametric distributions. To avoid the risk of overfitting data in multiple linear regression a regularization 
method can be applied. We have selected to use the elastic-net penalty, which is a compromise between the 
LASSO and Ridge shrinkage methods and has been shown to outperform LASSO (Zou & Hastie, 2005). In brief, 
elastic net is a weighted average of the lasso and ridge solutions. The LASSO penalty encourages 
non-discriminative features to have a coefficient that is exactly zero, thus it performs feature selection; and the 
Ridge penalty is used to overcome multicollinearity. Having both of these penalties integrated facilitates analysis 
of data with collinearity and internal feature selection. These models were tuned on the lambda penalty and the 
elastic-net parameter alpha. Important features are identified as those with non-zero coefficients. These 
coefficients were also ranked for subset feature selection. Although it is less common than other techniques it has 
been used in recent metabolomics studies (Rohart et al., 2012, Wahl et al., 2013). GLMNET is readily available in 
the R package glmnet (Friedman, Hastie, & Tibshirani, 2010). 
2.2.3 Random Forest (RF) 
Random forest is a machine learning algorithm that uses a combination of tree predictors (i.e. forest) such that each 
tree is constructed on a random sample of the observations thereby independently ensuring that the distributions 
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are the same for all the trees in the forest. Each tree in the forest provides a ‘vote’ for the best class. This is 
constructed on a training subset of the data and tested against the remaining test data known as the ‘out-of-bag’ 
(OOB) data. The scaled sum of the votes derived from the trained trees determines the final “score” (Breiman, 
2001). Random Forests were tuned on the number of trees and the number of variables randomly sampled at each 
split. The feature selection is determined by permuting variables in the OOB and observing increases in error. A 
variable score indicates greater importance to the model. These scores were ranked for subset feature selection and 
those exceeding a score of 1.0 for model derived results. It is robust to noise and outliers and computationally 
faster than bagging or boosting. Prior studies have reported error rates comparable if not better than other 
predictors such as logistic regression, linear discriminant analysis, quadratic discriminant analysis (QDA), 
K-nearest neighbors (KNN), Support Vector Machines (SVM), classification and regression trees (CART) and 
Naïve Bayes (Breiman, 2001; Folleco, Khoshgoftaar, Van Hulse, & Bullard, 2008; Svetnik et al., 2003). However, 
consistency of selected feature rankings has been shown to be problematic for high dimensional problems (Verikas, 
Gelzinis, & Bacauskiene, 2011). It has been used in several metabolomics studies (Hische et al., 2012; Houtkooper 
et al., 2011; Patterson et al., 2011) and is readily available in the R package randomForest (Liaw & Wiener, 2002). 
2.2.4 Gradient Boosting Machine (GBM) 
Gradient boosting is another machine learning technique applied most commonly to decision trees that produces 
robust and interpretable procedures for both regression and classification (Freidman, 2001). Unlike the bagging 
approach (e.g. random forest), where trees are constructed independently and are thus assumed to make prediction 
errors independently, gradient boosting trees are constructed sequentially and each new tree is fitted to compensate 
for errors committed by previous trees. As with random forest, feature selection is determined by permuting 
variables in the OOB and observing increases in error resulting in a subsequent variable score. Gradient Boosting 
models were tuned on the number of trees, the interaction depth, and learning rate (i.e. shrinkage, step-size 
reduction). Feature selection was accomplished via ranking scores and those exceeding 1.0 for model derived 
results. Boosting has become known as one of the most powerful learning ideas in the last twenty years (Hastie, 
Tibshirani, & Friedman, 2009) but curiously has never been applied to metabolomics settings. To our knowledge, 
this is the first application of boosting to analyze metabolomics data. Freidman’s gradient boosting machine 
algorithm is available in the R package gbm (Ridgeway, 2013). 
2.2.5 Support Vector Machines (SVM) 
Support vector machine is based on the structural risk minimization principle from statistical learning theory 
(Vapnik, 1998). It can be applied to classification problems with the idea of structural risk minimization to find a 
hypothesis that has the lowest probability of error. It has been shown to be robust to high dimensionality, noisy 
data, and outliers. Prior comparisons with PLSDA report improved overall accuracy with less features 
(Mahadevan, Shah, Marrie, Slupsky, 2008) but feature selection consistency is unknown. This classification 
algorithm is readily available within the R e1071 package (Meyer, Dimiriadou, Hornik, Weingessel, & Leisch, 
2012) where we elected to use the common linear kernel and tuned on the cost parameter. Feature selection was 
accomplished via recursive feature elimination (RFE) as detailed by Guyon as to our knowledge there is no metric 
specifically designed for SVM (Guyon, Weston, Barnhill, & Vapnik, 2002). 
2.2.6 Prediction Analysis for Microarrays (PAM) 
Prediction Analysis for Microarrays is a modified nearest centroid classification method to include centroid 
shrinkage and contains an embedded feature selection step (Tibshirani, Hastie, Narasimhan, & Chu, 2002). In brief, 
the average value for each variable is divided by the within-class standard deviation to provide class centroids. 
These class centroids are then shrunk towards zero by a defined threshold to reduce noise and facilitate variable 
selection. Then a new sample profile is compared to each of the class centroids. The class whose centroid is closest 
is the predicted class. These models were tuned on the ‘threshold’ parameter for the centroid shrinkage. The 
internal feature selection is accomplished by identifying features with non-zero coefficients which are 
subsequently ranked for subset selection. This technique has not been used widely in metabolomics investigations; 
however, as the name implies it has been successfully been used for classification in gene expression experiments 
(Ray et al., 2007; Sadanandam et al., 2013). This algorithm is readily available in the R package pamr. 
2.3 Evaluate Stability of Feature Selection Techniques 
The high-dimensional datasets of metabolomics often necessitate feature selection techniques to reduce 
dimensionality to the most important features to facilitate subsequent analysis. Although many approaches rely 
exclusively on classification accuracy of feature subsets to facilitate biomarker selection this is problematic where 
several different feature subsets may yield equally optimal results (Saeys, Inza, & Larrañaga, 2007). It is therefore 
necessary to evaluate the robustness of feature selection techniques applied to metabolomics data to facilitate 



www.ccsenet.org/ijb International Journal of Biology Vol. 7, No. 1; 2015 

104 

improved reproducibility and confidence in identified biomarkers. In brief, algorithm robustness were evaluated 
via instance (bootstrapped data subsets) and function (alternate algorithms) perturbation and evaluated by the 
Jaccard’s Index (Real & Vargas, 1996). Other options include the Dice-Sorensen’s Index (Dice, 1945; Sorensen, 
1948), Ochiai’s Index (Ochiai, 1957), Percent of Overlapping Features (Shi et al., 2005), Kuncheva’s Index 
(Kuncheva, 2007), Spearman Rank Correlation, and Canberra Distance (Jurman et al., 2008). A comparison of 
these metrics is beyond the scope of this article. 
Two common approaches are applied within instance perturbation to evaluate the robustness of feature selection 
techniques: perturbation at the instance level (i.e. removing or adding samples) or at the feature level (i.e. adding 
noise). We have selected to evaluate robustness of feature selection algorithms by estimating stability following 
perturbation at the instance level as the number of samples is the most likely problem facing metabolomics 
investigations.  
2.4 Single Feature Selection Stability and Classification Performance 
For each feature selection algorithm we estimated stability via instance perturbation with the fs.stability function. 
Instance perturbation was conducted via bootstrapping, without replacement, 90% (p = 0.9) of the data 10 times (k 
= 10) thereby creating a training and testing dataset for each iteration. For each training dataset all 6 feature 
selection algorithms were run simultaneously to provide an ordered list of selected feature rankings. Each iteration 
tunes the full model (optimize = TRUE) with a tuning grid of a specified resolution determining how fine the 
tuning parameters are optimized (resolution = 5). To avoid overfitting, 10-fold cross-validation was utilized 
(k.fold = 10) wherein 1/10th of the each training data subset is randomly removed and the model evaluated on this 
test fold. Results were averaged over all 10 folds to provide the confusion matrix for subsequent performance 
metrics evaluated on the typical prediction accuracy (metric = “Accuracy”) which is the proportion of true results 
(true positive and true negative) in the sample population. The optimized models were then used to extract feature 
subsets of a user specified length (f, NMR = 10, MS = 20) or optionally by the model defined cutoff 
(model.features = FALSE). These feature subsets are compared via the Jaccard index (Equation 1). The overall 
stability is defined as the average over all pairwise similarity comparisons between each of the feature selection 
runs. The final model is refit using the extracted feature subset from the individual method and re-optimized using 
the initial tuning grid generated. Lastly, this trimmed model is used to predict the initial testing dataset generated at 
the start of the iteration. Accuracy was extracted with the performance.metrics function to compare each 
algorithms performance. This is repeated for the additional 9 times utilizing the previously optimized parameters 
for the full model generation (optimize.resample = FALSE). 
Equation 1 Jaccard Index |ݔ ∩ ݔ||ݕ ∪  |ݕ
2.5 Balance Stability and Classification Performance 
In every scientific investigation which sample size is a limitation (i.e. most studies), researchers must balance 
power and sensitivity. The same principle is applied to balancing feature selection robustness and classifier 
performance as both are integral to confident biomarker identification. We utilized the robustness-performance 
trade-off (RPT) to balance feature selection stability and classification performance (Saeys, Abeel, & de Peer, 
2008). In brief, the user can specify the parameter β to control the relative importance of feature stability versus 
classification. The default value of β = 1 which represents equal importance between stability and classification. 
Equation 2 Robustness-Performance Trade-off (RPT) ߚଶ ∗ ݕݐ݈ܾ݅݅ܽݐݏ ∗ ଶߚ݁ܿ݊ܽ݉ݎ݋݂ݎ݁݌ ∗ ݕݐ݈ܾ݅݅ܽݐݏ ൅  ݁ܿ݊ܽ݉ݎ݋݂ݎ݁݌

2.6 Ensemble Feature Selection Stability and Classification Performance 
Ensemble feature selection has been shown to improve stability in gene expression studies (Abeel, Helleputte, de 
Peer, Dupont, & Saeys, 2010; Davis et al. 2006). Therefore it is important to incorporate such analysis into 
metabolomics analysis for each algorithm. In essence, ensemble approaches use different data subsets and 
aggregating the results following feature selection. As described in the ‘Single Feature Selection Stability and 
Classification Performance’ section, stability was evaluated via instance perturbation with the fs.ensembl.stability 
function. For each subsample a second level of instance perturbation generated 40 (bags = 40) further datasets via 
bootstrap aggregation (aka. Bagging) (Breiman, 1996). For each bag a separate feature ranking was performed. 
The resulting list of selected feature rankings from each bag were combined via linear aggregation 
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(aggregation.metrics = “CLA”) whereby the sum of the individual feature ranks within each bag contribute 
linearly to the overall final rank. The Jaccard Index was used to measure similarity and averaged over all pairwise 
comparisons for an overall measure of stability. Function perturbation, the use of multiple feature selection 
algorithms, was also conducted by the list of methods chosen within fs.stability and fs.ensembl.stability. Lastly, in 
contrast to non-ensemble approaches, there are no model derived runs because all features must be ranked for 
aggregation methods. 
3. Results 
3.1 Simulated Data 
3.1.1 Binary Classification - Low Samples 
3.1.1.1 Random and correlated datasets (N=50, p=50/1000 (NMR/MS)) 
Non-ensemble analysis of random and correlated dataset analyses provided generally expected results. Accuracy 
exceeded 0.700 for SVM, RF, GLMNET and PAM but stability remained low (>=0.47). While RF achieved the 
highest accuracy (often in excess of 0.900), it had the lowest stability warranting caution in interpreting results. 
Notably, accuracy was generally higher with the MS-scale dataset where accuracy exceeded 0.900 for the same 
four algorithms. However the stability of the feature subsets was also lower. Ensemble analysis of NMR-scale and 
MS-scale random and correlated datasets again reflected previous analysis with high accuracy levels for SVM, RF, 
GLMNET and PAM but low stability (Supplementary File - S1). 
3.1.1.2 Discriminatory datasets 
Analysis of the NMR-scale discriminatory dataset determined PAM as the optimal model with the highest RPT 
and PPI% (percent of discriminating features positively identified, Equation 3) (Table 1). GLMNET performed 
similarly with better accuracy but lower stability and PPI%. The model derived analysis also provided PAM with 
the highest RPT, however, the low sample size resulted in a conservative trimming of features resulting in many 
remaining in the model and decreasing the PPI%. The highest PPI% was reported by SVM which also had the very 
high accuracy; however it is also noted that there is no internal trimming metric for SVM and only the top 10% of 
features are returned making this a more restricted subset model. This suggests that experiments with lower sample 
sizes may need to restrict to only a few of the most discriminate features. The MS-scale datasets also reported 
PAM with the highest RPT and stability but the highest PPI% was reported by PLSDA. Such a situation supports 
the value of using multiple algorithms to determine consistent results. 

Equation 3 Percent Features Positively Identified (PPI%) |ݔ ∩ |ݕ||ݕ  

Ensemble analysis of NMR-scale discriminatory dataset reported SVM with the highest RPT with PLSDA, 
GLMNET and PAM performing similarly. The MS-scale analysis was less conclusive with mixed performance 
among SVM, GLMNET and PAM (Supplementary File - S2). 
3.1.2 Binary Classification – High Samples 
3.1.2.1 Random and correlated datasets (N=100, p=50/1000 (NMR/MS)) 
Increased sample size had little effect on accuracy and stability of NMR-scale random and correlated datasets but 
worsened models of MS-scale data (Supplementary File – S1). This should be expected as having more data 
should increase the likelihood of calculating the ‘true’ condition. As expected, there was also little effect of high 
samples on the ensemble analysis of the both random and correlated datasets of MS-scale and NMR-scale sizes.  
3.1.2.2 Discriminatory Datasets 
Overall performance greatly improved in the NMR-scale discriminatory dataset with accuracy exceeding 0.9 for 
three algorithms, stability exceeding 0.8, and PPI% to 80% (Table 1). Performance in the MS-scale dataset also 
improved with stability and PPI% increasing most notably for GBM and RF respectively (Supplementary File – 
S2). Both datasets provide a circumstance whereby no algorithm performs best and multiple methods are 
beneficial. 
The results of the ensemble NMR-scale discriminatory dataset improved RF and SVM but worsened GLMNET 
and PAM (Table 1). Likewise, the ensemble MS-scale discriminatory dataset also improved performance with 
increased samples most notably in RF stability and PPI% (Supplementary File – S2). However, the best 
performing algorithms were PLSDA, PAM and GLMNET. Although ensemble aggregation tends to improve 
model performance it may also have no effect or even worsen model performance. 
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Table 1. Results from NMR-scale Binary Classification Simulations. RPT – Robustness-Performance Trade-off, 
PPI% - Percent features positively identified. *SVM doesn’t have internal cutoff so defaults to top 10%. 
  Method RPT Accuracy Stability # Features PPI%

Binary 

High 
Sample 

Subset 

PLSDA 0.923 0.982 0.87 10 80.0%
GBM 0.748 0.710 0.79 10 76.0%
SVM 0.742 1.000 0.59 10 61.0%
RF 0.529 1.000 0.36 10 59.0%
GLMNET 0.942 1.000 0.89 10 80.0%
PAM 0.936 1.000 0.88 10 80.0%

Model 
Derived 

PLSDA 0.931 0.965 0.90 10 80.0%
GBM 0.552 0.480 0.65 14 55.0%
SVM 0.770 0.990 0.63 5* 68.0%
RF 0.549 0.990 0.38 17 38.8%
GLMNET 0.927 0.980 0.88 8 92.5%
PAM 0.860 0.990 0.76 44 22.5%

Ensemble 

PLSDA 0.928 0.982 0.88 10 80.0%
GBM 0.562 0.430 0.81 10 80.0%
SVM 0.773 1.000 0.63 10 76.0%
RF 0.765 1.000 0.62 10 76.0%
GLMNET 0.817 1.000 0.69 10 66.0%
PAM 0.930 1.000 0.87 10 80.0%

Low 
Sample 

Subset 

PLSDA 0.690 0.875 0.57 10 61.0%
GBM 0.395 0.300 0.58 10 56.0%
SVM 0.667 1.000 0.50 10 48.0%
RF 0.359 0.975 0.22 10 48.0%
GLMNET 0.801 0.975 0.68 10 68.0%
PAM 0.806 0.900 0.73 10 78.0%

Model 
Derived 

PLSDA 0.792 0.895 0.71 14 50.0%
GBM 0.585 0.525 0.66 20 36.5%
SVM 0.802 1.000 0.67 5* 68.0%
RF 0.406 0.925 0.26 17 25.9%
GLMNET 0.830 1.000 0.71 32 28.4%
PAM 0.925 1.000 0.86 48 20.8%

Ensemble 

PLSDA 0.694 0.863 0.58 10 66.0%
GBM 0.455 0.350 0.65 10 62.0%
SVM 0.788 1.000 0.65 10 70.0%
RF 0.606 0.975 0.44 10 56.0%
GLMNET 0.765 0.975 0.63 10 57.0%
PAM 0.748 0.900 0.64 10 72.0%

 
3.1.3 Multiclass Classification - Low-Samples 
3.1.3.1 Random and correlated and discriminatory datasets (N=100, p=50/1000 (NMR/MS)) 
NMR-scale random and correlated datasets generally had low accuracy and stability whereas MS-scale had four 
algorithms consistently with accuracy >= 0.700 but stability still remained low. Ensemble analysis of random and 
correlated datasets had little effect on performance of both NMR-scale and MS-scale (Supplementary File – S1).  
3.1.3.2 Discriminatory Datasets 
Analysis of the NMR-scale discriminatory dataset determined SVM as the best performing algorithm with the 
highest RPT whereas PAM and RF had the highest stability and accuracy respectively. The model derived results 
report GLMNET and PAM among the best; however, as with the binary classification problems the low sample 
size resulted in untrimmed features wherein nearly all were retained resulting in a decreased PPI%. Curiously, 
SVM reported the highest PPI% (64%) again suggesting that the lower sample size may restrict to only a few of the 
most discriminating features (Table 2). The MS-scale dataset had high predictive accuracy with SVM, GLMNET 
and PAM but very low with PLSDA and GBM. Curiously, PLSDA had the highest PPI% and stability (0.53) 
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suggesting a potential use in comparison to better classifying algorithms for feature selection (Supplementary File 
– S2). 
Ensemble analysis of the NMR-scale discriminatory dataset reported GLMNET with the highest RPT but PLSDA 
with the highest PPI% (Table 2). This reflects the single run analysis whereby the improved stability of ensemble 
methods provided improved classification and stability of GLMNET. The MS-scale analysis reported SVM as the 
optimum algorithm with the highest RPT and accuracy but PAM reported the highest PPI%. 
 
Table 2. Results from NMR-scale Multi-class Classification Simulations. RPT – Robustness-Performance 
Trade-off, PPI% - Percent features positively identified. *SVM doesn’t have internal cutoff so defaults to top 10% 

Method RPT Accuracy Stability # Features PPI% 

Multi-class 

High 
Sample 

Subset 

PLSDA 0.432 0.380 0.50 10 49.0% 
GBM 0.398 0.340 0.48 10 46.0% 
SVM 0.531 0.565 0.50 10 42.0% 
RF 0.257 0.900 0.15 10 30.0% 
GLMNET 0.615 0.575 0.66 10 52.0% 
PAM 0.586 0.520 0.67 10 53.0% 

Model 
Derived 

PLSDA 0.441 0.373 0.54 12 44.2% 
GBM 0.926 0.895 0.96 50 19.6% 
SVM 0.559 0.485 0.66 5 60.0% 
RF 0.326 0.875 0.20 19 16.3% 
GLMNET 0.786 0.675 0.94 50 20.0% 
PAM 0.780 0.640 1.00 50 20.0% 

Ensemble 

PLSDA 0.456 0.380 0.57 10 54.0% 
GBM 0.344 0.265 0.49 10 44.0% 
SVM 0.467 0.510 0.43 10 39.0% 
RF 0.299 0.890 0.18 10 35.0% 
GLMNET 0.538 0.495 0.59 10 34.0% 
PAM 0.557 0.520 0.60 10 52.0% 

Low 
Sample 

Subset 

PLSDA 0.485 0.394 0.63 10 58.0% 
GBM 0.397 0.325 0.51 10 38.0% 
SVM 0.723 0.888 0.61 10 52.0% 
RF 0.356 0.938 0.22 10 39.0% 
GLMNET 0.673 0.688 0.66 10 52.0% 
PAM 0.715 0.675 0.76 10 53.0% 

Model 
Derived 

PLSDA 0.501 0.425 0.61 13 40.8% 
GBM 0.517 0.375 0.83 47 20.4% 
SVM 0.752 0.800 0.71 5 64.0% 
RF 0.365 0.888 0.23 17 21.2% 
GLMNET 0.871 0.863 0.88 49 19.4% 
PAM 0.900 0.825 0.99 50 20.0% 

Ensemble 

PLSDA 0.485 0.394 0.63 10 62.0% 
GBM 0.388 0.300 0.55 10 38.0% 
SVM 0.654 0.788 0.56 10 53.0% 
RF 0.389 0.875 0.25 10 39.0% 
GLMNET 0.751 0.763 0.74 10 47.0% 
PAM 0.746 0.775 0.72 10 53.0% 
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3.1.4 Multiclass Classification - High Samples 
3.1.4.1 Random and correlated and discriminatory datasets (N=200, p=50/1000 (NMR/MS)) 
NMR-scale random and correlated datasets continued to provide expected results, whereby most models had poor 
classification. In contrast, MS-scale data provided high accuracy but continued to provide very poor stability. 
Ensemble analysis of random and correlated datasets again reflected previous analysis with low accuracy and 
stability for both NMR-scale and MS-scale data (Supplementary File – S1).  
3.1.4.2 Discriminatory Datasets 
Analysis of the NMR-scale discriminatory dataset determined GLMNET as the best performing algorithm despite 
lower accuracy (Table 2). Model derived results determined GLMNET and PAM as the best models however they 
did not successfully extract any discriminating features resulting in a depleted PPI% whereas SVM reported the 
highest PPI% at 60%. 
Ensemble analysis of the discriminatory dataset did not significantly improve performance for the NMR-scale 
dataset. This is also reflected in the MS-scale data where only RF and PLSDA stability improved slightly 
(Supplementary File – S2). 
3.2 Real Datasets 
3.2.1 Eisner – Urine analysis of Cachexia via NMR  
Non-ensemble analysis determined PAM and GLMNET as the best overall models according the RPT (0.711, 
0.705). Important features were extracted with the feature.table function. Adipate, Glucose, 3-Hydroxyisovalerate 
were identified in all subsamples by both models. PAM also identified creatine and succinate consistently (Table 
3). GLMNET identified leucine, quinolinate, and valine as important features (Table 4). Seven of these 
metabolites were within the top 10 metabolites identified by Eisner et. al. with creatine being the 11th (Eisner et al., 
2011). Furthermore, the other 3 metabolites in the top 10 (myo-inositol, betaine, and N,N-dimethylglycine) were 
also identified in the top 10 by GLMNET and PAM. Random forest provided the best classification accuracy at the 
expense of stability. SVM performed similarly well with respect to classification accuracy (Supplementary File – 
S3), however, stability was also quite low (0.31). 
Ensemble methods improved stability of GBM, SVM, and RF; however, it noticeably decreased GLMNET 
stability from 0.64 to 0.49. Performance decreased slightly for PLSDA but improved for PAM; both proved the 
best overall models. Overall 8 of the 9 identified metabolites (frequency >= 0.9) by PLSDA and PAM were in the 
top 10 identified by Eisner et.al. (Supplementary File – S3). For this particular dataset the ensemble approach does 
not appear necessary as neither model performance nor feature stability was significantly improved. Irrespective, 
the applied methods provide further validation and support for the classification and metabolites selected. 
 
Table 3. Feature table of PAM analysis consisting of consistency (i.e. number of times the feature identified as 
important) and frequency (i.e. percentage of iterations feature identified) 

PAM Feature Table
features consistency frequency
Adipate 10 1
Creatine 10 1
Glucose 10 1
Succinate 10 1
X3.Hydroxyisovalerate 10 1
myo.Inositol 9 0.9
Betaine 7 0.7
Glutamine 7 0.7
Quinolinate 6 0.6
cis.Aconitate 6 0.6
Acetate 5 0.5
N.N.Dimethylglycine 5 0.5
Lysine 3 0.3
Leucine 2 0.2
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Table 4. Feature table of GLMNET analysis consisting of consistency (i.e. number of times the feature identified 
as important) and frequency (i.e. percentage of iterations feature identified) 

GLMNET Feature Table 
features consistency frequency
Adipate 10 1
Glucose 10 1
Leucine 10 1
Quinolinate 10 1
Valine 10 1
X3.Hydroxyisovalerate 10 1
myo.Inositol 9 0.9
Succinate 6 0.6
Betaine 4 0.4
Glutamine 4 0.4
Lysine 4 0.4
Creatine 3 0.3
N.N.Dimethylglycine 3 0.3
Acetate 3 0.3
Alanine 2 0.2
Formate 1 0.1
Xylose 1 0.1

 
3.2.2 Ametaj – Analysis of Rumen Metabolism via NMR 
The PAM and GLMNET models performed very well with the Ametaj dataset with RPT values of 0.850 and 0.806 
respectively. Although PLSDA did not have a high RPT (0.497), the stability was very high (0.77) and was 
therefore evaluated for consistency with PAM and GLMNET. Glucose, endotoxin, and methylamine were 
consistently identified by PAM, GLMNET and PLSDA (Supplementary File – S4). Glucose and endotoxin were 
expected and methylamine was the first statistically significant metabolite discussed by Ametaj et.al. (Ametaj et al., 
2010). In addition, uracil, acetate, fumarate, and lactate were also consistently identified by at least two models. 
All of these metabolites are identified by Ametaj et.al. except for lactate which is reported as non-significant but 
was approaching significance (0.149). This suggests a potential power issue although the authors’ comment on the 
conversion of lactate to proprionate in ruminates is well supported. 
Ensemble methods improved stability of PLSDA, GBM, SVM, and RF; however, it slightly decreased GLMNET 
and PAM stability by 0.02 and 0.07 respectively (Supplementary File – S4). This general improvement is expected 
with smaller sample sizes as variability often greater. The stability of all models was very high with all >= 0.67 
except for RF. Stability of PLSDA was highest; however, classification accuracy was poor (0.438). Accuracy 
increased slightly with PAM and GLMNET but decreased in SVM to match GLMNET. These three proved to be 
the best overall models. Although the stability was high, identified features did vary between models creating what 
we refer to as a ‘hierarchy of confidence’ whereby the greatest confidence would be placed in the most consistently 
identified features within and across algorithms. Endotoxin, glucose, and methylamine were once more identified 
by four models (PAM, SVM, PLSDA and GBM). Alanine was also identified by 3 models (PAM, GLMNET, 
PLSDA). In addition, acetate, 3-PP, and uracil were also identified by at least two models consistently. All of these 
metabolites were identified as important by Ametaj et.al. Lastly, although most results were consistent, ferulate 
was also identified by PAM and SVM which was not discussed previously. It is also apparent that given the small 
sample size and greater variability within the data, this analysis benefits from ensemble methods.  
3.2.3 Xiao – Serum Analysis of Hepatocellular Carcinoma via MS  
Within the negative mode comparisons PAM mostly performed better than all other algorithms applied with 
respect to RPT (Supplementary File – S5). There was only one exception where PAM and GLMNET had almost 
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identical RPT values (0.679, 0.680). However, PAM stability was consistently the highest suggesting it to be the 
ideal method to explore this particular dataset. Additionally, it should be noted that PAM did not have very high 
accuracy compared to other methods such as GLMNET and SVM. Random Forest also had very high accuracy but 
exceptionally low stability making it a good tool for analyses that require high classification accuracy but do not 
require further feature identification. The higher accuracy makes GLMNET a close second to the PAM approach. 
An ensemble analysis was performed, however only RF improved stability significantly rendering the ensemble 
analysis of little help. Identified features were largely consistent with previous analyses (Supplementary File – S6), 
however, each comparison identified at least an additional 15 metabolites not mentioned in the prior manuscript. 
Within the positive mode comparisons GLMNET performed slightly better than PAM in all except the 1 
comparison; however, PAM consistently maintained the highest stability demonstrating that even with very 
high-dimensional datasets no single algorithm dominates. As with the negative mode, an ensemble analysis was 
performed but only RF improved stability significantly making ensemble aggregation unnecessary. As with the 
NMR studies the two models provided further support to mutually identified features (Supplementary File – S7). 
These features included GDCA, Oleoylcarnitine, GCDCA, L-N2-(2-Carboxyethyl) arginine, Tetracosahexaenoic 
acid, Palmitoyl carnintine and Linoelaidyl carnitine which support the author’s interpretations of bile and fatty acid 
metabolism. In addition, 48 metabolites were consistently identified by PAM but were not mentioned in the paper 
however it is possible they were identified as the authors do not present all identified metabolites. 
4. Discussion 
The results presented focused on determining if a single classification algorithm performs better than other 
commonly used algorithms in the field of metabolomics. Although there is strong support for several algorithms, 
there are additional papers stating one algorithm outperforms another. This is expected according to the concept of 
No Free Lunch Theorem (Wolpert & Macready, 1997) which, in essence, states that there is no single model that is 
appropriate for all problems. Our analyses support this theory and suggest a comparative approach to evaluate 
algorithm performance as well as to provide additional support via multiple algorithms for future conclusions. As 
such, the Bioconductor package OmicsMarkeR has been created to facilitate the rapid comparison of algorithm 
performances on individual datasets. 
The null datasets initially appeared to demonstrate abnormally high accuracy and AUROC values when such 
metrics theoretically should result in ~0.50. However, these final models were re-tuned and built upon the ‘best’ 
features identified likely resulting in an inflated model metric. This has provided an example of the ‘optimistic bias’ 
that may result from feature selection (Ambroise & McLachlan, 2002). Furthermore, increased dimensionality of 
mass spectrometry datasets also increases the likelihood of finding discriminating variables by chance. Increased 
noise may also result in an inflated model metric. It is important to note that despite high model metrics, the low 
stability and RPT values provide strong evidence that the relationship has been found by chance and no further 
information can be reliably drawn from the model thereby increasing the value of such metrics in metabolomics 
investigations. Using the fit.only.model function on the null datasets confirmed the datasets as a whole did not 
possess any inherent classification whereby Accuracy and AUROC were ~0.50 (data not shown).  
The binary and multivariate simulation results demonstrate the variation in optimal models. Depending on the 
users approach to a dataset (i.e. feature subset or model derived), number of samples relative to features, the 
number of groups, or application of ensemble methods, a different algorithm may be more appropriate. Within the 
simulation analyses PLSDA, SVM, PAM, RF, and GLMNET all proved to be optimal algorithms for different 
situations. Curiously, the reduction in features generally decreased GBM performance but feature selection was 
relatively consistent with other methods. Random Forest, in most cases, did not prove to be the optimal algorithm 
but consistently had among the highest accuracy but very low stability; which could be partially mitigated by an 
ensemble approach. This low stability is expected given the algorithms search encompasses interactions between 
variables resulting in a larger search space. If a user wished to weigh accuracy more than stability, the RPT value 
can be easily recalculated with the RPT function by increasing the beta parameter (e.g. beta = 1.5 increases the 
weight of accuracy by 50%). 
The Eisner cachexia NMR dataset provided an example of the value behind using multiple algorithms. In the event 
that algorithms have similar overall performance, analysis of features selected by both may provide further support 
for identified features. Additionally, this dataset demonstrated the circumstance whereby ensemble approaches are 
superfluous. Consistent with published results, the Eisner dataset did reflect the high accuracy of SVM but stability 
was low. The GLMNET and PAM analyses provided respectable accuracy and high stability. The ability to assess 
stability of identified features for classification models is valuable if rapid and clinically applicable tests are to be 
developed. 
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number of expected discriminatory features and the datasets scale (i.e. MS or NMR). The diagram in Figure 1 is 
meant to be a general guide; however, the results herein strongly suggest using multiple algorithms and comparing 
performance on each unique dataset as well as ensemble methods which have been made far more accessible with 
the OmicsMarkeR package. It is important to emphasize, however, that there are far more considerations to be 
considered including the strengths and weaknesses of the available technology such as sensitivity, reproducibility, 
costs, and sample preparation (Robertson, 2005). In addition, preprocessing methods from normalization 
techniques to NMR preprocessing (e.g. binning) to the diverse software implementations of mass spectrometry 
processing (Castillo, Gpalacharyulu, Yetukuri, & Orešič, 2011) likely will impact results and further comparisons 
are encouraged. 
In addition, the package contains two Monte-Carlo permutation functions (perm.class and perm.features) for 
assessing model performance and identified features for further evaluation. Current areas of improvement include 
the addition of further algorithms, database searching, improving memory efficiency, and easy to access graphics 
(e.g. scores plots, variable importance plots, etc.). The R package OmicsMarkeR for this analysis is publically 
accessible from the bioconductor platform (www.bioconductor.org). 
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