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Abstract 

The purpose of this study is to investigate characteristics of limit concepts through the simultaneous use of 
historical and experimental epistemologies. Based on a historical epistemology which is an investigation of 
historical developments in a mathematical concept raised in the history of mathematics, four different 
developments of limit concepts were considered. Through an experimental epistemology which is an analysis of 
students’ different stages in the development of their understanding of the mathematical concept, diverse 
developmental levels were scrutinized to find out how the students performed. Nine pairs of students in total 
were recruited and three representatives were presented. Results indicate that both historical and experimental 
epistemologies are useful methods for teaching mathematics along with the unpacking process and that 
experimental epistemologies are effective because mathematics learning is continuous. 
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1. Introduction 

Since the nineteenth century, the concept of limit has been foundational to how calculus and mathematical 
analysis deal with other notions such as continuity, differentiability, and integration. It is also an important 
concept that is applicable to the concepts of number line and infinite decimal with the concept of infinity. In the 
middle school curriculum in Korea, the concept of the infinite involves finite and infinite sets, the area of a 
sector and the length of an arc, the recurring and nonrepeating decimals, and irrational numbers (Park, Kim et al., 
2010; Park, Nam et al., 2010; Park, Yeo et al., 2010). In the high school curriculum, the concept of infinity is 
expanded to include differential and integral calculus, the limit definition of a series, the convergence and 
divergence of infinite series, and the limit and continuity of functions (Hwang et al., 2010; Lee et al., 2010; Lew 
et al., 2010a, 2010b). However, as evidenced by many research results, most students have considerable 
difficulties with the notions of infinity and limit (Cottrill et al., 1996; Jahnke, 2001; Kang, 2008; 
Mamona-Downs, 2001; Przenioslo, 2004; Tall, 1992; Weller et al., 2004; Williams, 2001). 

The purpose of this study is to investigate how to structuralize limit concepts with an understanding of historical 
epistemology and to make the structural construction more accessible to students through the unpacking 
processes of teaching the concepts by using experimental epistemologies. In this study, a historical epistemology 
is a structural analysis of the developmental stages of a mathematical concept in the history of mathematics, 
whereas an experimental epistemology refers to an examination of different developmental levels of students in 
learning the concept. 

The first basic assumption in this study is derived from the fact that students’ understanding is a continuous 
variable in their learning process (Sierpinska, 1996). The second important assumption is that students’ learning 
process involves thinking with and through their experimental epistemologies, generalizing the experimental 
epistemologies with either a lower historical epistemology or a lower curriculum epistemology, and 
incorporating these epistemologies with what they are taught. Thus, one approach to students’ learning 
difficulties is to analyze their experimental epistemologies in order to fill in the gap between two different 
historical or curricular epistemologies in a continuous understanding process. For instance, how should we teach

1999.090. 


  in class? In the current curriculum, students are usually taught by the intrusive way of using 
the formal definition which has been developed over the history of mathematics. However, we can build on the 
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concept of informal-negation (i.e., there is no number between a limit and its process) to teach the concept of
1999.0  . Applying this concept of informal-negation may help students overcome their learning difficulties 

in continuous understanding processes because this kind of students’ experimental epistemologies can fill in the 
disparity between students’ intuition and the formal and rigorous definition. 

Therefore, in this study, a structural analysis of limit concepts was explored on the basis of four different 
historical epistemologies. In addition to the structural analysis, four experimental epistemologies at different 
levels were investigated for unpacking processes of understanding these concepts. Thus, this study attempts to 
answer the questions raised by learning difficulties by showing the role of both experimental and historical 
epistemologies in the continuous process of learning and teaching limit concepts. 

2. Theoretical Background 

2.1 Nature of Learning Mathematics 

In absolutism, mathematics is absolute truths and thus is viewed as a collection of both complete concepts and 
their operational principles. In contrast, the mathematics that human beings know is a humanmind-based 
mathematics in relativism (Hersh, 1997). In addition, mathematics can be seen as a product of the human mind 
and our social and cultural history in a socio-cultural perspective. From the socio-cultural perspective, relativism 
as a view on the nature of mathematics is a noticeable feature. In this study, we formulated learning mathematics 
as a cognitive, social and cultural process. Thus, not only intra-personal discourse but also inter-personal 
discourse is of principle importance in learning mathematics as an activity. Through this lens, we analyzed not 
only historical developments but also socio-cultural developments, particularly when examining developmental 
trajectories of students. For the study, inherently historical developments are the focus of investigating in 
examining intra-personal discourse, whereas socio-cultural developments are perceived mainly as inter-personal 
discourse in a pair. 

2.2 Historical Epistemology 

In the history of mathematics, the mathematical concepts of infinity and limit have been developed through four 
different epistemological developments: intuitive finitism, infinitism in the context of infinitesimals, infinitism in 
the context of variables, and actual infinitism (Kim, 2010). Intuitive finitism was developed by ancient Greek 
philosophers (Moore, 1990). This epistemology can be called as intuitive finitism because it is based on 
geometrical intuition and excludes infinite processes. Although there was the notion of bounded processes in this 
concept, there was no idea of limit as a concrete bounding entity. Second, infinitism in the context of 
infinitesimals was formulated in the seventeenth and eighteenth centuries and involved the notion of the 
potentially infinite. This epistemology concentrated pragmatically on the development of infinitesimal calculus. 
Although the concept of limits was involved in infinitesimal calculus, it had not been clarified. In Cauchy and 
Weierstrass’ infinitism in the context of variables, the notion of limit emerged as an underlying concept needed to 
remedy uncertainties and make infinitesimal calculus more rigorous. Infinity was also the potential infinite, and 
the concept of limit became the fundamental concept of calculus based on the ε and δ variables. Limits, in this 
epistemology, became an arithmetical concept rather than a geometrical concept (as it had been in infinitism in 
the context of infinitesimals). The concept of the limit based on variables became the rigorous underlying 
concept of calculus in the former epistemology, while uncertainties and inconsistencies of infinitesimals were the 
basis of infinitesimal calculus in the latter epistemology. Finally, in the epistemology of actual infinitism 
demonstrated best by Cantor and Dedekind, infinity was the actual infinite rather than a potential construct, 
unlike the three previous epistemologies. Limit was also the fundamental concept of calculus. In the view of 
Cauchy and Weierstrass, an infinitesimal was a variable whose limit is zero and the limit concept involved only 
the definition of number (Boyer, 1949). 

2.3 Experimental Epistemology 

A (historically) structural analysis of mathematical concepts helps mathematics educators to understand student 
learning difficulties. For instance, Cottrill et al. (1996) report that there are two reasons for student difficulties 
with limits. One reason is the need to mentally coordinate two processes: x→a, and f(x)→L. The other is the 
need for a good understanding of quantification related to ε and δ. As Ball and Bass (2000) pointed out, 
unpacking the processes of a difficult mathematical concept make it more accessible to students by 
decompressing its necessary components which are going to be foundational for the study of more advanced 
mathematics. This is the cognitive root which Tall (1992) advocated. 

However, in order to decompress limit concepts, not only the above historical epistemologies, but also 
experimental epistemologies are needed to develop a better structural analysis because understanding is a 
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continuous variable and experimental epistemologies affect student learning in mathematics (see Davis, 2001; 
Duffin & Simpson, 2000; Moss & Case, 1999; Pirie & Kieren, 1992). In other words, experimental 
epistemologies are needed for a better understanding of how to structuralize and decompress mathematical 
concepts to teach mathematics students with diverse levels of knowledge by considering what they already know. 
Thus, a structural analysis of mathematical concepts should be developed through the simultaneous use of 
historical and experimental analyses. To develop an in-depth analysis of experimental epistemologies, we 
analyzed interview data through discourse analysis. 

3. Research Design 

Nine pairs of students participated in this study. All participants completed the given task in a pair to help them 
express their thinking processes with a guideline. After collecting the transcribed data, experimental 
epistemologies of all students were compared and contrasted. Nine pairs of students were recruited from three 
different groups of students in terms of different developmental levels. One representative in each group and thus 
three representatives in total were presented through discourse analyses on the basis of their experimental 
epistemologies. Finally, different developmental stages of experimental epistemologies were structuralized to 
make conjecture about the difference from those of historical epistemologies. 

3.1 Research Questions 

In order to explore the role of unpacking the processes of experimental epistemologies in the structural analysis 
of historical epistemologies, the following research question was proposed: What are the developmental stages 
of experimental epistemologies which are different from those of historical epistemologies? 

3.2 Participants 

Nine pairs of students in total were recruited from several elementary and high schools in the middle of South 
Korea in order to explore experimental epistemologies in depth. Their discourses were analyzed. Of the nine 
pairs, we presented only three pairs by qualitative methods because these pairs are representative of the others. In 
order to investigate different experimental epistemologies of limit concepts, three different levels of students 
were categorized: students who had not learned the concepts, students who had learned the concepts but were 
possibly not proficient in them, and students who learned the concepts and were potentially good at them. In 
other words, two students from each of the three different groups are described here: two 5th graders (5A and 
5B), two 10th graders in a technical/professional high school (10A and 10B), and two 10th graders in a regular 
high school (10C and 10D). 

3.3 Research Task 

In order to investigate students’ experimental epistemologies about limit concepts, the below problem was used. 
The context and expression of the problem were considered to make it accessible to both 5th graders and 10th 
graders. In order to minimize 5th graders’ difficulty in understanding the problem, three elementary school 
teachers reviewed it from the perspectives of elementary school students. The below task was designed to 
investigate students’ different experimental epistemologies as they exhibited their different levels of 
understanding in a mechanism of solving the same problem. 

Problem: The area of the first rectangle is100 cm2.The area of the second rectangle is reduced to 50% of that of 
the first one. The area of the third rectangle is reduced to 50% of that of the second one: (a) What is the area of 
the fifth rectangle if you continue this process? (b) What happens to the area if you continue endlessly? (c) 
Explain how you get your answer in (b). 

3.4 Data Collection 

The interview was used with pairs of students because it may further reveal experimental epistemologies of 
student thinking. Interviewers assisted each pair of students to clarify his or her thoughts for details whenever the 
listener was not sure of how the students were thinking (Whimbey & Lochhead, 1984). In order to minimize the 
effect of three interviewers on students’ ways of thinking during interview, the interviewers used the following 
prompt. First, while solving these problems, please talk with each other so that I can understand why you think 
like that. Second, if you cannot understand your partner's problem-solving process, please ask either details or 
questions. Third, please help each other in order to solve these problems together. Fourth, please think aloud so I 
can understand your thinking and problem solving process. 

3.5 Data Analysis 

The transcribed data from the paired interviews were used as a primary source to analyze students’ experimental 
epistemologies. The data were analyzed to identify and describe students’ experimental epistemologies which 
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were different from the four historical epistemologies. These experimental epistemologies were scrutinized by 
analyzing students’ discourse on the same limit problem. At the next stage, several comparisons were made: (a) 
we looked for similarities and differences between students’ experimental epistemologies and the four historical 
epistemologies; (b) we searched for the place where the experimental epistemologies could be located within and 
across the four historical epistemologies. 

4. Results 

Through the data analysis, the following four different experimental epistemologies were found: discreteintuitive 
finitism, continuous intuitive finitism, infinitism in the context of infinitesimals through intuition, infinitism in the 
context of infinitesimals through examples. 

4.1 Discrete Intuitive Finitism 

The exchange of the two 5th graders was as follows. 

Turn Speaker What was said 

6 Interviewer Why don’t you start from problem (a)? 

7 5A From 100 cm2, it reduced to 50%…because 50% of 100 cm2 is 50 cm2, 100 cm2 minus 

50 cm2 equal to 50 cm2, the area of the third rectangle is to…reduced…to 50% than 

that of the second one… 

… … … 

66 5B But…because of 50% of 50 cm2…divided by a half…thus 25 cm2 

67 5A 25…we made a mistake. 25 cm2…we make a mistake from the third one… 

68 5B [She corrected the answer] 

69 5A Number three…the third one 

70 5B 25 cm2 

71 5A Number four...a half of 25 cm2…ten... 

72 5B 12.5 cm2 
In solving problem (c), the two 5th graders exhibit the epistemology of intuitive finitism because they answered 
that the area of rectangles “decreases endlessly” without using the limit concept. In addition to the intuitive 
finitism, they found the area of the fifth rectangle by investigating each area discretely (see 7, 66, and 72 in the 
turn column). Therefore, the 5th graders’ epistemology is discrete intuitive finitism. 

4.2 Continuous Intuitive Finitism 

A dialogue went on between two 10th graders in a technical/professional high school in the form of an exchange 
of the following sentences. 

Turn Speaker What was said 

3 Interviewer 
Please solve these four problems in accordance with their sequence according to the 

guideline which I just explained…while speaking aloud. Let’s start then… 

… … … 

88 10B Because it is reduced to 50% 

89 10A Reduced… 

90 

10B 

It reduced a half… [writing 2 as the denominator under the numerator of 100]…one 

over two, over two…one more, two times, three times and four times and five 

times… 

91 10A [pointing out 2s which 10B wrote] four, eight…four times… 

92 10B [pointing out 2s] one, two, three, four, five…five times… 

93 10A Fifth one…the first rectangle is 100…the second one is one time 

94 10B Ah…all right 

95 10A One time should be deducted 
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96 10B Ah…sorry 

97 10A Over sixteen…100 over sixteen. 
The transcribed data of two 10th graders in a technical/professional high school show intuitive finitism because 
they also used the expression of “continue to reduce” to answer problem (b) without employing the limit concept. 
However, in order to find the area of the fifth rectangle, they made each process of finding it continuous by 
considering 1/2, 1/4, 1/8, and 1/16 (see turns 90 and 97). Thus this epistemology can be called continuous 
intuitive finitism, compared to the 5th graders’ discrete intuitive finitism.  

4.3 Infinitism in the Context of Infinitesimals Through Intuition 

Two 10th graders in a regular high school had the following dialogue. 

Turn Speaker What was said 

8 Interviewer Why don’t you share your idea? 

… … … 

11 10D Thus this one is reduced to 50%, the second one is reduced to 50%, the third one is 

reduced to 50% too [writing 100/2, 100/22, 100/23, 100/24]… two two…two 

three…two four…it is reduced like this…thus it becomes 25 over 8 cm2… 

12 10C Um… 

13 10D …(c) is….because denominators continue to increase…numerator is constant…this 

continues to increase…is it almost diverse to infinity? Because it continues to 

increase, 100 over infinity [writing 100/∞]…because the denominator is very big and 

the numerator is small…it approaches to zero.  

14 10C Um… 

15 10D Thus the area becomes zero…rectangle like this…what about you? 

16 10C Like you, in problem (a) it continues to decrease to a half…because it’s decreasing by 

2…it’s division by 2… 

17 10D Um… 

18 10C I thought like you…in problem (b), even if it continues to decrease to zero, it does 

not seem to become zero. I don’t think it become zero… 
In problem (c), both 10th graders in a regular high school had the epistemology of infinitism in the context of 
infinitesimal because they accepted the fact that the area approaches zero. However, even though 10C had the 
epistemology of infinitism in the context of infinitesimal, the expression of “even if it continues to decrease to 
zero, it does not seem to become zero (see turn 18)” shows that his epistemology is based on intuition without 
providing justification. Therefore, his epistemology can be called infinitism in the context of infinitesimals 
through intuition. 

4.4 Infinitism in the Context of Infinitesimals through Examples 

In contrast, 10D advocated the expression of “the area becomes zero” (see turn 15). In addition, he explained the 
reason by using the example of “0.9999…if there are infinitely many 9, it becomes 1” (see turn 26) and justified 
his reasoning. Thus this epistemology can be differentiated from the previous epistemology and it can be called 
infinitism in the context of infinitesimals through examples. However, his reasoning is not completely infinitism 
in the context of infinitesimals because he admitted that “even if there is one at the end” (see turn 26). 

Turn Speaker What was said 

8 Interviewer Why don’t you share your idea? 

… … … 

25 10C …I don’t know… [pointing to 10D’s answer]…then do you think this is zero? If we 

continue, it’s gonna be zero? 

26 10D Rather than becoming zero, we can see zero because it is very close to zero…for 
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instance, 0.9999…if there are infinitely many 9, it becomes 1…like this…0.000…if 0 

is gonna repeat infinitely many…even if there is one at the end…we can see this as 

zero...I do think like this. 

27 10C Um… [nodding]…I may agree with you… 

5. Discussion 

In this study, we analyzed a mathematical structure of limit concepts on the basis of four historical 
epistemologies. In addition to the four historical and original epistemologies, we scrutinized four experimental 
and novel epistemologies that arose from students’ different developmental levels. In summary, historically the 
limit concept has been developed through four different epistemologies: intuitive finitism, infinitism in the 
context of infinitesimals, infinitism in the context of variables, and actual infinitism. Based on experimental 
epistemologies of six students, we observed that intuitive finitism included discrete intuitive finitism and 
continuous intuitive finitism, whereas infinitism in the context of infinitesimals could be developed through two 
different stages with intuition and examples. As shown in Table 1, we can see four experimental epistemologies 
that are different from four historical epistemologies. 

Although the sample size of the current study is too small to allow for generalization, what we found in this 
study may provide insight into the role of experimental epistemologies in mathematical thinking. On the grounds 
of our findings, first, we propose that students’ experimental epistemologies of mathematical concepts should be 
analyzed in terms of continuous learning processes through discourse analysis in order to have a better 
understanding of the development stages and the difficulties in learning. Students’ experimental epistemologies 
may not only include diverse levels of development but also differ from historical development or the prescribed 
or currently accepted ways of learning and doing. Thus, analyzing students’ experimental epistemologies as 
foundational concepts of what they already know in the continuous process of learning mathematics may be the 
first priority to understand their developmental stages and a necessary component to develop thinking 
mechanisms by which they can apply their “primitive knowing” (Pirie & Kieren, 1992) to historical or curricular 
structure. 

Second, not only students’ current experimental epistemologies of mathematical concepts, but also 
developmentally structural analyses of these concepts (e.g., Cottrill et al., 1996) are important to understand if 
teachers want to better understand how to handle students’ learning difficulties. These structural analyses, 
however, can become more meaningful with the help of students’ experimental epistemological analyses related 
to the structural analyses. Further, the effect of experimental epistemology on structural analysis may resolve a 
misalignment between learning and teaching and even close the gap between theory and practice.  

Finally, in order to help student learning difficulties, not only historical epistemologies but also experimental 
epistemologies must play an important role in developing a new epistemology for unpacking the processes of 
learning and teaching mathematical concepts. For instance, we observed discrete intuitive finitism and 
continuous intuitive finitism as aspects of intuitive finitism. Obviously, we can develop at least two different 
stages in intuitive finitism, because an understanding of discrete intuitive finitism develops before an 
understanding of continuous intuitive finitism in continuous learning processes. Similarly, combining the 
historical and experimental epistemologies, teachers can plan their lessons with well-structured unpacked stages 
and handle students’ dynamically different experimental epistemologies which are not currently accounted for in 
historical or curricular developments. This new approach to teaching mathematics may help students deal with 
their learning difficulties. 
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Table 1. Historical and experimental epistemologies 

 Historical epistemologies Experimental epistemologies 

←
 D

evelopm
ent 

Actual infinitism 

... 

…
 

Infinitism in the context of 

variables 

…
 

Infinitism in the context of 

infinitesimals 

…
 

Infinitism in the context of infinitesimals through examples 

Infinitism in the context of infinitesimals through intuition 

Intuitive finitism 

…

…
 

Continuous intuitive finitism 

Discrete intuitive finitism 
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