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Abstract 

In this paper, we analyze the role of the heavy tail and skewed distribution in market risk estimation (Value at 

Risk (VaR)). In particular, we are interested in knowing if in the framework of the conditional extreme value 

theory, the estimation of the volatility model below heavy tail and skewed distribution contributes to improve the 

VaR estimation respect to these obtained from a symmetric distribution. The study has been carried out for six 

individual assets belonging to the digital sector: ADP, Amazon, Cerner, Apple, Microsoft and Telefonica. The 

analysis period runs from January 1st, 2008 to the end of December 2013. Although the evidence found is a little 

bit weak, the results obtained seem to indicate that the heavy tail and skewed distribution outperforms the 

symmetric distribution both in terms of accuracy VaR estimations as in terms of firm’s loss func tion. 

Furthermore, the market risk capital requirements fixed on the base of the VaR estimations are also lowest below 
a skewed distribution.  

JEL Classifications: C15, C22, C52, G17, G32. 

Keywords: extreme value theory, loss functions, skewness distributions, value at risk 

1. Introduction 

A context of risk is one in which we do not know with certainty the consequences associated with a decision. 

The only thing that we know is possible outcomes associated with it and the likelihood of achieving such results. 

In the financial field, the notion of risk implies that we know the various yields can potentially get to make an 

investment and also know the probability of achieving such results. This allows us to estimate the average 

expected yield and the possible diversion ‘above’ or ‘below’ the average value, that is, the risk. The most popular 

and traditional risk measure is volatility (variance). In fact, traditional financial theory defines risk as the 
dispersion of returns due to movements in financial variables. 

Another way of measuring risk, which is the most commonly used at present, is to evaluate the losses that may 

occur when the price of the asset that makes up the portfolio goes down. This is what Value at Risk (VaR) does. 

The Value at Risk of a portfolio indicates the maximum amount that an investor may lose over a given time 
horizon and with a given probability. In this case, the concept of risk is associated with the danger of losses. 

According to Jorion (2001), "VaR measure is defined as the worst expected loss over a given horizon under 

normal market conditions at a given level of confidence". For the estimation of VaR measure different 

methodologies have been developed. These methodologies can be classified in three groups: (i) parametric 

methods (as Riskmetrics); (ii) non-parametric method (as historical simulation) and (iii) semiparametric method 
(as extreme value theory, filter historical simulation and CaViar Method)

1
.  

Among all of them, one of the most used by the financial institution is parametric method. This method assumes 

                                                 
1
See Abad, Benito and López-Martín (2014) for a review of those methodologies.  
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that financial returns follow a known distribution. Thus, below this method, the VaR of a portfolio at (1 − 𝛼) 

confidence level is calculated as the product of the conditional standard deviation of the return portfolio by the 

𝛼 quantile (𝑘𝛼) of the assumed distribution
2
. The mainly assumed distribution is the normal distribution. Below 

this assumption, 𝑘𝛼 is the 𝛼 quantile of the standard normal.  

The major drawbacks of this method are related to the normal distribution assumption for financial returns. 

Empirical evidence shows that financial returns do not follow normal distribution. The skewness coefficient is in 

most cases negative and statistically significant, implying that the financial returns distribution is skewed to the 

left. This result is not in accord with the properties of a normal distribution, which is symmetric. In addition to 

this, empirical distribution of financial return has been documented to exhibit significantly excessive kurtosis (fat 

tails and peakness) (see Bollerslev, 1987). Consequently, the size of the actual losses is much higher than that 
predicted by a normal distribution. 

Taking this into account, the research in the framework of parametric method has focus on investigating other 

density functions which capture the skew and kurtosis of financial returns. In this line, Abad, Benito, 

López-Martín and Sánchez (2016), Chen, Gerlach, Lin and Lee (2012), Polansky and Stoja (2010), Bali and 

Theodossiou (2008), Ausin and Galeano (2007), Zhang and Cheng (2005) among others, show that, in the 

context of parametric method, assuming fat tail and skewness distributions improve the performance of this 
model in VaR estimation. 

As we will see later, below the conditional extreme value theory (which is one of the most successful method in 

estimating VaR), the value at risk of a portfolio at (1 − 𝛼)% confidence level is calculated as the product of the 

conditional standard deviation of the return portfolio by the 𝛼 (𝑘𝛼) quantile of Pareto generalize distribution 

(PGD). Traditionally, the conditional standard deviation of the return portfolio is estimated by assuming a 

symmetric distribution for the financial return. So, in the same line that aforementioned paragraphs in this paper, 

we analyze if, in the framework of the method based on the conditional extreme value theory, the estimation of 

the volatility model below a fat tail and skewness distribution contributes to improve the results in VaR 
estimation.  

The rest of the paper is as follow. In section 2 we present the volatility models used in the empirical application. 

In section 3 we describe the VaR measure, the methodology used in this paper to calculate this measure and the 

backtesting techniques. The results of the empirical application are presented in section 4. Section 5 includes the 
main conclusion.  

2. Volatility Models 

According to Engle (1982), Bollerslev (1986) and Nelson (1991), the financial returns are characterized by a 

variance changing over time, alternating periods of low volatility followed by periods of high volatility. In other 

words, as noted by Mandelbrot (1963), “large changes tend to be followed by large changes, of either sign, and 

small changes tend to be followed by small changes”. This effect, known as volatility clustering, indicates the 

presence of conditional heteroscedasticity in the return series and the need to model the behaviour of the 

conditional variance. Furthermore, financial returns are subject to leverage (Black, 1976). This means that 
volatility tends to be higher after negative returns, this is typically attributed to leverage (hence the name).  

To capture cluster in volatility Engle (1982) proposed Autoregressive Conditional Heteroscedasticity (ARCH), 

which featured a variance that does not remain fixed but rather varies throughout a period. Bollerslev (1986) 

extended the ARCH model into the Generalized ARCH (GARCH). The GARCH model captures volatility 

clustering but does not capture the leverage effect. In this model the positive surprises have the same effect on 

volatility than negative surprises. To capture the leverage effect have been developed asymmetric GARCH 

models as for instance the APARCH model (Ding, Granger & Engle, 1993) or the EGARCH model proposed by 
Nelson (1991).  

On the other hand, it is well known that, long memory property observed in the volatility of the financial series 

cannot be captured by traditional GARCH models, so it is necessary to model a long-term component. To 

capture this characteristic, Engle and Lee (1999) proposed a model in which the variance is decomposed into a 

component of long-term and short-term component. The main role of short-term component is to pick up the 

temporary increase in the variance after an impact on the price. While the persistence or long-term memory 
indicates how long the shock takes to be absorbed. 

Creal, Koopman and Lucas (2008, 2011) and Harvey and Chakravarty (2008) propose a model that integrates 

                                                 
2
This is true when we assume that the portfolio return mean is zero.  
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three characteristics aforementioned: cluster in volatility, leverage effect and long memory. The model proposed 

by these authors is known Beta-t-EGARCH model. In this model, the short-term component responds in the 

same manner as in the traditional GARCH. Nevertheless, the long-term component is not sensitive to extreme 

observations, as it does in the standard GARCH model. That is, in the standard GARCH, the existence of an 

outlier in yields has a persistent effect on volatility, which increases the variance. In contrast, the 

Beta-t-EGARCH model corrects volatility in case of existence of an outlier, absorbing the effect and returning to 
previous levels of volatility. 

Formally let 𝑟1 , 𝑟2 , … , 𝑟𝑛 be a sequence of independent and identically distributed random variables representing 
financial returns. Assume that {𝑟𝑡 } follows a stochastic process: 

                            𝑟𝑡 = 𝑒𝑥𝑝(𝜆𝑡|t−1)(휀𝑡),     휀𝑡~𝑡(0, 𝜎𝜀, 𝜈)            𝜈 > 2    (1) 

where the conditional error 휀𝑡 is distributed as a t-Student with zero mean, unconditional standard deviation 

𝜎𝜀 and degrees of freedom parameter 𝜈.  𝜆𝑡|t−1 is the conditional scale or volatility, that does not need to be 
equal to the conditional standard deviation. The conditional standard deviation is obtained as 𝜎𝜀 𝑒𝑥𝑝 (𝜆𝑡|t−1)3.         

In the Beta-t-EGARCH model, in (1) is defined as: 

           𝜆𝑡|t−1 = 𝛿 + 𝜆1,𝑡|t−1
+ + 𝜆2,𝑡|t−1

+                      (2) 

being the long-term component is 𝜆1,𝑡|t−1
+ = 𝜑1𝜆1,t−1|t−2

+ + 𝑘1𝑢𝑡−1 and the short-term component is 𝜆2,𝑡|t−1
+ =

𝜑2𝜆2,t−1|t−2
+ + 𝑘2𝑢𝑡−1. The leverage effect may be introduced into the model using the sign of the observations. 

Thus, the short component with leverage effect is as follow:  

𝜆2,𝑡|t−1
+ = 𝜑2𝜆2,t−1|t−2

+ + 𝑘2𝑢𝑡−1 + 𝑘∗(−𝑟𝑡−1)(𝑢𝑡−1 + 1)  (3) 

and 𝑢𝑡 is the score conditional which is given by:  

𝑢𝑡 =
(𝜈+1)(𝑟𝑡)2

𝜈𝑒𝑥𝑝(2𝜆𝑡|t−1)+(𝑟𝑡)2 − 1      −1 ≤ 𝑢𝑡 ≤ 𝜈, 𝜈 > 0    (4) 

Taking the signs of minus, 𝑟𝑡−1 means that the parameter of 𝑘∗ is normally non-negative for stock returns as in 

the GARCH model, the long-term component 𝜆1,𝑡|t−1
+ , has 𝜑1 close to one or even set equal to one, while the 

short-term component 𝜆2,𝑡|t−1
+ , will typically have a higher 𝑘 combined with a lower 𝜑. The model is not 

identifiable if the 𝜑1 = 𝜑2. Imposing the constraint 0 < 𝜑2 < 𝜑1 < 1 ensures identifiability and stationarity. 

Finally, the empirical literature has shown that financial returns also exhibit skewness and fat-tailed distributions. 

To capture these features, Harvey and Sucarrat (2014) extended the Beta-t-EGARCH model, combining the 

skewness of the conditional distribution with a leverage effect in the dynamic of the scale. This model is known 
as Beta-skewness-t-EGARCH.  

Skewness is introduced into the Beta-t-EGARCH model using the method proposed by Fernandez and Steel 

(1998) (see Harvey and Sucarrat (2014) for more details of this method). Thus, in equation (1), they assume that 

the conditional error 휀𝑡 is distributed as a skewed t-student with mean 𝜇𝜀, scale 𝜎𝜀, degrees of freedom 
parameter 𝑣 and skewness parameter 𝛾4.  

                              𝑟𝑡 = 𝑒𝑥𝑝(𝜆𝑡|t−1)(휀𝑡 − 𝜇𝜀), 휀𝑡~𝑠𝑡(𝜇𝜀 , 𝜎𝜀, 𝜈, 𝛾)    𝜈 > 2, 𝛾 𝜖(0, ∞)                (5) 

where  λt|t−1 is given by:   

 𝜆𝑡|t−1 = 𝛿 + 𝜆1,𝑡|t−1
+ + 𝜆2,𝑡|t−1

+                            (6) 

The long-term component is  𝜆1,𝑡|t−1
+ = 𝜑1𝜆1,t−1|t−2

+ + 𝑘1𝑢𝑡−1  and the short-term component is 𝜆2,𝑡|t−1
+ =

𝜑2𝜆1,t−1|t−2
+ + 𝑘2𝑢𝑡−1 + 𝑘∗(−(𝑟𝑡−1))(𝑢𝑡−1 + 1). Again, only the short-term component has a leverage effect. In 

                                                 
3
The specification for the standard GARCH model is as follows: 𝑟𝑡 = 𝜎𝑡휀𝑡, 휀𝑡~IID (0,𝜎𝜀

2), where 𝜎𝑡
2 is the scale 

o volatility, which is modeled 𝜎𝑡
2 =  𝛿 + 𝜑1𝜎𝑡−1

2 + 𝑘1휀𝑡−1
2  with 𝜎𝜀

2 = 1.   

4
The conditional error 휀𝑡 is an uncentred (i.e., mean not necessarily equal to zero) Skewed t variable with 𝑣 

degrees of freedom, skewness parameter 𝛾. A centred and symmetric t-distribution variable with mean zero is 

obtained when 𝛾 = 1, in which  𝜇𝜀 = 0, whereas a left-skewed (right-skewed) t-variable is obtained when 
𝛾 < 1, (𝛾 > 1). More details on the distribution can be found in Harvey and Sucarrat (2013) and Sucarrat (2013). 
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this model the conditional score is given by:  

𝑢𝑡 =
(𝜈+1)(𝑟𝑡 +𝜇𝜀𝑒𝑥𝑝(𝜆𝑡|t−1))(𝑟𝑡 )

𝜈𝛾
2(𝑟𝑡+𝜇𝜀𝑒𝑥𝑝(𝜆𝑡|t−1))

𝑒𝑥𝑝(2𝜆𝑡|t−1)+(𝑟𝑡 +𝜇𝜀𝑒𝑥𝑝(𝜆𝑡|t−1))2
                   (7) 

3. VaR Methodology 

Let 𝑟1 , 𝑟2 , … … 𝑟𝑛 be identically distributed independent random variables representing the financial returns. Use 

𝐹(𝑟) to denote the cumulative distribution function 𝐹(𝑟) = 𝑃𝑟 (𝑟𝑡 < 𝑟|𝛺𝑡−1) conditioned to an information set, 
𝛺𝑡−1, available at time t-1. Assume that {𝑟𝑡 } follows the stochastic process: 

                      𝑟𝑡 = 𝜇 + 𝜎𝑡휀𝑡        휀𝑡~𝑖𝑖𝑑(0,1)                       (8) 

being 𝜇  the mean of returns; 𝜎𝑡
2 = 𝐸(휀𝑡

2|𝛺𝑡−1) and 휀𝑡  has the conditional distribution function 𝐺(휀), 
𝐺(휀) = 𝑃𝑟 (휀𝑡 <  휀 |𝛺𝑡−1).  

The VaR at a given level of confidence 1 − 𝛼,  denoted by 𝑉𝑎𝑅 (𝛼), is defined as the 𝛼 quantile of the 
probability distribution of financial returns. 

           𝐹(𝑉𝑎𝑅(𝛼)) = 𝑃𝑟(𝑟𝑡 < 𝑉𝑎𝑅(𝛼)) = 𝛼  (9) 

There are two ways to estimate this quantile: (1) inverting the distribution function of financial returns, 𝐹(𝑟), or 

(2) inverting the distribution function of innovations, 𝐺(휀). The latter case will also require estimating the 
standard deviation of returns. 

                 𝑉𝑎𝑅(𝛼) = 𝐹−1(𝛼) =  𝜇 + 𝜎𝑡𝐺−1(𝛼)                       (10) 

Thus, the VaR estimation involves the specifications of the distribution function of financial returns, 𝐹(𝑟), or the 
distribution function of innovations, 𝐺(휀), along with the standard deviation of returns, 𝜎𝑡.  

The historical simulation method, Monte Carlo simulation and unconditional approach based on the Extreme 

Value Theory focus on the estimation of 𝐹(𝑟), while Parametric Method and the Conditional Extreme Value 
Theory estimate 𝐺(휀).  

Below, we will describe the Conditional Extreme Value Theory, which have been used in this study to compute 
VaR.   

3.1 Conditional Extreme Value Theory 

The Extreme Value Theory (EVT) approach focuses on the limiting distribution of extreme returns observed over 
a long time period, which is essentially independent of the distribution of the returns themselves. 

There are two methods based on EVT: a) Block Maxima Model (BMM) proposed by McNeil (1998) and b) 

Peaks Over Threshold Model (POT). This second model is generally considered to be the most useful for 
practical applications, due to the more efficient use of the data on extreme values. 

Within the POT models framework, we can distinguish two types of analysis: (i) the Semi-Parametric Model 

built around Hill estimator and (ii) and the fully parametric models based on the generalized Pareto distribution. 
The latter method is commonly most used in practice. 

Below, the fundamental theory of this approach is described, considering both unconditional and conditional. 

Let 𝑟1 , 𝑟2 , … … 𝑟𝑛 be a random sequence of observations representing the financial returns. Given a threshold 

denoted by 𝑢, we will be interested in excess losses over the threshold
5
 denoted by  𝑦1 ,𝑦2 ,𝑦3, … 𝑦𝑁𝑢

, where 
𝑦𝑖 = 𝑟𝑖 − 𝑢 and 𝑁𝑢 are the number of sample data greater than 𝑢.  

Then, for instance, if the threshold is equal to 1.5 %, we are left with all returns lower to 1.5 %. 

The Extreme Value Theory assumes that the distribution of excess losses above the threshold follows a 
Generalized Pareto distribution (GPD) given for the expression: 

              𝐺k,ξ(y) = 1 − [1 +
𝑘

𝜉
𝑦]−1/𝑘   (11) 

being 𝑘 y  𝜉 the parameters of the distribution
6
. 

It can be shown that under this assumption, the α percentile of the distribution, as the VaR can be estimated as:  

                                                 
5
The most common is to use the 10% percentile as the threshold level.  

6
These parameters can be estimated by maximum likelihood. 
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             𝑉𝑎𝑅(𝛼) = 𝐺𝑘,𝜉
−1(𝛼) = 𝑢 +

𝜉

𝑘
[[

𝑛

𝑁𝑢
(1 − 𝛼)]

−𝜉

− 1]          𝑟 < 𝑢    (12) 

where 𝑛 represents the number of sample data. 

The extreme value method described in the preceding paragraphs does not consider the level of volatility. This 
method is known as Unconditional Extreme Value Theory. 

Since financial returns are variables that are characterized by heteroscedasticity, McNeil and Frey (2000) 

proposed a new methodology, called Conditional Extreme Value Theory, for estimating VaR that combines 
extreme value theory with models of volatility. 

According to this theory, the VaR of a portfolio at a confidence level of 1 − α  can be calculated as: 

                                     𝑉𝑎𝑅(𝛼)𝑡 =  𝜇 + 𝜎𝑡𝐺𝑘,𝜉
−1(𝛼)                         (13)    

where σt
2  represents the conditional standard deviation of the financial returns and  𝐺𝑘,𝜉

−1 is the α quantile of 
the GPD. 

To estimate the conditional standard deviation of the returns, in this paper, we use the beta-t-EGARCH model 
and the beta-skewness-t-EGARCH models presented in section 2.  

3.2 Backtesting 

To check the adequacy of the VaR estimates, we use two alternative approaches: statistical tests that evaluate the 
accuracy of the estimates and loss functions. 

As to the first approach, to test the accuracy of the VaR estimates, we recurre some standard procedures based on 

statistical hypothesis testing which have been proposed in the literature.  In this work, we use to test the 

accuracy of the VaR estimates five standard tests: (i) unconditional coverage test (Kupiec, 1995), (ii) Backtesting 

Criterion (BTC), (iii) conditional coverage test (Christoffersen, 1998), (iv) statistics for serial independence 
(LRind) and (v) dynamic quantile (Engle and Manganelli, 2004). 

Before implementing these tests, we must define an exception indicator. This indicator is calculated as follows:  

𝐼𝑡+1 = {
1   𝑠𝑖    𝑟𝑡+1 < 𝑉𝑎𝑅(𝛼)

0    𝑠𝑖    𝑟𝑡+1 > 𝑉𝑎𝑅(𝛼)
                            (14) 

Kupiec (1995) shows that if we assume that the probability of getting an exception is constant, then the number 

of exceptions 𝑥 = ∑ 𝐼𝑡+1  follows a binomial distribution 𝐵(𝑁, 𝛼) , where 𝑁  represents the number of 

observations. An accurate measure VaR should produce an unconditional coverage (�̂� =
∑ 𝐼𝑡+1

𝑁
) equal to 𝛼 

percent. 

Unconditional coverage test has a null hypothesis �̂� = 𝛼, with a likelihood ratio statistic: 

𝐿𝑅𝑢𝑐 = 2[𝑙𝑜𝑔(�̂�𝑥(1 − �̂�)𝑁−𝑥) − 𝑙𝑜𝑔 (𝛼(1 − 𝛼)𝑁−𝑥)]  (15)      

which follows an asymptotic  𝜒2(1) distribution. 

A similar test for the significance of the departure of �̂� from 𝛼  is the back-testing criterion statistic (BTC):  

𝑍 = (𝑁�̂� − 𝑁𝛼)/√𝑁𝛼(1 − 𝛼)    (16) 

which follows an asymptotic N(0,1) distribution 

The conditional coverage test, developed by Christoffersen (1998), jointly examines whether the percentage of 

exceptions is statistically equal to the one expected (�̂� = 𝛼) and the serial independence of the exception 

indicator. The likelihood ratio statistic of this test is given by 𝐿𝑅𝑐𝑐 = 𝐿𝑅𝑢𝑐 + 𝐿𝑅𝑖𝑛𝑑 which is asymptotically 

distributed as 𝜒2(2) and the 𝐿𝑅𝑖𝑛𝑑 statistic is the likelihood ratio statistic for the hypothesis of the serial 
independence against first-order Markov dependence

7
. 

                                                 
7
The LRind statistic is  and has an asymptotic  distribution. The likelihood 

function under the alternative hypothesis is  where Nij denotes the number 

of observations in state j after having been in state i in the previous period,  and

. The likelihood function under the null hypothesis is ( ) is 
. 
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Finally, the dynamic quantile test proposed by Engle and Manganelli (2004) examines if the exception indicator 

is uncorrelated with any variable that belongs to the information set  Ω𝑡−1 available when the VaR is calculated. 
This is a Wald test of the hypothesis that all slopes are zero in the regression model:  

𝐼𝑡 = 𝛽0 + ∑ 𝛽𝑖
𝑝
𝑖=1 𝐼𝑡−𝑖 + ∑ 𝜇𝑗

𝑞
𝑗=1 𝑋𝑡−𝑗                (17) 

where 𝑋𝑡−𝑗  are explanatory variables contained in Ω𝑡−1. 

This statistic introduced as explanatory variables lags of VaR. Under null hypothesis, the exception indicator 

cannot be explained by the level of VaR, i.e. 𝑉𝑎𝑅(𝛼) is usually an explanatory variable to test if the probability 
of an exception depends on the level of the VaR. 

In a second stage, we evaluate the magnitude of the losses experienced. For this purpose, we have considered 
three loss functions: the regulator’s loss function, the firm ‘s loss function and daily capital requirement. 

Lopez (1998, 1999) proposed a loss function that reflects the utility function of a regulator. This function assigns 

a quadratic specification when the observed portfolio losses exceed the VaR estimate. Thus, we penalise only 

when an exception occurs according to the following specification: 

         𝑅𝐿𝐹𝑡 =  {  (𝑉𝑎𝑅𝑡 − 𝑟𝑡 )2 𝑖𝑓  𝑟𝑡 < 𝑉𝑎𝑅(𝛼)
0                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                         (18) 

This loss function gives higher scores when failures take places and considers the magnitude of these failures. In 

addition, the quadratic term ensures that large failures are penalised more than small failures. Among several 
models,  that provides the lowest loss function value is the best model. 

This loss function could be optimal from the perspective of the regulator, but not from the point of view of the 
firm since a model that generates a VaR too high leads the firm to incur high capital costs. 

Taking this into account, Sarma, Thomas and Shah (2003) defines the firm’s loss function as follows: 

       𝐹𝐿𝐹𝑡 =  {
(𝑉𝑎𝑅𝑡 − 𝑟𝑡 )2 𝑖𝑓  𝑟𝑡 < 𝑉𝑎𝑅(𝛼)
  −𝛽𝑉𝑎𝑅𝑡                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                             (19) 

where 𝛽 is the opportunity cost of capital. 

This function penalises the cases in which there are no exceptions multiplying the VaR by a factor 𝛽. As Abad, 

Benito and López-Martín (2015) indicate, this product does not capture the opportunity cost of capital in an 

exact way. Therefore, in line with Sarma et al. (2003), they propose a new firm’s loss function that is expressed 
as follows: 

      𝐹𝐴𝐵𝐿𝑡 =  {
   (𝑉𝑎𝑅𝑡 − 𝑟𝑡 )2 𝑖𝑓  𝑟𝑡 < 𝑉𝑎𝑅(𝛼)
    𝛽 (𝑟𝑡 − 𝑉𝑎𝑅𝑡)      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

               (20) 

As can be determined in this function, the exceptions are penalized as usual in the literature, following the 

instructions of the regulator. But when there are no exceptions, the loss function penalizes the difference between 

the VaR and returns weighted by a factor that represents an interest rate. This product is exactly the opportunity 
cost of the capital, ie, the excess capital held by the firm. 

Finally, we evaluate the VaR estimate on the bases of daily capital requirement (see McAleer, Jimenez & 

Pérez-Amaral, 2013). These authors adapt to daily term the function used by the financial institutions for 

calculating market risk capital requirement in a 10 days’ horizon (Basel II).  The daily capital requirement at 
time 𝑡 can be calculated as follow (BCBS, 1996; 2006):  

                                          𝐷𝐶𝑅𝑡 = 𝑠𝑢𝑝{−𝑘 × 𝑉𝑎𝑅̅̅ ̅̅ ̅̅
60 ,−𝑉𝑎𝑅𝑡−1}        (21) 

where 𝐷𝐶𝑅𝑡 represents the daily market capital requirement at time 𝑡, which is the higher of 𝑘 × 𝑉𝑎𝑅̅̅ ̅̅ ̅̅
60 and 

−𝑉𝑎𝑅𝑡−1; 𝑉𝑎𝑅̅̅ ̅̅ ̅̅
60 is the mean VaR over the previous 60 working days; (3 ≤ 𝑘 ≤ 4) is the Basel II violation 

penalty (see Table 1).  
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Table 1. Basel Accord Penalty Zones 

 Zone  Number of exceptions  k  

 Green  0 to 4  3  

 

Yellow 

 5 
6 
7 
8 
9 

 3.4 
3.5 
3.65 
3.75 
3.85 

 

 Red  10 or more  4  

Note: The number of exceptions is given for 250 trading days 

4. Empirical Application 

4.1 Data Analysis 

The data set consists of daily returns of six companies from 1/04/2000 to 12/31/2013 (approximately 3520 

observations). The considered companies are ADP, Amazon, Apple, Cerner, Microsoft and Telefonica. The 

computation of the returns (𝑟𝑡 ) is based on the formula 𝑟𝑡 = 𝑙𝑛(𝑃𝑡 /𝑃𝑡−1) where 𝑃𝑡  is the price at time 𝑡. The 
evolution of daily prices and yields are represented in Figure 1. 

Table 2 shows descriptive statistics of the return series. For each company, the unconditional mean is very close 

to zero. The highest unconditional standard deviation are 0.0368 (Amazon) and the lowest 0.0167 (ADP). For 

the rest series of return, the standard deviation moves between 0.0208 and 0.0275. The skewness statistic is 

negative for four of the series considered. This means that in most cases the distribution of those returns is 

skewed to the left. For all the series, the excess kurtosis statistics is above 3, implying that the distributions of 

those returns have much thicker tails than the normal distribution. Similarly, the Jarque-Bera statistic is 
significant rejecting the assumption of normality. 

Table 2. Descriptive Statistics 

Assets  
Mean 

(%) 

Median 

(%) 
Maximum Minimum 

Std. Dev. 

(%) 
Skewness  Kurtosis  Jarque Bera 

ADP 0.013 0.023 0.11179 -0.26892 1.665 -1.148* 
(0.041) 

26.678* 
(0.083) 

83004 
(0.001) 

Amazon 0.042 -0.004 0.29618 -0.28457 3.681 0.450* 
(0.041) 

13.170* 
(0.083) 

15289 
(0.001) 

Apple  0.066 0.077 0.12239 -0.21999 2.733 -0.446* 
(0.041) 

8.041* 
(0.083) 

3844 
(0.001) 

Cerner 0.066 0.063 0.22063 -0.19159 2.746 0.441* 
(0.041) 

11.995* 
(0.083) 

11981 
(0.001) 

Microsoft -0.035 0.000 0.16455 -0.18623 2.081 -0.497* 
(0.041) 

12.480* 
(0.083) 

13327 
(0.001) 

Telefónica 0.029 0.000 0.20096 -0.21279 2.474 -0.011* 
(0.041) 

8.483* 
(0.083) 

4410 
(0.001) 

Note: This table presents the descriptive statistics of the daily percentage returns of ADP, Amazon, Apple, Cerner, 

Microsoft and Telefónica. The sample period is from January 3rd 2000 to December 31th, 2013. The returns are 

calculated as Rt=ln(Pt/Pt-1). Standard error of the skewness an kurtosis coefficients are calculated as √(6⁄n) and 

√(12/n) respetively. The JB statistic is distributed as the Chi-square with two degrees of freedom; in brackets 
their p-value. * denotes significance at 1% level. 

In Figure 1, we observe that the range of the fluctuation of the returns changes in the time and these variations 

evolve according to the idea of cluster in volatility (Mandelbrot, 1963). To capture this effect and others 

characteristics of the return as the leverage effect (Black, 1976) we use the beta-t-EGARCH model, proposed by 

Creal et al. (2008, 2011) and Harvey and Chakravarty (2008), and the beta-skewness-t-EGARCH proposed by 

and Harvey and Sucarrat (2013). In Table 3, we present the coefficient estimations of both models for each asset 
in the whole period.  

All the parameters estimated are positive and statistically significant. Just in the case of Amazon 𝑘2 is not 

significant. In addition, the estimations of 𝜑2 and 𝜑1 satisfy the identifiability and stationary conditions ( 𝜑2 

< 𝜑1 ≤ 1). The parameter 𝑘∗, which capture the “leverage effect” is positive in all cases, indicating that 

volatility tends to be higher after negative returns. The value of this parameter moves between 0 .015 (Microsoft) 

and 0.034 (Apple). To last, in the case of beta-skewness-t-EGARCH model, the parameter  𝛾 is inferior to one 

(𝛾 <1) in the case of ADP, Cerner, Apple and Telefónica. This means that the distributions of those assets are 
skewed to the left. For the case of Amazon and Microsoft the distribution is skewed to the right (𝛾 >1).  
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Table 3. Estimation of the parameters 

 𝛿 
(se) 

ϕ1 
(se) 

ϕ2 
(se) 

k1 
(se) 

k2 
(se) 

κ* 
(se) 

df 
(se) 

γ 
(se) 

LogL 
(BIC) 

ADP 
 

beta-t-EGARCH
(i) 0.759 

(0.253) 

1.000 

(0.000) 

0.986 

(0.006) 

0.012 

(0.006) 

0.018 

(0.007) 

0.024 

(0,004) 

5.352 

(0.458) 
-- 

-5981.5 

(3.416) 

beta-skewness-t-EGA
RCH

(ii) 
0.357 

(0,143) 
0.988 

(0.009) 
0.997 

(0.001) 
0.024 

(0.011) 
0.008 

(0.011) 
0.022 

(0.003) 
5.386 

(0.464) 
0.953 

(0.020) 
-5982.1 
(3.418) 

Amazon 

 

beta-t-EGARCH 
1.587 

(0.234) 
1.000 

(0.000) 
0.922 

(0.051) 
0.022 

(0.006) 
0.011 

(0.009) 
0.024 

(0.007) 
4.179 

(0.269) 
-- 

-8522.3 
(4.860) 

beta-skewness-t-EGA

RCH 

1.592 

(0.236) 

1.000 

(0.000) 

0.899 

(0.052) 

0.023 

(0.005) 

0.010 

(0.009) 

0.023 

(0.007) 

4.202 

(0.270) 

1.065 

(0.023) 

-8518.17 

(4.860) 

Apple 

 

 

beta-t-EGARCH 
1.435 

(0,197) 
1.000 

(0.000) 
0.882 

(0.033) 
0.015 

(0.004) 
0.025 

(0.008) 
0.034 

(0.006) 
6.136 

(0.567) 
-- 

-8013.3 
(4.571) 

beta-skewness-t-EGA
RCH 

1.432 
(0.196) 

1.000 
(0.000) 

0.885 
(0.032) 

0.015 
(0.004) 

0.026 
(0.008) 

0.034 
(0.006) 

6.115 
(0.0566

) 

0.978 
(0.022) 

-8012.9 
(4.573) 

Cerner 

 

beta-t-EGARCH 
1.462 

(0.221) 

1.000 

(0.000) 

0.964 

(0.012) 

0.014 

(0.004) 

0.027 

(0.008) 

0.023 

(0.004) 

4.742 

(0.354) 
- 

-7700.91 

(4.393) 
beta-skewness-t-EGA
RCH 

1.465 
(0.221) 

1.000 
(0.000) 

0.964 
(0.012) 

0.014 
(0.004) 

0.027 
(0.008) 

0.024 
(0.005) 

4.726 
(0.354) 

0.989 
(0.021) 

-7700.8 
(4.395) 

Microsof

t 

 

beta-t-EGARCH 
0.826 

(0.304) 
1.000 

(0.001) 
0.971 

(0.013) 
0.019 

(0.005) 
0.030 

(0.008) 
0.015 

(0.004) 
4.780 

(0.350) 
-- 

-6675.8 
(3.810) 

beta-skewness-t-EGA
RCH 

0.319 
(0.121) 

0.943 
(0.023) 

0.996 
(0.002) 

0.032 
(0.008) 

0.020 
(0.006) 

0.015 
(0.004) 

4.830 
(0.356) 

1.004 
(0.022) 

-6672.8 
(3.811) 

Telefónic
a 

 

beta-t-EGARCH 
1.185 

(0.192) 
1.000 

(0.000) 
0.972 

(0.008) 
0.007 

(0.003) 
0.036 

(0.006) 
0.020 

(0.004) 
8.034 

(0.927) 
-- 

-7716.9 
(4.402) 

beta-skewness-t-EGA
RCH 

1.193 
(0.191) 

1.000 
(0.000) 

0.973 
(0.008) 

0.007 
(0.003) 

0.037 
(0.006) 

0.021 
(0.004) 

8.084 
(0.945) 

0.973 
(0.022) 

-7716.2 
(4.404) 

Note: The table reports the parameters estimates of the beta-t-EGARCH model (equation (2)) and 

beta-skewness-t-EGARCH model (equation (6)). (se) denotes the standard deviation (in parentheses). Log-L is 

the maximum likelihood value and BIC is the Bayesian Information Criterion. κ* is the parameter that capture 

the “leverage effect”.  γ is the parameter that capture skewness in distribution. γ <1, (γ >1) denote skewed to the 
left (right). 

(i) beta-t-EGARCH model 

                        𝑟𝑡 = 𝑒𝑥𝑝(𝜆𝑡|t−1)(휀𝑡),    휀𝑡~𝑡(0, 𝜎𝜀, 𝜈)            𝜈 > 2  

    𝜆𝑡|t−1 = 𝛿 + 𝜆1,𝑡|t−1
+ + 𝜆2,𝑡|t−1

+   

𝜆1,𝑡|t−1
+ = 𝜑1𝜆1,t−1|t−2

+ + 𝑘1𝑢𝑡−1 

𝜆2,𝑡|t−1
+ = 𝜑2𝜆2,t−1|t−2

+ + 𝑘2𝑢𝑡−1 + 𝑘∗(−𝑟𝑡−1)(𝑢𝑡−1 + 1) 

(ii) beta-skewed-t-EGARCH model 

𝑟𝑡 = 𝑒𝑥𝑝(𝜆𝑡|t−1)(휀𝑡 − 𝜇𝜀),      휀𝑡~𝑠𝑡(𝜇𝜀, 𝜎𝜀,𝜈, 𝛾)      𝜈 > 2, 𝛾 𝜖(0, ∞) 

 

 

    𝜆𝑡|t−1 = 𝛿 + 𝜆1,𝑡|t−1
+ + 𝜆2,𝑡|t−1

+   

𝜆1,𝑡|t−1
+ = 𝜑1𝜆1,t−1|t−2

+ + 𝑘1𝑢𝑡−1 

𝜆2,𝑡|t−1
+ = 𝜑2𝜆1,t−1|t−2

+ + 𝑘2𝑢𝑡−1 + 𝑘∗(−(𝑟𝑡−1))(𝑢𝑡−1 + 1) 

4.2 VaR Applications 

In this section, the beta-t-EGARCH model and the beta-skewness-t-EGARCH model presented in section (2) are 

used to calculate the VaR one day ahead at 1% probability. The obtained estimations are compared. The analysis 
period, marked in dark in Figure 1, ran from January 1st, 2008, to December 31th, 2013 (N=1511).  

The comparison of the VaR estimates has been conducted in terms of evaluating the accuracy of the VaR 

estimates and of the loss function. In Figure 2, we present the returns and the VaR estimates obtained from both 

volatility models and for all assets considered. As we can observe, the risk assumed by the companies varies 

along the sample being especially high in 2008-2009. The naked eye, it seems that there are no significant 
differences between the VaR estimation from both models 

To evaluate the accuracy of the VaR estimates, several standard tests are used. The results of these tests are 

presented in Table 4. For each index, it is presented the number and the percentage of exceptions obtained with 
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each volatility model considered. The percentages of exceptions are marked in bold. Below the percentages, the 

statistics used to test the accuracy of the VaR estimates are presented. These statistics are as follows: (i) the 

unconditional coverage test (LRuc); (ii) backtesting criterion (BTC), (iii) statistics for serial independence 

(LRind); (iv) the conditional coverage test (LRcc) and (v) the Dynamic Quantile test (DQ). When the null 

hypothesis that “the VaR estimate is accurate” has not been rejected by any test, we shaded the region of the 
figure that represents the number and percentage of the exceptions.  

The percentage of exceptions goes below 1% in almost all cases indicating that both models overestimate risk. 

Just in the case of apple the risk is underestimated.  However, it is worth to note that the number and the 

percentage of the exceptions are close to the expected one. The accuracy tests used to test formally the 

performance of the volatility models in terms of VaR corroborate this hypothesis. These results indicate that both 
models provide accurate VaR estimates in all cases. 

Table 4. Accuracy test 

  Βeta-t-EGARCH Beta- skewness-t-EGARCH Βeta-t-EGARCH Beta- skewness-t-EGARCH 

 

ADP Cerner 

Nº exceptions 11 11 12 12 
% exceptions 0.73 0.73 0.79 0.79 

LR uc 0.46 0.46 0.58 0.58 
BTC 0.23 0.23 0.29 0.29 
LR ind 0.79 0.79 0.77 0.77 
LR cc 0.74 0.74 0.82 0.82 
DQ 0.98 0.08 0.14 0.14 

 
Amazon Microsoft 

Nº exceptions 10 10 12 12 
% exceptions 0.66 0.66 0.79 0.79 
LR uc 0.35 0.35 0.58 0.58 
BTC 0.17 0.17 0.29 0.29 
LR ind 0.81 0.81 0.77 0.77 
LR cc 0.63 0.63 0.82 0.82 
DQ 0.99 0.98 1 1 

 

Apple  Telefónica 

Nº exceptions 18 16 14 17 
% exceptions 1.19 1.06 0.93 1.13 

LR uc 0.63 0.88 0.85 0.75 
BTC 0.3 0.39 0.38 0.35 
LR ind 0.66 0.7 0.74 0.68 
LR cc 0.81 0.92 0.93 0.87 
DQ 0.53 0.98 0.84 0.89 

Note: VaR violation ratios of the daily returns (%) are boldfaced. The table reports the p-values of the following 

tests: (i) the unconditional coverage test (LRuc); (ii) the backtesting criterion (BTC); (iii) statistics for serial 

independence (LRind), (iv) the conditional coverage test (LRcc) and (v) Dynamic Quantile test (DQ). A p-value 

greater than 5% indicates that the forecasting ability of the VaR model is accurate. The shaded cells indicate that 
the null hypothesis that the VaR estimate is accurate is not rejected by any test. 

Additionally, with the aim of detecting differences between both models (beta-t-EGARCH and 

beta-skewness-t-EGARCH) we follow Gerlach ,Chen and Chan (2011) and focus on analyzing the ratio VRate/α 

and some statistics of it. This ratio is calculated as the quotient of percentage exception by the value of α, which 

is 1%. The beta-t-EGARCH model provides a VRate/α more close to one for three assets (ADP, Cerner and 

Telefónica) the same the beta-skewness-t-EGARCH (ADP, Cerner and Apple) (Table 5). Table 6 displays 

summary statistics for VRate/α for each model across the 6 assets. The Std(1) column shows the standard 

deviation from expected ratio of 1 (not mean sample), while 1st column counts the assets  where the model 
ranked had VRate/α closest to 1. 

Table 5. Ratio Vrate/alfa at alfa=1% for each VaR model 

  ADP Amazon Apple  Cerner Microsoft Telefónica 

 Beta-t-EGARCH 0.73 0.66 1.19 0.79 0.79 0.93   
Beta-skewness-t-EGARCH 0.73 0.66 1.06 0.79 0.79 1.13   

Note: Shaded cells indicate closest to 1 in that index.  
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Table 6. Summary statistics for the ratio Vrate/alfa at alfa=1%  

  Mean  Median Std(1) 1st 

Beta-t-EGARCH 0.82 0.79 0.25 3 
Beta-skewness-t-EGARCH 0.84 0.79 0.23 3 

Note: Shaded cells indicate the most favoured in each column. Std (1) is the standard deviation  in ratios from 
an expected value of 1. 1st indicates the number of markets where that model’s VRate/α ratio ranked closest to 1. 

According to these statistics the beta-skeweness-t-EGARCH model provides the better results as the mean of the 
ratio is closer to one and the std(1) is lower than those provide by the beta-t-EGARCH model.  

Thus, although the evidence is weak the results indicate that in terms of accurate the beta-skewness-t- EGARCH 
model may outperform the beta-t-EGARCH which have been estimate below a symmetric distribution.   

Another way to compare the VaR estimates that is often used in the VaR literature is through a loss function. The 

loss function measures the magnitude of the losses experienced. A model that minimises the total loss is 

preferred to other models. For this purpose, we have considered two loss functions: the regulator’s loss function 

proposed by Lopez (1998, 1999) and the firm’s loss function (ABL loss function) (Abad et al., 2015). The results 
of these loss functions are presented in tables 7

8
.  

Table 7. Loss functions 

Panel (a): Lopez Loss Function (%) 

 
    ADP Amazon Apple Cerner Microsoft Telefónica 

Beta-t-EGARCH 0.0721 0.5856 3.1905 0.8017 1.3473 0.7175 

Beta-skewness-t-EGARCH 0.0793 0.6757 3.1416 0.8002 1.2492 0.7367 

Panel (b): ABL Loss Function (%) 
       ADP Amazon Apple  Cerner Microsoft Telefónica 

Beta-t-EGARCH 0.0708 0.1312 0.10218 0.09079 0.09398 0.10219 
Beta-skewness-t-EGARCH 0.07066 0.1301 0.102 0.09037 0.0938 0.09838 

Note: The table reports the values of the different loss functions of each VaR model at 99% confidence levels. In 

both cases, the table shows the average of the losses. The shaded cells denote the minimum value for the 
different loss functions. 

According to the regulator ś loss function there is no model superior to other. The beta-t-EGARCH model 

provides the lowest losses for ADP, Amazon and Telefónica while the beta-skewness-t-EGARCH model provides 

the lowest losses for Apple, Cerner and Microsoft. Thus, from the point of view of the regulator both models 

seem to be equivalent. However, according to the firm ś loss function, which takes the opportunity cost of capital 

into account, the beta-skewness-t-EGARCH model outperform the beta-t-EGARCH model by providing the 

lowest losses for all assets considered. Although in daily terms these differences are reduce in annual and 

monetary terms become high. For instance, for a portfolio value of 10 million of dollars the differences in annual 

capital opportunity cost provide for both models move around 3500 dollars (ADP) and 92250 dollars 

(Telefónica). Moreover, for a portfolio value of 100 millions of dollars these differences move around 350000 

and 952500 dollars
9
. These data reflect that, although the differences in daily capital opportunity cost  are small, 

in annual and monetary terms become high.  

To last, we compare VaR estimates in terms of daily capital requirement (DCR) which have been calculated 

according to equation (21). The average of the DCR moves around 10% and 20% depending of the asset (Table 

8).  For almost all assets considered the Beta-t-skewness-EGARCH model provide the lowest daily capital 
requirement. The difference between these models moves around 0.01%-0.24% depending on the asset.  

Table 8. Daily Requirement Capital 

  ADP Amazon Apple  Cerner Microsoft Telefónica 

Beta-t-EGARCH 11.70% 20.98% 16.78% 15.92% 15.10% 16.69% 
Beta-skewness-t-EGARCH 11.82% 20.72% 16.57% 15.88% 15.11% 16.36% 

Note: The table reports the average daily capital requirement (DCR) obtained according to equation 21. For each 
asset the shaded cells denote the model that provide the lowest average of the DCR 

                                                 
8
In order to calculate the firm’s loss function, we proxy the cost of capital with the interest rate of the 

Eurosystem monetary policy operations of the European Central Bank. 

9
The annual capital opportunity cost is calculated by multiplying the average of the daily opportunity cost by 250 

days. And the average of the daily opportunity cost is calculated as the date included en Table 7 (panel(b)) divide 
by 100 times the portfolio value. 
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As a resume we can conclude that, in the framework of the conditional extreme value theory considering, a 

skewness t-Student distributions for the returns does not contribute to improve the accuracy VaR estimations 

respect to the symmetric t-Student distribution. However, the results obtained by the loss function indicate that 

this kind of distributions may be preferred by the financial companies, as they provide opportunity capital cost 

lowest. In addition, for the banks, using a skewness t-Student distribution take them to keep market risk capital 
requirement lowest. 

5. Conclusion 

It is well documented in the literature that the financial return distribution is characterized for being skewed and 

exhibit an important excess of kurtosis. So that to assume a normal distribution for VaR estimation may take us 
to underestimate risk. 

Taking this into account, the research in the framework of parametric method for VaR estimation has focus in 

investigating other density functions that capture the skew and kurtosis of financial returns. In this line, recently 
papers show that in the context of this method assuming a fat tail and skewness distributions improve the results.  

In this same line, we evaluate the role of the heavy tail and skewed distribution in VaR estimation in the 

framework of the conditional extreme value theory. Below the conditional extreme value theory, the value at risk 

of a portfolio at (1 − 𝛼)% confidence level is calculated as the product of the conditional standard deviation of 

the return portfolio by the 𝛼 (𝑘𝛼) quantile of Pareto generalize distribution. Traditionally, the conditional 

standard deviation of the return portfolio is estimated by assuming a symmetric distribution for the financial 

return, normal or student-t distribution. Thus in this paper we analyze if in the framework of this method the 

estimation of the volatility model below a fat tail and skewness distribution contribute to improve the results in 
VaR estimation. 

The study has been done for six individual assets bellowing to the telecommunication sector: ADP, Amazon, 

Cerner, Apple, Microsoft and Telefónica. The analysis period runs from January 1
st
 2008 to the end of December 

2013. Although the evidence found is a little bit weak the results obtained seems to indicate that the heavy tail 

and skewed distribution outperform the symmetric distribution both in terms of accuracy VaR estimations as in 
terms of firm’s loss function and requirement capital.  
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Figure 1. Evolution of daily prices and yields 

Note: This figure illustrates the daily evolution of price (red) and returns (blue) of six assets (ADP, Amazon, 
Apple, Cerner, Microsoft and Telefónica) from January 3

rd
 2000 to December 31

th
, 2013.   
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Figure 2. Returns and VaR estimations 

Note: This figure illustrates the return (blue) and VaR estimations obtained from the beta-t-EGARCH model and 
the beta skewness-t- EGARCH model. The analysis period goes from January 1

rd
 2008 to December 31

th
, 2013. 
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