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Abstract

The paper suggests a new rule; called no-wait process. The rule has two stages, and is a flexible flow shop
scheduling. The process is the subject to maximize tardiness while minimizing the makespan. This hybrid flow
shop problem is known to be NP-hard. Therefore, we come to first, Non-dominated Sorting Genetic Algorithm
(NSGA-11), then, Multi-Objective Imperialist Competitive Algorithm (MOICA) and finally, Pareto Archive
Ewvolutionary Strategy (PAES) as three multi-objective Pareto based metaheuristic optimization methods. They
are developed to solve the problem to approximately figure out optimal Pareto front. The method is investigated
in several problems that differed in size and terms of relative percentage deviation of performance metrics. The
conclusion, developed by this method is the most efficient and practicable algorithm at the end.

Keywords: multi-objective optimization, no wait, flexible flowshop, NSGA-1I, MOICA, PAES
1. Introduction

Scheduling is arranging and planning sequence of event to complete the work. The goal is to utilize the resources
optimally while reaching targets. This field has been attracted by many scholars during recent years (Mosheiov
and Sidney 2010, Vallada and Ruiz 2011, Shafaei et al. 2011, Rabiee et al. 2012, Jolai et al. 2013, Ullrich 2013,
Jolai et al. 2014, Yang et al. 2014, Tayebi Araghi et al. 2014, Xu et al. 2015, Rabiee et al. 2016, Nesello et al.
2017). The flow shop problem is an important subject in scheduling. One of the reasons is that most of the
manufacturing systems follow batch shops, flow shop or semi flow shop routings (Baker 1974, Johnson 1954,
Lin et al. 2006). Flexible flow shop or hybrid flow shop, is the one of the most important classes of scheduling
which also defined as a flow shop with parallel machines and flexible flow line. For a literature review in this
area, the readers are referred to those of (Richard and Zhang 1999, Ruiz and Vazquez-Rodriguez 2010, Ribas et
al.2010)

In a no-wait flow shop, the jobs are processed from one machine to the next one without waiting time (Huang et
al. 2009). Suppose there are some sequences of jobs, some specified procedures in each that are processed by
machine in disciplinary order. No pause or interruption is supposed to occur in the line. In other word, when the
process starts, there is no stop for object before or after each machine. No repetition is allowed, one job at a
given time by a machine. Therefore, when needed, the start of a job on the first machine must be delayed in order
to meet the no-wait requirement (Tasgetiren et al. 2007). Nagano et al. (2013) examines the m machine no-wait
flow shop problem with setup times of a job separated from its processing time. The performance measure
considered is the makespan. The hybrid metaheuristic Evolutionary Cluster Search (ECS_NSL) is employed to
solve this scheduling problem. Nagano et al. (2015) addressed the problem of scheduling jobs in a no-wait flow
shop with sequence-dependent setup times with the objective of minimizing the total flow time. As this problem is
well-known for being NP-hard, they presented a new constructive heuristic, named QUARTS, in order to obtain
good approximate solutions in a short CPU time. Samarghandi and EIMekkawy (2012) studied the problem of
no-wait flow shop and proposed two frameworks based on genetic algorithm and particle swarm optimization to
deal with the problem. Samarghandi and EIMekkawy (2014) proposed PSO algorithm to solve the problem of
scheduling a no-wait flow-shop system with sequence-dependent set-up times. The application of this problem
can be found in industries such as chemical industry, steel production, just-in-time manufacturing process,
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service industries, etc (Rajendran 1994, Grabowski and Pempera 2000, Raaymakers and Hoogeveen 2000,
Aldowaisan and Allahverdi 2004). Adetailed survey of the research and applications on this topic has been given
by Nagano etal. (2016).

Most of literatures about no wait hybrid flow shop scheduling problem have mainly focused on a single objective.
For example, Liu et al. (2003) suggests an algorithm known as Least Deviation (LD) in which the focus is on
only one machine in each station. The key performance indicator in this point of view is the makespan. The
performance is thus high using this algorithm. ~ Also the algorithm is easier in computation and implementation.
Having created such values, this is considered favourable.

Xie et al. (2004) suggests a new heuristic algorithm named Minimum Deviation Algorithm (MDA) to minimize
makespan in a similar method. MDA also performs better than partition method, partition method with LPT,
Johnson’s and modified Johnson’s algorithms. Huang et al. (2009) considered a no-wait two stage flexible flow
shop with setup times and with minimum total completion time key performance indicator. The author represents
an enhanced programming as well as an Ant Colony approach. The solution was satisfactory with the approach
and the results were efficient.

To best use of resources, Jolai et al. (2009) introduced no-wait flexible flow line scheduling problem with time
windows and job rejection which is, in turn, an extension of production and delivery scheduling. He presented a
similar method known as integer-linear programming model and genetic algorithm process as well.

In comparison with LINGO, studies show that the GA is a better solution in a computational time. Jolai et al.
(2012) introduced a new hybrid algorithm with sequence-dependent setup times to minimize the total completion
time. They suggest three algorithms. One, Population Based Simulated Annealing (PBSA), second, Adapted
Imperialist Competitive Algorithm (AICA) and finally, hybridization of Adapted Imperialist Competitive and
Population Based Simulated annealing (AICA+PBSA) for the problem. All the studies support the hybrid
algorithm against the others which are applied in literature for related production scheduling problem. Rabiee et
al. (2014) proposed the problem with respect to unrelated parallel machines, sequence-dependent setup times,
probable reworks and different ready times to actualize the problem. What they proposed is based on imperialist
competitive algorithm (ICA), simulated annealing (SA), variable neighborhood search (VNS) and genetic
algorithm (GA) to solve the problem. The result revealed the advantages of our algorithm. To reduce makespan,
Ramezani et al. (2013) suggested no-wait scheduling problem focused on set up time which is anticipatory and
also sequence dependent in a flexible flow shop environment with two sets of same machines in parallel. They
introduced it as a novel method since it was NP-hard. Their meta-heuristic method was about invasive weed
optimization, adjustable neighborhood exploration and simulated strengthening to attack of the problem. The
result showed, hybrid-metaheuristic outperformed in comparison with singular ones.

As said before, most of studies concentrated on single objective problem. But in reality, there is no single
objective at all and we need to consider a batch of goals at once. However, there are also some studies working
on multi objective in no wait flow shop scheduling problem. Allahverdi and Aldowisan (2004) suggested a
method in no wait flow shop scheduling problem in with sum of makespan is important and also the maximum
delay as a measure. Their methods for comparison were hybrid simulated annealing and a hybrid genetic
heuristics. Also they suggested a dominance relation (DR) and a branch-and-bound algorithm. Herein also, after
computation, the heuristic method performs higher and better in comparison with existing heuristics if the
makespan and maximum lateness is considered significant. Also the dominance relation and branch and bound
algorithm were totally effective. Aiming to minimize average of tardiness and time, Rahimi-Vahed et al. (2008)
offered a bi-criteria no-wait flow shop scheduling problem. What they suggest is a new method named
multi-objective scatter search as a metaheuristic algorithm for finding near optimal Pareto frontier. They were
looking for effectiveness of this approach by solving some experimental problems in comparison with SPEA-II.
Here also the better performance was appeared in multi-objective scatter search.

Multi-objective immune algorithm also proposed by Tavakkoli-Moghaddamet al. (2007) to minimize two goals
as weighted average completion time and weighted average tardiness for a no-wait flow shop scheduling
problem. He compared the algorithm with a conventional multi-objective genetic algorithm, i.e., SPEA-II. The
generic algorithm won the game especially for significant and big problems. Pan et al. (2009) offered another
algorithm called discrete differential evolution (DDE) for solving the no-wait flow shop scheduling problems
with makespan and maximum tardiness measures. The results based on the famous benchmarks and statistical
performance comparisons showed that DDE algorithm is much more efficient in comparison to the hybrid
differential evolution (HDE) algorithm proposed by Qian et al. (2009). For the same objective, i.e. to minimize
makespan and tardiness, Khalili (2012) proposed a multi-objective no-wait hybrid flow shop scheduling problem
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and suggested a novel Multi-Objective Electromagnetism Algorithm (MOEA) to solve the problem. He
formulated the problem with mixed integer-linear programming models and proposed an effective
Multi-Objective Electromagnetism Algorithm (MOEA) to reach the goal.

As far as multi-objective approach is considered, there are a few studies about no wait flexible flow shop
problem. The author presented three multi-objective based algorithms to discover a no wait two stage flexible
flow shop scheduling problem with a number of machines in each stage. The goals were minimizing makespan
(i.e. Ciax) and maximum tardiness (i.e. Tray)-

In the next section; section 2, the multi objective terms are discussed. Then the author wrote about the bi-criteria
no wait two stages flexible flow shop. Then in section 3, the multi-objective optimization search techniques are
considered. Investigating the proficiency of suggested multi-objective metaheuristic approaches is presented next
section. And at last, the outcome of the research is induced and directions for further researches are depicted in
section5.

2. Multi-objective No-wait Two-stage Flexible Flow Shop Optimization

Now we turn to the problem statement. That is the concept of the multi objective optimization and also the
structure of the problem.

2.1 Multi-objective Optimization

A multi-objective optimization problem formulais as below:

mxi[l f(x)={f,(x), f,(x),..T, (xX)} (1)
st. g(x)<0, h(x)=0 )

Wherein g(x) <0, h(x)=0 shows the possible solution in n, dimensional search space and f (Xx) isaM
dimensional vector of objective values. Map between decision variables of X € X™ and objective space of

f € FMis determired by objective functions. In reality, the aim of a multi-objective optimization is to figure
out the entire non- dominated solutions of the problem (any solution that is not able to develop an objective
function with no effect on other objective).

If any of below conditions are met in an optimization problem with minimum objectives, solutions X,
dominates solution X, .

(1) Forewery single objective f(x )< f(x,).
(2) Atleastinoneobjective f(x) hasalowervalue comparedwith f(x,).

Having defined the dominant solutions, the optimal solution of a multi-objective optimization problem is
defined as set of non-dominated solutions known as Pareto-optimal set which forms the Pareto front
(CoelloCoello et al. 2002).

2.2 The Statement of Bi Criteria No-wait two Stage Flexible Flow Shop Problem

The no-wait two stage flexible flow shop scheduling problem is shown below: Given the processing time P;of
job j on stage i(i=1, 2), each of n job will be sequentially processed in stage 1, 2 respectively. At each stage there
are m; machines. Also at a given time, each machine can process maximum a single job. Likewise, each action
needs to be processed on one machine. Once the order of the action at the first stage is cleared the similar order
is done for the second stage. To meet the no-wait boundaries, the end time of a job on a machine must be
similar to the start time of the job on the next machine. This way, there is no elapse time in the entire operation.
The aim here is, reduction of makespan (C,,.,). The matching fitness functionis considered at below:

C,; =Completion time of job j 3)
Makespan =C__ = max(C,)
(4)
minz,=C_, (5)
Next aim is reduction of maximum tardiness which is calculated below:
mnz,=T,_, (6)

Wherein T, is the tardiness of jobi, equal to max(0, C, —d,) ,and d; isthe due date of jobi.
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3. Possible Approaches to Find Solution

There are many classical approaches to solve multi-objective problems among them includes embracing goal
programming, integer programming, e-constraint method and weighted sum method. The main features of the
classical methods can be described as follows (Deb 2001, CoelloCoello et al. 2002):

1. Changing the problem from multi-objective to single objective
2. Experimentally, the methods might be applied randomly to find out the best solution

3. Each typical method includes some user-defined parameters that are not easy to set in an arbitrary
problem. Some meta-heuristics have been developed to eliminate such deficiencies. They are genetic
algorithms and evolutionary computation. The ability to figure out a reasonable estimate of Pareto
frontier in one operation and good computational time, is one of the benefit of this method.

This paper offers three multi-objective metaheuristic methods to solve the problem; NSGA-II (Non-dominated
Sorting Genetic Algorithm), MOICA (Multi-Objective Imperialist Competitive Algorithm) and PAES (Pareto
Archive Evolutionary Strategy). They are to examine the output of the algorithms in solving the no-wait two
stages flexible flowshop problem.

Metaheuristic algorithms are generally, based on a searching system which is random. Here, the problem altered
from a phenotype into a genotype that is informally called chromosome. To discover the best solution, it uses
intensification as well as diversification where the first intends to use local search area and the second explores
the optimal solution globally. The chromosome, fitness evaluation, related operators and structures of applied
system are described elaborated respectively:

3.1 Solution Representation and Fitness Evaluation

Some random values that are equals to the number of jobs in length is generated from 0 to 1. This is to show the
chromosome. The jobs then are tossed by finding the increasing order of values in vector. See figure 1.

Chromosome 0.45|0.63 | 0.13 | 0.33 | 0.77
Job sequence

EIENESE3ER

Figure 1. An example of chromosome representation and its job sequence

After calculation of jobs, procedure of machine assignments is done using a heuristic method. It means in each
stage, to assign a job to the machines, the earliest available time machine is chosen and the job with the highest
importance is assigned to that machine. If there are two important jobs at the same time, one is chosen randomly.
The pseudo code of heuristic procedure is shown in Figure 2.

3.1 Genetic Operators
3.1.1 Crossover

The process in which tow chromosomes are prevented from coupling making progeny is called crossover. The
process aims to find a better solution by mixing the chromosomes. The study uses a uniform crossover that first
creates a random binary mask with the similar extend as the chromosomes and then substitutes relative gene
material of parent chromosome based on created binary mask. This crossover results in a good exploitation of
solution space (Syswerda 1989).

3.1.2 Mutation

After crossover, we perform an exchange mutation. For exchange mutation, two different arbitrary genes of the
parent chromosome choose and swap the allele values. (Eibenand Smith. 2003).
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min(f, y=T, and I =T, T,
Set T={M.Tp.es’ T, |} as job sequence and add g to set of scheduled jobs

SetQ =@y, =0 (i = L2..my). 5, =0(j = L2.__m,)min(t,,)=T.

Fk=rm
t, =t +sdst{T,_. 7, 1)

tyy =1y, +5dst (. T . 2);
Else
¥p,.-Iz0

Iy =0y T Pis -

While rand = F,,, .
fy =h,+rh;;

End-While

ty, =ty +sdst (7.1 1)

Ly
fyy =ty + Py -
While g = Pml_,_‘

2 i s
End-Whle
ty, =1y, +5dst (M, M . 2);
Else
by =13

While nand =P, | _
ty = ?']_r —??‘l_ﬁ;

End-Whle
ty, =ty +sdst (7, 5.7 1)
Pay =Ty +Pag s

While ramd = Pmi_,_‘
ty, =ty +1t,_ 1

End-While
ty, =ty + sdst (w7 . 2);
End-If
End-For
Te——7—{j} andadd | to g;
While-End

Figure 2. Pseudo code of simulator
3.3. Multi-objective Algorithms
3.3.1 Non-dominated Sorting Genetic Algorithm (NSGA-II)

Probability of gaining Pareto-optimal solution using GAs are high, since they work with body of points. This
makes it a strong tool for MOOPs too. The Non-dominated Sorting Genetic Algorithm (NSGA-II) is a
well-known and extensively used algorithm based on its predecessor NSGA and proposed by Deb et al (2002).
Essentially, NSGA-1I differs from non-dominated sorting Genetic Algorithm (NSGA) implementation in a
number of ways. First, NSGA-II uses an elite-preserving mechanism, thereby assuring the preservation of
previously found good solutions. Second, NSGA-I1 uses a fast non-dominated sorting procedure. Third,
NSGA-Il does not require any tunable parameter thereby making the algorithm independent of the user
(Sivakumar et al, 2011). NSGA-II is a fast and very efficient Multi-objective evolutionary algorithm (MOEA),
which incorporates the features of an elitist archive and a rule for adaptation assignment that takes into account
both the rank and the distance of each solution regarding others. Salazar and Kishor have applied and compared
the efficiency of NSGA-II with existing methods for reliability optimization problems (Kishor et al, 2008).
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NSGA-11 is an elitist multi-objective evolutionary algorithm which carries out an approximation of the Pareto
front, based on the non-dominance concept. For achieving different Pareto fronts, a ranking procedure is
performed at each generation. Also, this algorithm takes advantage of an operator called crowding operator for
its diversification. NSGA-11 starts from a randomly generated population of chromosomes (solutions), P_0 of
size N. The population is sorted based on non-domination. Each solution is assigned a fitness (or rank) equal to
its non-domination level (1 is the best level) the minimization of the fitness being assumed. A children
population (Q_0) of size N is then created by applying the genetic operators: binary tournament selection,
recombination, and mutation (Furtuna, et al, 2011). NSGA-II has been used in several prior studies like: Minella
et al. (2008), Behnamian et al (2009), Zandieh and Karimi (20111) and Rabiee et al (2012), Asefi et al. (2014).
The crossover and mutation operators in this algorithm are as mention in NSGAIl. The framework of the
proposed NSGAII is generally illustrated in the following pseudo code (Figure 3).

Begin
Input: N, P, P,, Max_ Gen;
Generate Init_ Pop (P);
Repair Init_ Pop (P);
Evaluate fitness values of the Init_ Pop;
Assign rank base on pareto dominance sort;
for i =1to Max_Gen do
for j=1to round[(P,xN)/2]
Select two individuals: (X;, X,);
Select onescenariofor crossover operation;
performone point crossover : (X,, X,) = (X,, X,);
endfor
for j=1to round[(P, xN)/2]
Select an individual: X;
Select onescenariofor mutation/ neighborhood operation;
Select one case between (swap, reversion, insertion);
perform mutation: X — X ;
endfor
Repair New _ Pop (P);
Combime offsprings and parents {P U Q}
Assign rank based on pareto dominance sorting algorithm;
Calculate the crowded distance of individuals in each front;
Select the best N individual base on rank and crowded distance;
end for
Output ; Extract the best pareto front;
end

Figure 3. Proposed NSGA-II algorithm in pseudo code
3.3.2 PAES Algorithm

The study suggests a simple multi-purpose metaheuristic algorithm called PAES. Offered by Knowles and Corne
(1999, 2000), the algorithm applies a local search development strategy to a non- dominated solution in a pool of
solutions that already applied. Hereunder, the most alternates of PAES which is (1+1) development strategy is
discussed.

Asolution is randomly generated, evaluated and saved in archived. Here is when the algorithm starts. Procedure
at iteration t is continued with creating a new solution by transform current solution and compare it to current
solution for dominance. The one with more dominance is accepted. If both solutions have same dominance
priority, the new one is compared to archived solution which is archived. The accepted solution in the archive
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added there and remowes the rejected one. Otherwise the new solution replaced by one of the archive member. At
last, if there is no dominate member in the archive and archive has still vacancy, the new solution is added to
archive. If there is no space in solution pool, the solution in the busiest area is removed and the new one is added.
In when considering intricacy of problem to find non-dominated solutions, we consider a limitless archive scope
to maintain non-dominated solutions. This is to obtain more Pareto solutions. The structure of proposed PAES is
shown in Figure 4.

Begin
Input : Maxlteration;
Generate Init_ Sol and set it as Current _ Sol;
Evaluate fitness value of the Current _ Sol;
Add Current _Sol to archive ;
for i =1to Maxlteration do
Generate New _ Sol by mutation of Current _Sol;
Evaluate fitness value of the New _ Sol;
if New _Sol dominates Current _ Sol
Set New _Sol as Current _Sol;
Update _ Archive;
elseif Current _Sol dominates New _ Sol
Discard New _ Sol;
else Current _Soland New _ Sol don't dominate each other;
Update _ Archive using New _ Sol;
Randomly select next Current _ Sol betwen New _sol and Current _Sol ;
end if
end for
Output: Extract nondominated solution as pareto front;
end

Figure 4. PAES algorithm
3.3.3 Multi-objective Imperialist Competitive Algorithm (MOICA)
3.3.3.1 Creating Primary Empires

Every single solution in the imperialist competitive algorithm simulates as an array. The arrays include different
values that need to be adjusted. What is called chromosome in GA terminology, is named country here. In an
N-dimensional optimization problem, a country is a 1N array. This array is defined by:
country =[py, P2, P3,---» Py ], Where pi is the variable to be optimized. Each variable in a country denotes
a socio-political characteristic of a country. From this point of view, the algorithm searches for the best country
that is the country with the best combination of socio-political characteristics, such as culture, language and
economic policy (Atashpaz-Gargari and Lucas 2007). After country development, a non-dominance technique
and a crowding distance are used to shape the fronts and rank member of each front, respectively. At that point,
the members of front one are archived. Non-dominance technique and crowding distance described as below:

1: Non-dominance technique: imagine that there are r objective functions. When the following conditions are
satisfied, the solution x1 dominates another solution x2. If x1 and x2 do not dominate each other, they are placed
in the same front.

(1) Forall the objective functions, solution x1 is not poorer than another solution x2.
(2) Forat least one of the r objective functions x1 is exactly better than x2.

Solutions that are not dominated by others, constitute in front number 1. Meanwhile, the solutions that are only
dominated by solutions in front number 1, organize front number 2. The same order applies to crate the other
fronts which is shown in Figure 5.
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Figure 5. Non-dominance technique

2. Crowding distance: this is a tool to show the quantity of solutions in each step. See below figure. This is an
estimate of the solution mass around a given solution.
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Figure 6. Crowding distance

The crowding distance measure which is used in MOICA is shown in equation (7). The solutions having a lower
value of the crowding distance are prioritized over solutions with upper value of the crowding distance.

ro ST
Z p.max p.min
k=1 Jic total — Jk.total _ (7)

Where:
e the number of objective functions, f p is the k-th objective function of the (i+1)-th solution

k,i+l
o f p is the k-th objective function of the (i-1)-th solution after sorting the population
actbrding to crowding distance of the k-th objective function

fkptcmx and fk totz:\I are the maximum and minimum value of objective function Kk,

respectively.

Next, the prioritized solution is selected in the mass in terms of non-dominance and crowding distance. The
selected solution is imperialists and the rests are colonies.

In order to compute the cost of prioritized solution (the imperialist), each target function is calculated. After that
each target function s calculated:
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p p.best
fz L fz

f p.max p.min
i.total ifotal

cost, , =

(8)
Where:

e COSt; n is the normalized value of objective function i for imperialist n

o f il?n is the value of the objective functioni for imperialistn

. fip,best’fi%maxand f_p,min

. . i total 2 i total
each iteration, respectively.

are the best, maximum and minimum values of objective functioniin

At last, the total value of each imperialist is calculated through:

Total Cost, = i cost; ,
. ©)
Where:
e risthe quantity of target function

After calculation the cost, the strength of each imperialist is obtained as well as the colonies distributed among
the imperialist according to power of each imperialist country.

‘ Total Cost,
p?’? = N.
‘Z " Total Cost,
i=1 a

(10)
At this point, the primary quantity of colonies is calculated as below:

NC,, =round{P, .N_; }
' (11)
Where:
e NC, isthe primary quantity of colonies of the n-th imperialist
e Ny isthe number of all colonies

NC, colonies are selected randomly and assigned to one imperialist. Apparently, the grater quantity of
colonies, the stronger imperialist and the less quantity of colonies, the poorerimperialist.

3.3.3.2 Total Strength of an Empire

Imperialist country has the major impact on the total strength of an empire. But the strength of its colonies does
not have such effect. Therefore, the equation of the total power of an empire is shown below. (Karimi et al.
2010, Shokrollahpour et al. 2011).

TP Emp,, =(Total Cost(imperialist,) + smean{Total Cost(colonies of empire,)})(1-QE;) 42
Where:

e TP Emp,, is the total power of the nth empire
e zeta(<)is apositive number which is considered to be less than 1
e Total cost of imperialistsand colonies are calculated by Eq.8 and Eq.9.
e QE, isthequality of empire nth
QE,, is determinedas below:

First: all of the imperialists and colonies are accumulated and then the non-dominated solutions are chosen. The
percentage of the non-dominated solution belonging to each empire is calculated as QE ,, .
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Remember that, the total strength of the empire to be determined by just the imperialist when the value of
& issmalland increasing it will increase the role of the colonies in determining the total power of an empire.

3.3.3.3 Moving the Colonies of an Empire toward the Imperialist (Assimilating)

Having distributed colonies among imperialists, the imperialist and relevant colonies go together. Figure 7 shows
the movement. There, d is the distance between imperialist and colony. X is a random variable with a uniform
(or any proper) distribution between 0 and /3 xd and /3 is a number greater than 1. Direction of the movement
is shown by @, which is a uniform distribution between —y andy .

Imperialist

\/ A 7
» New Position ‘*’
v

of Colony

0
3+ >
O\\\-\ ()

: =)
Ppaifs
¢ : d

Colony @)

-

Figure 7. Moving colonies toward the imperialist with a random angle
3.3.3.4 Information Sharing between Colonies

To improve their position, the colonies share their information. To do so, in this part, one of these operators
including one-point, two-point and continuous uniform crossover shown in Figure 8 are selected randomly. The
mass part that are sharing information are shown by Pc. Those colonies with stronger position have more
opportunity to share their information since the selection here is by a competition that is describe below:

Colony 1

Colony 2

Rand

Two Point : :
| !

New Colony |

New Colony 2

NewColony2 = Rand Colony2+(1-Rand ). Colony!

Figure 8. Operators for information sharing between colonies
How come aselectionis done?

A binary competition process is used to find out the best solution for both crossover and mutation operators in
this way:

Step 1: choose two solutions with the same size

Step 2: the lowest front number needs to be chosen if both populations are from different fronts.
If both of them are in same front, choose the solution with highest crowding distance.

3.3.3.5 Rewolution

Some revolutions have been done during last decades on the colonies. To do so, one of the famous policies, swap,
reversion and insertion, exchange and local search is randomly chosen. The operators’ structures are elaborated
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as follows: (Pris the revolution rate)
e  Swap: acolony’s initial numbers are chosen randomly (numbers 1.46 & 2.27 in Figure 9) and their
substitute each other.

Colony r3.87 ' 1.46 ' 3.40 ' 1.43 . 2.27 ' 3.75\|
) Yy . - - v " y

Revolved Country r3,87 l 2.27 ' 3.40 ' 1.43 ' 1.46 ' 3,75\'
A" y . gl Y. o y

Figure 9. Swap operator

Reversion: in the current strategy, in addition to conducting substitution, the number that is placed between the
substituted numbers are also changed.

~ -
3 87): 1 4612 4011 4212 2712 75]
3 8712 27y 1 4?\'!3 40T1 4613 75]

Figure 10. Rewersion

Insertion: for the insertion strategy, like substitution, two numbers of a colony is chosen by chance (Numbers
1.46 & 2.27 in Figure 11). After that, the next number is places approximate to the number in the first position.
The other number is moved right side consequently.

Colony

Revolved Country

[
!

Colony (3‘87T I.46T3.40T 1 ,43{2.27),3,751

Y\ - Y X v Y vy

Revolved Country (3.87)/ l.4GT 2A27T 3A40T 1.43 T3.751
N y ¥ ‘" 7N s

Figure 11. Insertion
Perturbation: in perturbation strategy, one number is chosen by chance, and another number is generated by

chance. Then these two are substituted.

Colony r3.87Il.46\(3.40T1.43T2.27 l 3.75]

b L Y ¥ & v g

Revolved Country (3,87T2.53 ' 3.40 ' 1.43~(2.27 ' 3.751
o - Y ¥ y ‘. '

Figure 12. Perturbation

Local search; the strategy refers to randomly selection of the iteration. After that all of the two-point exchanges
are investigated.
3.3.3.6 Improwve Imperialist

Using the rules describe earlier, the step involves in producing some neighborhoods around each imperialist
considering its total power. The less imperialist power, the more neighborhood generation. Similarly, the more
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imperialist power, the less neighborhood generation. In other word, the quantity of neighborhoods directly
depends on the power of the given imperialist. This is a leaner formularanged between Ne, i, and Ne, .. that

is illustrated below:
(Ne,_ —Ne  )IPEmp,, ,—TP Empn))
(TP Emp,,_.—TP Emp,_.) _ (13)

Ne, = floor(Ne_, +

Where:
e TP Emp,, isthe value of total power the most power empire
e TP Emp,, isthe value of total power of the weakest power empire.
How the number of neighborhood and power are related are shown below:
Figure 13. The relationship between power of each imperialist and number of neighborhoods

No. of

Neighborhoods
A
max no. of

neighborhoods

floor (No. of : A
neighborhoods )

min no. of
neighborhoods ~

» Total power
min total power  Total power  max total power
of all empires of empire of all empires

3.3.3.7 Colonies Updated

The primary mass of colonies, assimilating, information sharing among colonies, revolution and improve
imperialist are combined all together in each decades to shape the empire that is called combined mass. Then, based
on combined mass, the archive is updated. Then, for any of the imperialists, the best colony is chosen according to
non-domination sorting and crowding distance by size of mass of colonies foragiven empire (NC(i)).

3.3.3.8 Archive Adaption

For the combined mass, the classification is done using non-dominated and crowding distance. To archive, the
front one members are chosen. At last, these members are retained and after classifying the solutions in archive,
the other members are removed. Meanwhile, the size of archive equals n Archive.

3.3.3.9 Exchanging Positions of the Imperialistanda Colony

In this step, the total cost of each imperialist is updated. Next, the best imperialist and colony are combined.
Then, this mass is arranged by the non-dominated sorting and crowding distance. At last, the best mass is chosen
as imperialist. The stepiis illustrated below.

o o @ O

. & % A " o colony
) 9 llppcriulisl ® s y Q Q . ")
9 ° o o ° %
. ) ‘\‘1 ® o
0 ngcolnnv “ 0 [ v A ()
@ Q Imperialist o Y
® e © o

Figure 14. Exchanging positions of the imperialist and a colony
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3.3.3.10. Imperialistic Competition

This term refers to a match among imperialist in which the weaker the territories, the more reduction of power
would be and the more powerful the territories, the more power it gains. The competition is to take the
hegemony of the weakest colony of the weakest territory. The competition is started by first choosing one or
more colonies that are the weakest. Then the hegemony of these weak colonies is taken by a stronger territory
through the competition. So far, this does not necessarily mean that the strongest territory is the winner. This
means that those that are stronger keep more hegemony. This competition is modeled by just selecting one of the
weakest colonies of the weakest territory to formulate the hegemony of each territory first is obtained the
normalized total cost as follows.

NTP Emp,, = max {TP Empi}—TP Emp,,

(14)
Where:
e NTP, isthenormalizedtotal power of nth empire
e TP, isthetotal power of nth empire
After calculating normalized total power, the hegemony probability of each territory is obtained by:
Opn = NTP Emp, ‘ (15)
> m NTP Emp, ‘

Next, to allocate the abovementioned colony to a territory, a so called roulette wheel method is used that is
shown below:

Empired | )

Impenalist 4
Weakest Colony in \ ¢ vAy @
Weakest Empire < ‘:ﬁ')\' 2
v 9 D
- J
Empire 3 ... - ] 2 .‘ . Empire 2
. llnpgrl'\lul P ‘\TV_‘.‘.MHKI:IM".
. ‘ Empire 6 ‘0 ‘<V 4» ‘ ‘
o o = ®¢ *vYr0®
o ©® e® o
e o e ©
Empire 10?1\“‘?111?( Igo ) Impernialist 5 Empire’S
A Q00 ., ®
Oy
o «Q. CYC . a3 ©
00;'«‘?09 " 9 @
®9oogeo o o
oo e ¢

Figure 15. Imperialistic competition
3.3.3.11 Eliminating the Powerless Empires

Through the competition, weak territories will ruin and their members dispense among other territories. The
study refers to this ruined territory as collapses as shown below:
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| Empire 4;
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Figure 16. Eliminating the powerless empires

3.3.3.12 Stopping Criteria

The stopping point in competition, in this study, refers to the situation where there is only one territory remained
among all countries. The process of territories purification is shown in three spectrums below:
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Figure 15. Convergence of algorithm
The process that the study is offeredis concisely illustrated below:

Set the Generating Calculate the objective functions for each Chose most powerful countries Assign colonies to

Start m—— initial »| country and sort the initial countries based on ¥ as the imperialist and remained | imperialists based on

P ’ countries non dominated sorting and crowding distance other countries the colonies their Total Costs (popl)
J
! ‘
The members of front Popl= Merge popl, Improve Revolve some Information sharing Assimilate Select Compute the
one add to archive popl, pop3, popd and 4— imperialist #—  colonies «— betweensome | 4— Colonies thei (th) — (=] [—rotal power of 4—
pop5 for each empire (pop3) (popd) colonies (pop3) {pop2) empire all empires

}

Updated archive based on
non dominated solution

r

Sort the popl based on

and crowding distance

non dominated sorting — countries from empire (i} H»

Popl=Select NC 1)

based on rank

The imperialist and the member of front 1 of
colonies sort based non dominated sorting and
crowding distance and selected rank] as imperialist

of Archive member
greater than

1Archive?

Archive=Select ndrchive
member from Archive
based on rank

Eliminate
empire

Finish

Pareto solutions = Archive

4. Computational Experiments

4.1 Problem Design

l¢—Yes.

Is Stop Criterion

Yes
i=it!
No
¥
Give a weakest colony from the Compute the
weakest empire to a st < total power of
empire (Imperialist Competition) all empires

statisfied?

Figure 16. Flowchart of MOICA

The paper investigates the influence of some approaches for 36 test problems. Data are classified in three
segments; quantity of operations, quantity of machines in first and second stages and, the dissemination of
operation time in those stages. On the other hand, the abovementioned problems has been classified in two major
segments; small and large problems. Table 1 depicts the quantity of operations and machine in small and large

scale.
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Table 1. Factors and their levels

Factors Levels

. Small:8,10,14,16,20,24
Number of JObS (N ) Large:72, 80, 88, 108, 120, 132

M1=3M2=4; M1=2M2=2; M1=3M2=2

No. Machines (in both stages) M1=8M2=10; M1=10M2=10; M1=12M2=10

Processing times (p; ;) U(4,40

Sequence dependent setup times (S ;) U(4,40 .,

Probability of rework (P,) Exponential distribution (1€™")  with mean equal to 0.05
Rework times (RT, ) Round (U (0.3,0.6)ii#j j

In addition the due dates are generated using the following formula:

UO.Y (P, + Pay)
(P + P,;) +round (— = ) (16)
(m, +m,)

4.2 Parameter Setting

To evaluate the performance the suggested process, we need to set some key success factors. To come to this
conclusion, some operations are simulated for both sizes of problems. Table 2 shows the tuned values of the
proposed algorithms’ values.

Table 2. Tuned values of the parameters of the algorithms

algorithm parameter problem size

small large

NSGAII population size 100 200
max generation 200 500

crossover rate 0.8 0.8

mutation rate 0.2 0.2

MOICA Pop Size 150 300
Nimp 5 10

M?dc 250 400

0.4 0.4

Pas 0.2 0.3

Pr 0.2 0.3

PAES max iteration 50000 200000

4.3 Performance Measures

The so-called Pareto based multi-objective optimization algorithm aims to find an estimate of non-dominated
front. The key performance indicators of these methods are different from the single-purpose method. Hence,
another method is needed to evaluate the key performance indicators of this algorithm. Then to evaluate the
output of multi-purpose algorithms quantitatively, below evaluation methods are applied:

Number of Pareto solutions (NPS): in this method, the number of non-dominated solutions resulted by an
algorithmis computed.

Mean ideal distance (MID): The approximation between Pareto solutions and ideal point is defined. The
calculationof MID is:

anci

MID = =2 (17)
n
Where n is the quantity of non-dominated solutions and ¢, =/ f,” + f, . The lower the value, the better

performance the MID has.

e Diversification metric (DM): This performance metric shows the range of solutions resulted by
algorithms and is calculated as follows:

DM = \/(max f, —max f,)? +(max f,, —max f, )’ (18)
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e The spread of non-dominance solutions (SNS): Regarding to MID, this computes the range of
non-dominated solutions. The SNS is defined as follows:

n

Y (MID-c)
SNS =yt — 1
" (19)

e 9% Domination: this key performance indicator applies a constructed Pareto combination set. Then the
percentage of the solution belonging to each algorithm is calculated.

4.4 Experimental Results

This section refers to the result of experiments that are done through all the algorithms. The effectiveness of each
algorithm is presented and compared in terms of key performance indicators. All algorithms were coded using
MATLAB 2013aand run on personal computer witha 2.66 GHz CPU and 4 GB main memory.

The efficiency of the algorithms was stated by solving 36 variant problems of which 18 are small and 18 are
large in scale. The outputs of three algorithms regarding the five key performance indicator for both size are
compared and shown in Table 3 to 7 respectively.

Relative Percentage Deviation (RPD) is applied for the best solutions in terms of the key performance indicator.
The calculation is shown below:

RPD - |Method.,, — Best,,

Best

%100 (20)

Where
o Method,, is value of method
o Best,, isthe bestvalue between the algorithms

Table 4, 5 and 6 show the output with 95% sureness for the percentage of domination, DM and MID key
performance indicator for small size respectively. Deep analysis shows that MOICA beats the others in terms of
domination percent. Concerning DM, there is no considerable difference between NSGAII and MOICA. Yet
the MOICA still beats PAES. The presented facts disclose that for MID key performance indicator, the three
algorithms are similar and there is no considerable variance.

Table 7 presents the output of large scale problems. Alike the small scale problems, MOICA beats NSGAII and
PEAS. The more size of the problem, the more considerable the advantages are.

Table 8, 9 and 10 also shows the outputs of algorithms in terms of domination percent in which DM and MID are
shown consequently. By a glance at the table 8, MOICA’s superiority in terms of performance in comparison to
the next two. Outputs of DM are also illustrated in table 9 and disclose that the performance of NSGAII and
MOICA identical and both of them outperform PAES. Moreover, when MID is considered, MOICA beats
NSGAII and PEAS as shown in table 10.
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Table 3. The simulation results for small size problems

MPS. DM.. *. % Domination. MID., 3 ENS.
1:‘ q, M M MOI NSG PA MOI NSG PA MOI NSG PA MOI NSG PA MOI NSG PA
. " 1. 2. 7 CA. AL, ES. 7 CA. AN, ES. 7 CA. AIl. ES, CA. AIl. ES. ~ CA. AIl. ES,
W0 90 FI1 811 798 2.98
1. 3.4, . 2. 2. 1. . O o, L 1. . 0. %0, . 0.
1, 17, 100 100 08. 08. 16.  16.
. 404 39, . 121, 1220 131 074 244 9.9
3. B. 2. 2. . i, 2. . 363, . 25, 0. L
2. 8 4, 6.5. 4. o1, - 100, 25,0 213, 11. 92, 65. 48, 1L.
161 212 92 117, 121 120 279 g8y 11
3. 3. 2. . 3. A T . 100, 66. 33, S LT
: 4 &, 6. 2. 100. 66 77, 11. 17, 95. 5. T4.
4. i, 4. . 1. 1. 1. - 0. 0. 0. . 0. 100. 0. 103, 101, 104. . 0. 0. 0. -
1 4 . . . . 142 107 72 N 155, 157, 161 343 491 16
R T e A S U U A2 S
150 102 5.0 144, 148 132 015 462 0.1
: 3. 2. . 2. 2. . . s 5 : : . !
§ 3 1.  96. 99, 0. 50, 0 B9, 43, 04, 2. 5. 37.
. 730 3.60 7. 109, 114 127 1350
4 .00 6. 6. 00, 0. 0 37, 35, 8. 6. 98,
A S, . . 461 4353 31 588 111 168, 169, 184 241 333 040
g, oo ! R A DU I 1. B 26. 08. 03, 7 0l. B3. O04.
9. 5. 2. . 5. 3, s, ., 973 631 40 571 428 147 136 133 128 051 22
3. 46. 79, 4. 6. s, 07, B. 33, 23. 34,
.. 25, 687 312 150, 150. 153 293 510 22
10 4 19. 1 339 636 gy s, 5, 13, 4. & 1. 41, 34,
wl g 5. s 431 465 17 666 333 217, 231 243 411 108 63
TG, oo ’ A RO [ TR - P - ! 9. . 1B, T 49, 72, B3.
i §7.0 721 I6. 184, 188, 187 524 680 62
2. 3. 2. . 9. R Lm0, 0. 0. . s
2. 9. 8. 3 5. 1. 4. 00. 0. 0 03, 79, 6. 06. 78. 13.
. i 4. . g 3. s W& 270 & 557 42 185, 179, 196 114 o 70
2. T4, 63, L. 9. 49, 32, 89, 3., 2.
T .. i 71 700 11 R 279, 283, 310 296 780 18
T R S S NI SR N SR L N 59. 57. 07. T 2. 95. 36.
. 608 107 1L 236, 240, 241 056 138 3.6
: 3. 2. . 2. 3. 4. . ! . 100, 0. 0. . :
13 4 1, . 0. 0. 0 65, 1. 9. 2. 6. 68.
0.z 635 3T 27, 208, 112 521 93
3
16 Foode a8 8 B e T g g, 0 O 100, 00 5. 1. 2. 7 12, 28.  36.
I . 930 106 73 211 321, 352 766 158 13,
ey, 2 2o 8 6 50 T g 5 e 0 0 44, 09, 86, 81. 99. g2,
234 640 T4 266, 266 199 148 1359 13,
18 6. 4. 4 1. 3. 11, 0 le. 0.0 5. 99. 45, 7 16, 4. 8.
% F T9 3T . 968 F W . I T4 I 9 176, 190 178 I3
AVERAGE. 6. 4. 11, 5. B4, 7T, 9, 4. 33, 22, §8. .03, 4. 37.
M.opte . 4. 5. 2. % 10, 7. 4. . 14, 5. 0. 3. 6. 0. % 5. 8., 3.

Table 4. 95% confidence interval for % domination in small size problems

Pooled StDev

MOICA 18 15.28 3550 (----*---)
NSGAIl 18 54.97 41.66 (----*----)
PAES 18 98.17 7.78

0 30 60

[ S T

Individual 95% Cls For Mean Based on

Level N Mean StDev + -+ +om- o

90
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Table 5. 95% confidence interval for DM in small size problems

Individual 95% Cls For Mean Based on
Pooled StDev
Level N Mean StDev -+---------t-mmomem oo e
MOICA 17 1434 23.68 (------- Femooeee )
NSGAIl 17 33.37 38.95 (-=m-- Homemene )
PAES 17 48.48 33.74 (====--- Fomomenn )
R SRS, S B
0 20 40 60

Table 6. 95% confidence interval for MID in small size problems

Individual 95% Cls For Mean Based on
Pooled StDev
Level N Mean StDev -----t---m--momtomomm oot
MOICA 18 433 1335 (------—--ommmmeeer)
NSGAIl 18 3.72 1205 (------—--- e )
PAES 18 10.06 14.67 (-mmmmmmmm e o)
cememd Poememmeme e s eme s Fremms s e
0.0 5.0 10.0 15.0
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Table 7. The simulation results for large size problems
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Table 8. 95% confidence interval for % domination in large size problems

Individual 95% Cls For Mean Based on
Pooled StDev
Level N Mean StDev ---+-------- S S
MOICA 20 0.00 0.00 (--*--
NSGAIl 20 92.47 22.04 (e
PAES 20 95.00 22.36 _x

S N T S S

0 30 60 90
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Table 9.95% confidence interval for DM in large size problems

Individual 95% Cls For Mean Based on
Pooled StDev
Level N Mean StDev --------cmmmmme oo
MOICA 18 2176 32.70 (-----*----)
NSGAIl 18 2241 30.09 (-----*----)
PAES 18 77.65 29.76 (.

R R, N S, N
25 50 75 100

Table 10.95% confidence interval for MID in large size problems

Individual 95% Cls For Mean Based on
Pooled StDev

Level N Mean StDeVv ----t--——mte oo -
MOICA 18 0.362 1536 (----*---)
NSGAIl 18 6.411 3.650 (----*---)
PAES 18 10.692 5.756 ()
R S S
0.0 4.0 8.0 12.0

5. Conclusion and Further Researches

The study presents two criteria flow shop that is called two stage flexible flow shop. It aims to shorten the
makespan and increase lateness of operations. The paper modeled Pareto optimal solutions and based the process
on its similarity. NSGAIl, MOICA and PEAS were suggested as the main three metaheuristic Pareto based
multi-purpose algorithms. To estimate the efficiency of them, 36 problems, large and small, were answered. In
multi-purpose norms, five key performance indicators, NPS, MID, DM, SNS and percentage domination were
suggested to disclose the algorithms’ efficiency. With similar efficiency, NSGAII beats PAES in both small and
large scale of problem, in terms of DM. hence, MOICA is the best algorithm in case of efficiency for all the
studied problems.

To Guidance for researchers in similar cases, using other effective metaheuristic algorithm like multi-purpose
and colony optimization or multi-purpose invasive weed optimization are suggested to work on. Also there
would be valuable result if the stages increase for more than two.
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